![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > res0 | Structured version Visualization version GIF version |
Description: A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.) |
Ref | Expression |
---|---|
res0 | ⊢ (𝐴 ↾ ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5701 | . 2 ⊢ (𝐴 ↾ ∅) = (𝐴 ∩ (∅ × V)) | |
2 | 0xp 5787 | . . 3 ⊢ (∅ × V) = ∅ | |
3 | 2 | ineq2i 4225 | . 2 ⊢ (𝐴 ∩ (∅ × V)) = (𝐴 ∩ ∅) |
4 | in0 4401 | . 2 ⊢ (𝐴 ∩ ∅) = ∅ | |
5 | 1, 3, 4 | 3eqtri 2767 | 1 ⊢ (𝐴 ↾ ∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 Vcvv 3478 ∩ cin 3962 ∅c0 4339 × cxp 5687 ↾ cres 5691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-opab 5211 df-xp 5695 df-res 5701 |
This theorem is referenced by: ima0 6097 resdisj 6191 dfpo2 6318 smo0 8397 tfrlem16 8432 tz7.44-1 8445 rdg0n 8473 mapunen 9185 fnfi 9216 ackbij2lem3 10278 hashf1lem1 14491 setsid 17242 join0 18463 meet0 18464 frmdplusg 18880 psgn0fv0 19544 gsum2dlem2 20004 ablfac1eulem 20107 ablfac1eu 20108 psrplusg 21974 ply1plusgfvi 22259 ptuncnv 23831 ptcmpfi 23837 ust0 24244 xrge0gsumle 24869 xrge0tsms 24870 jensen 27047 egrsubgr 29309 0grsubgr 29310 pthdlem1 29799 0pth 30154 1pthdlem1 30164 eupth2lemb 30266 fressupp 32703 resf1o 32748 xrge0tsmsd 33048 gsumle 33084 rprmdvdsprod 33542 zarcmplem 33842 esumsnf 34045 satfv1lem 35347 eldm3 35741 rdgprc0 35775 bj-rdg0gALT 37054 zrdivrng 37940 disjresin 38221 eldioph4b 42799 diophren 42801 ismeannd 46423 psmeasure 46427 isomennd 46487 hoidmvlelem3 46553 stgr0 47863 aacllem 49032 |
Copyright terms: Public domain | W3C validator |