Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > res0 | Structured version Visualization version GIF version |
Description: A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.) |
Ref | Expression |
---|---|
res0 | ⊢ (𝐴 ↾ ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5592 | . 2 ⊢ (𝐴 ↾ ∅) = (𝐴 ∩ (∅ × V)) | |
2 | 0xp 5675 | . . 3 ⊢ (∅ × V) = ∅ | |
3 | 2 | ineq2i 4140 | . 2 ⊢ (𝐴 ∩ (∅ × V)) = (𝐴 ∩ ∅) |
4 | in0 4322 | . 2 ⊢ (𝐴 ∩ ∅) = ∅ | |
5 | 1, 3, 4 | 3eqtri 2770 | 1 ⊢ (𝐴 ↾ ∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3422 ∩ cin 3882 ∅c0 4253 × cxp 5578 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-opab 5133 df-xp 5586 df-res 5592 |
This theorem is referenced by: ima0 5974 resdisj 6061 dfpo2 6188 smo0 8160 tfrlem16 8195 tz7.44-1 8208 mapunen 8882 fnfi 8925 ackbij2lem3 9928 hashf1lem1 14096 hashf1lem1OLD 14097 setsid 16837 join0 18038 meet0 18039 frmdplusg 18408 psgn0fv0 19034 gsum2dlem2 19487 ablfac1eulem 19590 ablfac1eu 19591 psrplusg 21060 ply1plusgfvi 21323 ptuncnv 22866 ptcmpfi 22872 ust0 23279 xrge0gsumle 23902 xrge0tsms 23903 jensen 26043 egrsubgr 27547 0grsubgr 27548 pthdlem1 28035 0pth 28390 1pthdlem1 28400 eupth2lemb 28502 fressupp 30924 resf1o 30967 xrge0tsmsd 31219 gsumle 31252 zarcmplem 31733 esumsnf 31932 satfv1lem 33224 rdg0n 33598 eldm3 33634 rdgprc0 33675 bj-rdg0gALT 35169 zrdivrng 36038 eldioph4b 40549 diophren 40551 ismeannd 43895 psmeasure 43899 isomennd 43959 hoidmvlelem3 44025 aacllem 46391 |
Copyright terms: Public domain | W3C validator |