Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjresdisj Structured version   Visualization version   GIF version

Theorem disjresdisj 37102
Description: The intersection of restrictions to disjoint is the empty class. (Contributed by Peter Mazsa, 24-Jul-2024.)
Assertion
Ref Expression
disjresdisj ((𝐴𝐵) = ∅ → ((𝑅𝐴) ∩ (𝑅𝐵)) = ∅)

Proof of Theorem disjresdisj
StepHypRef Expression
1 resindi 5997 . 2 (𝑅 ↾ (𝐴𝐵)) = ((𝑅𝐴) ∩ (𝑅𝐵))
2 disjresin 37101 . 2 ((𝐴𝐵) = ∅ → (𝑅 ↾ (𝐴𝐵)) = ∅)
31, 2eqtr3id 2786 1 ((𝐴𝐵) = ∅ → ((𝑅𝐴) ∩ (𝑅𝐵)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cin 3947  c0 4322  cres 5678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-opab 5211  df-xp 5682  df-rel 5683  df-res 5688
This theorem is referenced by:  disjresdif  37103
  Copyright terms: Public domain W3C validator