| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > res0 | Structured version Visualization version GIF version | ||
| Description: A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.) |
| Ref | Expression |
|---|---|
| res0 | ⊢ (𝐴 ↾ ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5666 | . 2 ⊢ (𝐴 ↾ ∅) = (𝐴 ∩ (∅ × V)) | |
| 2 | 0xp 5753 | . . 3 ⊢ (∅ × V) = ∅ | |
| 3 | 2 | ineq2i 4192 | . 2 ⊢ (𝐴 ∩ (∅ × V)) = (𝐴 ∩ ∅) |
| 4 | in0 4370 | . 2 ⊢ (𝐴 ∩ ∅) = ∅ | |
| 5 | 1, 3, 4 | 3eqtri 2762 | 1 ⊢ (𝐴 ↾ ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3459 ∩ cin 3925 ∅c0 4308 × cxp 5652 ↾ cres 5656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-opab 5182 df-xp 5660 df-res 5666 |
| This theorem is referenced by: ima0 6064 resdisj 6158 dfpo2 6285 smo0 8372 tfrlem16 8407 tz7.44-1 8420 rdg0n 8448 mapunen 9160 fnfi 9192 ackbij2lem3 10254 hashf1lem1 14473 setsid 17226 join0 18415 meet0 18416 frmdplusg 18832 psgn0fv0 19492 gsum2dlem2 19952 ablfac1eulem 20055 ablfac1eu 20056 psrplusg 21896 ply1plusgfvi 22177 ptuncnv 23745 ptcmpfi 23751 ust0 24158 xrge0gsumle 24773 xrge0tsms 24774 jensen 26951 egrsubgr 29256 0grsubgr 29257 pthdlem1 29748 0pth 30106 1pthdlem1 30116 eupth2lemb 30218 fressupp 32665 resf1o 32707 xrge0tsmsd 33056 gsumle 33092 rprmdvdsprod 33549 zarcmplem 33912 esumsnf 34095 satfv1lem 35384 eldm3 35778 rdgprc0 35811 bj-rdg0gALT 37089 zrdivrng 37977 disjresin 38258 eldioph4b 42834 diophren 42836 ismeannd 46496 psmeasure 46500 isomennd 46560 hoidmvlelem3 46626 stgr0 47972 tposres3 48856 setc1oid 49380 aacllem 49665 |
| Copyright terms: Public domain | W3C validator |