Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > res0 | Structured version Visualization version GIF version |
Description: A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.) |
Ref | Expression |
---|---|
res0 | ⊢ (𝐴 ↾ ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5536 | . 2 ⊢ (𝐴 ↾ ∅) = (𝐴 ∩ (∅ × V)) | |
2 | 0xp 5618 | . . 3 ⊢ (∅ × V) = ∅ | |
3 | 2 | ineq2i 4114 | . 2 ⊢ (𝐴 ∩ (∅ × V)) = (𝐴 ∩ ∅) |
4 | in0 4287 | . 2 ⊢ (𝐴 ∩ ∅) = ∅ | |
5 | 1, 3, 4 | 3eqtri 2785 | 1 ⊢ (𝐴 ↾ ∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 Vcvv 3409 ∩ cin 3857 ∅c0 4225 × cxp 5522 ↾ cres 5526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-rab 3079 df-v 3411 df-dif 3861 df-un 3863 df-in 3865 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-opab 5095 df-xp 5530 df-res 5536 |
This theorem is referenced by: ima0 5917 resdisj 5998 smo0 8005 tfrlem16 8039 tz7.44-1 8052 mapunen 8708 fnfi 8829 ackbij2lem3 9701 hashf1lem1 13864 hashf1lem1OLD 13865 setsid 16596 meet0 17813 join0 17814 frmdplusg 18085 psgn0fv0 18706 gsum2dlem2 19159 ablfac1eulem 19262 ablfac1eu 19263 psrplusg 20709 ply1plusgfvi 20966 ptuncnv 22507 ptcmpfi 22513 ust0 22920 xrge0gsumle 23534 xrge0tsms 23535 jensen 25673 egrsubgr 27166 0grsubgr 27167 pthdlem1 27654 0pth 28009 1pthdlem1 28019 eupth2lemb 28121 fressupp 30546 resf1o 30589 xrge0tsmsd 30843 gsumle 30876 zarcmplem 31352 esumsnf 31551 satfv1lem 32840 dfpo2 33238 eldm3 33244 rdgprc0 33285 zrdivrng 35693 eldioph4b 40147 diophren 40149 ismeannd 43494 psmeasure 43498 isomennd 43558 hoidmvlelem3 43624 aacllem 45742 |
Copyright terms: Public domain | W3C validator |