![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > res0 | Structured version Visualization version GIF version |
Description: A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.) |
Ref | Expression |
---|---|
res0 | ⊢ (𝐴 ↾ ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5325 | . 2 ⊢ (𝐴 ↾ ∅) = (𝐴 ∩ (∅ × V)) | |
2 | 0xp 5405 | . . 3 ⊢ (∅ × V) = ∅ | |
3 | 2 | ineq2i 4010 | . 2 ⊢ (𝐴 ∩ (∅ × V)) = (𝐴 ∩ ∅) |
4 | in0 4165 | . 2 ⊢ (𝐴 ∩ ∅) = ∅ | |
5 | 1, 3, 4 | 3eqtri 2826 | 1 ⊢ (𝐴 ↾ ∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 Vcvv 3386 ∩ cin 3769 ∅c0 4116 × cxp 5311 ↾ cres 5315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pr 5098 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-v 3388 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-sn 4370 df-pr 4372 df-op 4376 df-opab 4907 df-xp 5319 df-res 5325 |
This theorem is referenced by: ima0 5699 resdisj 5781 smo0 7695 tfrlem16 7729 tz7.44-1 7742 mapunen 8372 fnfi 8481 ackbij2lem3 9352 hashf1lem1 13487 setsid 16238 meet0 17451 join0 17452 frmdplusg 17706 psgn0fv0 18243 gsum2dlem2 18684 ablfac1eulem 18786 ablfac1eu 18787 psrplusg 19703 ply1plusgfvi 19933 ptuncnv 21938 ptcmpfi 21944 ust0 22350 xrge0gsumle 22963 xrge0tsms 22964 jensen 25066 egrsubgr 26510 0grsubgr 26511 pthdlem1 27019 0pth 27468 1pthdlem1 27478 eupth2lemb 27581 resf1o 30022 gsumle 30294 xrge0tsmsd 30300 esumsnf 30641 dfpo2 32158 eldm3 32164 rdgprc0 32210 zrdivrng 34238 eldioph4b 38156 diophren 38158 ismeannd 41422 psmeasure 41426 isomennd 41486 hoidmvlelem3 41552 aacllem 43344 |
Copyright terms: Public domain | W3C validator |