| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > res0 | Structured version Visualization version GIF version | ||
| Description: A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.) |
| Ref | Expression |
|---|---|
| res0 | ⊢ (𝐴 ↾ ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5635 | . 2 ⊢ (𝐴 ↾ ∅) = (𝐴 ∩ (∅ × V)) | |
| 2 | 0xp 5722 | . . 3 ⊢ (∅ × V) = ∅ | |
| 3 | 2 | ineq2i 4170 | . 2 ⊢ (𝐴 ∩ (∅ × V)) = (𝐴 ∩ ∅) |
| 4 | in0 4348 | . 2 ⊢ (𝐴 ∩ ∅) = ∅ | |
| 5 | 1, 3, 4 | 3eqtri 2756 | 1 ⊢ (𝐴 ↾ ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3438 ∩ cin 3904 ∅c0 4286 × cxp 5621 ↾ cres 5625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-opab 5158 df-xp 5629 df-res 5635 |
| This theorem is referenced by: ima0 6032 resdisj 6122 dfpo2 6248 smo0 8288 tfrlem16 8322 tz7.44-1 8335 rdg0n 8363 mapunen 9070 fnfi 9102 ackbij2lem3 10153 hashf1lem1 14380 setsid 17136 join0 18327 meet0 18328 frmdplusg 18746 psgn0fv0 19408 gsum2dlem2 19868 ablfac1eulem 19971 ablfac1eu 19972 gsumle 20042 psrplusg 21861 ply1plusgfvi 22142 ptuncnv 23710 ptcmpfi 23716 ust0 24123 xrge0gsumle 24738 xrge0tsms 24739 jensen 26915 egrsubgr 29240 0grsubgr 29241 pthdlem1 29729 0pth 30087 1pthdlem1 30097 eupth2lemb 30199 fressupp 32644 resf1o 32686 xrge0tsmsd 33028 rprmdvdsprod 33481 zarcmplem 33847 esumsnf 34030 satfv1lem 35334 eldm3 35733 rdgprc0 35766 bj-rdg0gALT 37044 zrdivrng 37932 disjresin 38213 eldioph4b 42784 diophren 42786 ismeannd 46449 psmeasure 46453 isomennd 46513 hoidmvlelem3 46579 stgr0 47945 tposres3 48866 setc1oid 49481 aacllem 49787 |
| Copyright terms: Public domain | W3C validator |