![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > res0 | Structured version Visualization version GIF version |
Description: A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.) |
Ref | Expression |
---|---|
res0 | ⊢ (𝐴 ↾ ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5712 | . 2 ⊢ (𝐴 ↾ ∅) = (𝐴 ∩ (∅ × V)) | |
2 | 0xp 5798 | . . 3 ⊢ (∅ × V) = ∅ | |
3 | 2 | ineq2i 4238 | . 2 ⊢ (𝐴 ∩ (∅ × V)) = (𝐴 ∩ ∅) |
4 | in0 4418 | . 2 ⊢ (𝐴 ∩ ∅) = ∅ | |
5 | 1, 3, 4 | 3eqtri 2772 | 1 ⊢ (𝐴 ↾ ∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 Vcvv 3488 ∩ cin 3975 ∅c0 4352 × cxp 5698 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 df-xp 5706 df-res 5712 |
This theorem is referenced by: ima0 6106 resdisj 6200 dfpo2 6327 smo0 8414 tfrlem16 8449 tz7.44-1 8462 rdg0n 8490 mapunen 9212 fnfi 9244 ackbij2lem3 10309 hashf1lem1 14504 setsid 17255 join0 18475 meet0 18476 frmdplusg 18889 psgn0fv0 19553 gsum2dlem2 20013 ablfac1eulem 20116 ablfac1eu 20117 psrplusg 21979 ply1plusgfvi 22264 ptuncnv 23836 ptcmpfi 23842 ust0 24249 xrge0gsumle 24874 xrge0tsms 24875 jensen 27050 egrsubgr 29312 0grsubgr 29313 pthdlem1 29802 0pth 30157 1pthdlem1 30167 eupth2lemb 30269 fressupp 32700 resf1o 32744 xrge0tsmsd 33041 gsumle 33074 rprmdvdsprod 33527 zarcmplem 33827 esumsnf 34028 satfv1lem 35330 eldm3 35723 rdgprc0 35757 bj-rdg0gALT 37037 zrdivrng 37913 disjresin 38195 eldioph4b 42767 diophren 42769 ismeannd 46388 psmeasure 46392 isomennd 46452 hoidmvlelem3 46518 aacllem 48895 |
Copyright terms: Public domain | W3C validator |