| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > res0 | Structured version Visualization version GIF version | ||
| Description: A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.) |
| Ref | Expression |
|---|---|
| res0 | ⊢ (𝐴 ↾ ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5653 | . 2 ⊢ (𝐴 ↾ ∅) = (𝐴 ∩ (∅ × V)) | |
| 2 | 0xp 5740 | . . 3 ⊢ (∅ × V) = ∅ | |
| 3 | 2 | ineq2i 4183 | . 2 ⊢ (𝐴 ∩ (∅ × V)) = (𝐴 ∩ ∅) |
| 4 | in0 4361 | . 2 ⊢ (𝐴 ∩ ∅) = ∅ | |
| 5 | 1, 3, 4 | 3eqtri 2757 | 1 ⊢ (𝐴 ↾ ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3450 ∩ cin 3916 ∅c0 4299 × cxp 5639 ↾ cres 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-opab 5173 df-xp 5647 df-res 5653 |
| This theorem is referenced by: ima0 6051 resdisj 6145 dfpo2 6272 smo0 8330 tfrlem16 8364 tz7.44-1 8377 rdg0n 8405 mapunen 9116 fnfi 9148 ackbij2lem3 10200 hashf1lem1 14427 setsid 17184 join0 18371 meet0 18372 frmdplusg 18788 psgn0fv0 19448 gsum2dlem2 19908 ablfac1eulem 20011 ablfac1eu 20012 psrplusg 21852 ply1plusgfvi 22133 ptuncnv 23701 ptcmpfi 23707 ust0 24114 xrge0gsumle 24729 xrge0tsms 24730 jensen 26906 egrsubgr 29211 0grsubgr 29212 pthdlem1 29703 0pth 30061 1pthdlem1 30071 eupth2lemb 30173 fressupp 32618 resf1o 32660 xrge0tsmsd 33009 gsumle 33045 rprmdvdsprod 33512 zarcmplem 33878 esumsnf 34061 satfv1lem 35356 eldm3 35755 rdgprc0 35788 bj-rdg0gALT 37066 zrdivrng 37954 disjresin 38235 eldioph4b 42806 diophren 42808 ismeannd 46472 psmeasure 46476 isomennd 46536 hoidmvlelem3 46602 stgr0 47963 tposres3 48873 setc1oid 49488 aacllem 49794 |
| Copyright terms: Public domain | W3C validator |