| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > res0 | Structured version Visualization version GIF version | ||
| Description: A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.) |
| Ref | Expression |
|---|---|
| res0 | ⊢ (𝐴 ↾ ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5628 | . 2 ⊢ (𝐴 ↾ ∅) = (𝐴 ∩ (∅ × V)) | |
| 2 | 0xp 5715 | . . 3 ⊢ (∅ × V) = ∅ | |
| 3 | 2 | ineq2i 4167 | . 2 ⊢ (𝐴 ∩ (∅ × V)) = (𝐴 ∩ ∅) |
| 4 | in0 4345 | . 2 ⊢ (𝐴 ∩ ∅) = ∅ | |
| 5 | 1, 3, 4 | 3eqtri 2758 | 1 ⊢ (𝐴 ↾ ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3436 ∩ cin 3901 ∅c0 4283 × cxp 5614 ↾ cres 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-opab 5154 df-xp 5622 df-res 5628 |
| This theorem is referenced by: ima0 6026 resdisj 6116 dfpo2 6243 smo0 8278 tfrlem16 8312 tz7.44-1 8325 rdg0n 8353 mapunen 9059 fnfi 9087 ackbij2lem3 10131 hashf1lem1 14362 setsid 17118 join0 18309 meet0 18310 frmdplusg 18762 psgn0fv0 19424 gsum2dlem2 19884 ablfac1eulem 19987 ablfac1eu 19988 gsumle 20058 psrplusg 21874 ply1plusgfvi 22155 ptuncnv 23723 ptcmpfi 23729 ust0 24136 xrge0gsumle 24750 xrge0tsms 24751 jensen 26927 egrsubgr 29256 0grsubgr 29257 pthdlem1 29745 0pth 30103 1pthdlem1 30113 eupth2lemb 30215 fressupp 32667 resf1o 32711 xrge0tsmsd 33040 rprmdvdsprod 33497 zarcmplem 33892 esumsnf 34075 satfv1lem 35404 eldm3 35803 rdgprc0 35833 bj-rdg0gALT 37111 zrdivrng 37999 disjresin 38280 eldioph4b 42850 diophren 42852 ismeannd 46511 psmeasure 46515 isomennd 46575 hoidmvlelem3 46641 stgr0 47997 tposres3 48918 setc1oid 49533 aacllem 49839 |
| Copyright terms: Public domain | W3C validator |