![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > res0 | Structured version Visualization version GIF version |
Description: A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.) |
Ref | Expression |
---|---|
res0 | ⊢ (𝐴 ↾ ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5688 | . 2 ⊢ (𝐴 ↾ ∅) = (𝐴 ∩ (∅ × V)) | |
2 | 0xp 5774 | . . 3 ⊢ (∅ × V) = ∅ | |
3 | 2 | ineq2i 4209 | . 2 ⊢ (𝐴 ∩ (∅ × V)) = (𝐴 ∩ ∅) |
4 | in0 4391 | . 2 ⊢ (𝐴 ∩ ∅) = ∅ | |
5 | 1, 3, 4 | 3eqtri 2763 | 1 ⊢ (𝐴 ↾ ∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 Vcvv 3473 ∩ cin 3947 ∅c0 4322 × cxp 5674 ↾ cres 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-opab 5211 df-xp 5682 df-res 5688 |
This theorem is referenced by: ima0 6076 resdisj 6168 dfpo2 6295 smo0 8364 tfrlem16 8399 tz7.44-1 8412 rdg0n 8440 mapunen 9152 fnfi 9187 ackbij2lem3 10242 hashf1lem1 14422 hashf1lem1OLD 14423 setsid 17148 join0 18368 meet0 18369 frmdplusg 18777 psgn0fv0 19427 gsum2dlem2 19887 ablfac1eulem 19990 ablfac1eu 19991 psrplusg 21810 ply1plusgfvi 22084 ptuncnv 23631 ptcmpfi 23637 ust0 24044 xrge0gsumle 24669 xrge0tsms 24670 jensen 26835 egrsubgr 28968 0grsubgr 28969 pthdlem1 29457 0pth 29812 1pthdlem1 29822 eupth2lemb 29924 fressupp 32344 resf1o 32389 xrge0tsmsd 32646 gsumle 32679 zarcmplem 33326 esumsnf 33527 satfv1lem 34818 eldm3 35202 rdgprc0 35236 bj-rdg0gALT 36418 zrdivrng 37287 disjresin 37572 eldioph4b 42014 diophren 42016 ismeannd 45644 psmeasure 45648 isomennd 45708 hoidmvlelem3 45774 aacllem 48012 |
Copyright terms: Public domain | W3C validator |