| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > res0 | Structured version Visualization version GIF version | ||
| Description: A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.) |
| Ref | Expression |
|---|---|
| res0 | ⊢ (𝐴 ↾ ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5650 | . 2 ⊢ (𝐴 ↾ ∅) = (𝐴 ∩ (∅ × V)) | |
| 2 | 0xp 5737 | . . 3 ⊢ (∅ × V) = ∅ | |
| 3 | 2 | ineq2i 4180 | . 2 ⊢ (𝐴 ∩ (∅ × V)) = (𝐴 ∩ ∅) |
| 4 | in0 4358 | . 2 ⊢ (𝐴 ∩ ∅) = ∅ | |
| 5 | 1, 3, 4 | 3eqtri 2756 | 1 ⊢ (𝐴 ↾ ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3447 ∩ cin 3913 ∅c0 4296 × cxp 5636 ↾ cres 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-opab 5170 df-xp 5644 df-res 5650 |
| This theorem is referenced by: ima0 6048 resdisj 6142 dfpo2 6269 smo0 8327 tfrlem16 8361 tz7.44-1 8374 rdg0n 8402 mapunen 9110 fnfi 9142 ackbij2lem3 10193 hashf1lem1 14420 setsid 17177 join0 18364 meet0 18365 frmdplusg 18781 psgn0fv0 19441 gsum2dlem2 19901 ablfac1eulem 20004 ablfac1eu 20005 psrplusg 21845 ply1plusgfvi 22126 ptuncnv 23694 ptcmpfi 23700 ust0 24107 xrge0gsumle 24722 xrge0tsms 24723 jensen 26899 egrsubgr 29204 0grsubgr 29205 pthdlem1 29696 0pth 30054 1pthdlem1 30064 eupth2lemb 30166 fressupp 32611 resf1o 32653 xrge0tsmsd 33002 gsumle 33038 rprmdvdsprod 33505 zarcmplem 33871 esumsnf 34054 satfv1lem 35349 eldm3 35748 rdgprc0 35781 bj-rdg0gALT 37059 zrdivrng 37947 disjresin 38228 eldioph4b 42799 diophren 42801 ismeannd 46465 psmeasure 46469 isomennd 46529 hoidmvlelem3 46595 stgr0 47959 tposres3 48869 setc1oid 49484 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |