Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > res0 | Structured version Visualization version GIF version |
Description: A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.) |
Ref | Expression |
---|---|
res0 | ⊢ (𝐴 ↾ ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5601 | . 2 ⊢ (𝐴 ↾ ∅) = (𝐴 ∩ (∅ × V)) | |
2 | 0xp 5685 | . . 3 ⊢ (∅ × V) = ∅ | |
3 | 2 | ineq2i 4143 | . 2 ⊢ (𝐴 ∩ (∅ × V)) = (𝐴 ∩ ∅) |
4 | in0 4325 | . 2 ⊢ (𝐴 ∩ ∅) = ∅ | |
5 | 1, 3, 4 | 3eqtri 2770 | 1 ⊢ (𝐴 ↾ ∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3432 ∩ cin 3886 ∅c0 4256 × cxp 5587 ↾ cres 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-opab 5137 df-xp 5595 df-res 5601 |
This theorem is referenced by: ima0 5985 resdisj 6072 dfpo2 6199 smo0 8189 tfrlem16 8224 tz7.44-1 8237 rdg0n 8265 mapunen 8933 fnfi 8964 ackbij2lem3 9997 hashf1lem1 14168 hashf1lem1OLD 14169 setsid 16909 join0 18123 meet0 18124 frmdplusg 18493 psgn0fv0 19119 gsum2dlem2 19572 ablfac1eulem 19675 ablfac1eu 19676 psrplusg 21150 ply1plusgfvi 21413 ptuncnv 22958 ptcmpfi 22964 ust0 23371 xrge0gsumle 23996 xrge0tsms 23997 jensen 26138 egrsubgr 27644 0grsubgr 27645 pthdlem1 28134 0pth 28489 1pthdlem1 28499 eupth2lemb 28601 fressupp 31022 resf1o 31065 xrge0tsmsd 31317 gsumle 31350 zarcmplem 31831 esumsnf 32032 satfv1lem 33324 eldm3 33728 rdgprc0 33769 bj-rdg0gALT 35242 zrdivrng 36111 eldioph4b 40633 diophren 40635 ismeannd 44005 psmeasure 44009 isomennd 44069 hoidmvlelem3 44135 aacllem 46505 |
Copyright terms: Public domain | W3C validator |