| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > res0 | Structured version Visualization version GIF version | ||
| Description: A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.) |
| Ref | Expression |
|---|---|
| res0 | ⊢ (𝐴 ↾ ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5697 | . 2 ⊢ (𝐴 ↾ ∅) = (𝐴 ∩ (∅ × V)) | |
| 2 | 0xp 5784 | . . 3 ⊢ (∅ × V) = ∅ | |
| 3 | 2 | ineq2i 4217 | . 2 ⊢ (𝐴 ∩ (∅ × V)) = (𝐴 ∩ ∅) |
| 4 | in0 4395 | . 2 ⊢ (𝐴 ∩ ∅) = ∅ | |
| 5 | 1, 3, 4 | 3eqtri 2769 | 1 ⊢ (𝐴 ↾ ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3480 ∩ cin 3950 ∅c0 4333 × cxp 5683 ↾ cres 5687 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-opab 5206 df-xp 5691 df-res 5697 |
| This theorem is referenced by: ima0 6095 resdisj 6189 dfpo2 6316 smo0 8398 tfrlem16 8433 tz7.44-1 8446 rdg0n 8474 mapunen 9186 fnfi 9218 ackbij2lem3 10280 hashf1lem1 14494 setsid 17244 join0 18450 meet0 18451 frmdplusg 18867 psgn0fv0 19529 gsum2dlem2 19989 ablfac1eulem 20092 ablfac1eu 20093 psrplusg 21956 ply1plusgfvi 22243 ptuncnv 23815 ptcmpfi 23821 ust0 24228 xrge0gsumle 24855 xrge0tsms 24856 jensen 27032 egrsubgr 29294 0grsubgr 29295 pthdlem1 29786 0pth 30144 1pthdlem1 30154 eupth2lemb 30256 fressupp 32697 resf1o 32741 xrge0tsmsd 33065 gsumle 33101 rprmdvdsprod 33562 zarcmplem 33880 esumsnf 34065 satfv1lem 35367 eldm3 35761 rdgprc0 35794 bj-rdg0gALT 37072 zrdivrng 37960 disjresin 38241 eldioph4b 42822 diophren 42824 ismeannd 46482 psmeasure 46486 isomennd 46546 hoidmvlelem3 46612 stgr0 47927 tposres3 48781 aacllem 49320 |
| Copyright terms: Public domain | W3C validator |