| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > res0 | Structured version Visualization version GIF version | ||
| Description: A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.) |
| Ref | Expression |
|---|---|
| res0 | ⊢ (𝐴 ↾ ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5631 | . 2 ⊢ (𝐴 ↾ ∅) = (𝐴 ∩ (∅ × V)) | |
| 2 | 0xp 5718 | . . 3 ⊢ (∅ × V) = ∅ | |
| 3 | 2 | ineq2i 4166 | . 2 ⊢ (𝐴 ∩ (∅ × V)) = (𝐴 ∩ ∅) |
| 4 | in0 4344 | . 2 ⊢ (𝐴 ∩ ∅) = ∅ | |
| 5 | 1, 3, 4 | 3eqtri 2760 | 1 ⊢ (𝐴 ↾ ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3437 ∩ cin 3897 ∅c0 4282 × cxp 5617 ↾ cres 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-in 3905 df-nul 4283 df-opab 5156 df-xp 5625 df-res 5631 |
| This theorem is referenced by: ima0 6030 resdisj 6121 dfpo2 6248 smo0 8284 tfrlem16 8318 tz7.44-1 8331 rdg0n 8359 mapunen 9066 fnfi 9094 ackbij2lem3 10138 hashf1lem1 14364 setsid 17120 join0 18311 meet0 18312 frmdplusg 18764 psgn0fv0 19425 gsum2dlem2 19885 ablfac1eulem 19988 ablfac1eu 19989 gsumle 20059 psrplusg 21875 ply1plusgfvi 22155 ptuncnv 23723 ptcmpfi 23729 ust0 24136 xrge0gsumle 24750 xrge0tsms 24751 jensen 26927 egrsubgr 29257 0grsubgr 29258 pthdlem1 29746 0pth 30107 1pthdlem1 30117 eupth2lemb 30219 fressupp 32673 resf1o 32717 xrge0tsmsd 33049 rprmdvdsprod 33506 zarcmplem 33915 esumsnf 34098 satfv1lem 35427 eldm3 35826 rdgprc0 35856 bj-rdg0gALT 37136 zrdivrng 38014 disjresin 38299 eldioph4b 42929 diophren 42931 ismeannd 46590 psmeasure 46594 isomennd 46654 hoidmvlelem3 46720 stgr0 48085 tposres3 49006 setc1oid 49621 aacllem 49927 |
| Copyright terms: Public domain | W3C validator |