MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgsplitlem Structured version   Visualization version   GIF version

Theorem ditgsplitlem 24461
Description: Lemma for ditgsplit 24462. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypotheses
Ref Expression
ditgsplit.x (𝜑𝑋 ∈ ℝ)
ditgsplit.y (𝜑𝑌 ∈ ℝ)
ditgsplit.a (𝜑𝐴 ∈ (𝑋[,]𝑌))
ditgsplit.b (𝜑𝐵 ∈ (𝑋[,]𝑌))
ditgsplit.c (𝜑𝐶 ∈ (𝑋[,]𝑌))
ditgsplit.d ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐷𝑉)
ditgsplit.i (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ 𝐿1)
ditgsplit.1 ((𝜓𝜃) ↔ (𝐴𝐵𝐵𝐶))
Assertion
Ref Expression
ditgsplitlem (((𝜑𝜓) ∧ 𝜃) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥   𝜓,𝑥   𝜃,𝑥   𝑥,𝑉   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem ditgsplitlem
StepHypRef Expression
1 ditgsplit.a . . . . . . 7 (𝜑𝐴 ∈ (𝑋[,]𝑌))
2 ditgsplit.x . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
3 ditgsplit.y . . . . . . . 8 (𝜑𝑌 ∈ ℝ)
4 elicc2 12804 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
52, 3, 4syl2anc 586 . . . . . . 7 (𝜑 → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
61, 5mpbid 234 . . . . . 6 (𝜑 → (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌))
76simp1d 1138 . . . . 5 (𝜑𝐴 ∈ ℝ)
87adantr 483 . . . 4 ((𝜑 ∧ (𝜓𝜃)) → 𝐴 ∈ ℝ)
9 ditgsplit.c . . . . . . 7 (𝜑𝐶 ∈ (𝑋[,]𝑌))
10 elicc2 12804 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐶 ∈ (𝑋[,]𝑌) ↔ (𝐶 ∈ ℝ ∧ 𝑋𝐶𝐶𝑌)))
112, 3, 10syl2anc 586 . . . . . . 7 (𝜑 → (𝐶 ∈ (𝑋[,]𝑌) ↔ (𝐶 ∈ ℝ ∧ 𝑋𝐶𝐶𝑌)))
129, 11mpbid 234 . . . . . 6 (𝜑 → (𝐶 ∈ ℝ ∧ 𝑋𝐶𝐶𝑌))
1312simp1d 1138 . . . . 5 (𝜑𝐶 ∈ ℝ)
1413adantr 483 . . . 4 ((𝜑 ∧ (𝜓𝜃)) → 𝐶 ∈ ℝ)
15 ditgsplit.b . . . . . . . 8 (𝜑𝐵 ∈ (𝑋[,]𝑌))
16 elicc2 12804 . . . . . . . . 9 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
172, 3, 16syl2anc 586 . . . . . . . 8 (𝜑 → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
1815, 17mpbid 234 . . . . . . 7 (𝜑 → (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌))
1918simp1d 1138 . . . . . 6 (𝜑𝐵 ∈ ℝ)
2019adantr 483 . . . . 5 ((𝜑 ∧ (𝜓𝜃)) → 𝐵 ∈ ℝ)
21 simpr 487 . . . . . . 7 ((𝜑 ∧ (𝜓𝜃)) → (𝜓𝜃))
22 ditgsplit.1 . . . . . . 7 ((𝜓𝜃) ↔ (𝐴𝐵𝐵𝐶))
2321, 22sylib 220 . . . . . 6 ((𝜑 ∧ (𝜓𝜃)) → (𝐴𝐵𝐵𝐶))
2423simpld 497 . . . . 5 ((𝜑 ∧ (𝜓𝜃)) → 𝐴𝐵)
2523simprd 498 . . . . 5 ((𝜑 ∧ (𝜓𝜃)) → 𝐵𝐶)
26 elicc2 12804 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐶)))
277, 13, 26syl2anc 586 . . . . . 6 (𝜑 → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐶)))
2827adantr 483 . . . . 5 ((𝜑 ∧ (𝜓𝜃)) → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐶)))
2920, 24, 25, 28mpbir3and 1338 . . . 4 ((𝜑 ∧ (𝜓𝜃)) → 𝐵 ∈ (𝐴[,]𝐶))
302rexrd 10694 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ*)
316simp2d 1139 . . . . . . . . 9 (𝜑𝑋𝐴)
32 iooss1 12776 . . . . . . . . 9 ((𝑋 ∈ ℝ*𝑋𝐴) → (𝐴(,)𝐶) ⊆ (𝑋(,)𝐶))
3330, 31, 32syl2anc 586 . . . . . . . 8 (𝜑 → (𝐴(,)𝐶) ⊆ (𝑋(,)𝐶))
343rexrd 10694 . . . . . . . . 9 (𝜑𝑌 ∈ ℝ*)
3512simp3d 1140 . . . . . . . . 9 (𝜑𝐶𝑌)
36 iooss2 12777 . . . . . . . . 9 ((𝑌 ∈ ℝ*𝐶𝑌) → (𝑋(,)𝐶) ⊆ (𝑋(,)𝑌))
3734, 35, 36syl2anc 586 . . . . . . . 8 (𝜑 → (𝑋(,)𝐶) ⊆ (𝑋(,)𝑌))
3833, 37sstrd 3980 . . . . . . 7 (𝜑 → (𝐴(,)𝐶) ⊆ (𝑋(,)𝑌))
3938sselda 3970 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐶)) → 𝑥 ∈ (𝑋(,)𝑌))
40 ditgsplit.i . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ 𝐿1)
41 iblmbf 24371 . . . . . . . 8 ((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ 𝐿1 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ MblFn)
4240, 41syl 17 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ MblFn)
43 ditgsplit.d . . . . . . 7 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐷𝑉)
4442, 43mbfmptcl 24240 . . . . . 6 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐷 ∈ ℂ)
4539, 44syldan 593 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐶)) → 𝐷 ∈ ℂ)
4645adantlr 713 . . . 4 (((𝜑 ∧ (𝜓𝜃)) ∧ 𝑥 ∈ (𝐴(,)𝐶)) → 𝐷 ∈ ℂ)
47 iooss1 12776 . . . . . . . 8 ((𝑋 ∈ ℝ*𝑋𝐴) → (𝐴(,)𝐵) ⊆ (𝑋(,)𝐵))
4830, 31, 47syl2anc 586 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ (𝑋(,)𝐵))
4918simp3d 1140 . . . . . . . 8 (𝜑𝐵𝑌)
50 iooss2 12777 . . . . . . . 8 ((𝑌 ∈ ℝ*𝐵𝑌) → (𝑋(,)𝐵) ⊆ (𝑋(,)𝑌))
5134, 49, 50syl2anc 586 . . . . . . 7 (𝜑 → (𝑋(,)𝐵) ⊆ (𝑋(,)𝑌))
5248, 51sstrd 3980 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ (𝑋(,)𝑌))
53 ioombl 24169 . . . . . . 7 (𝐴(,)𝐵) ∈ dom vol
5453a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
5552, 54, 43, 40iblss 24408 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1)
5655adantr 483 . . . 4 ((𝜑 ∧ (𝜓𝜃)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1)
5718simp2d 1139 . . . . . . . 8 (𝜑𝑋𝐵)
58 iooss1 12776 . . . . . . . 8 ((𝑋 ∈ ℝ*𝑋𝐵) → (𝐵(,)𝐶) ⊆ (𝑋(,)𝐶))
5930, 57, 58syl2anc 586 . . . . . . 7 (𝜑 → (𝐵(,)𝐶) ⊆ (𝑋(,)𝐶))
6059, 37sstrd 3980 . . . . . 6 (𝜑 → (𝐵(,)𝐶) ⊆ (𝑋(,)𝑌))
61 ioombl 24169 . . . . . . 7 (𝐵(,)𝐶) ∈ dom vol
6261a1i 11 . . . . . 6 (𝜑 → (𝐵(,)𝐶) ∈ dom vol)
6360, 62, 43, 40iblss 24408 . . . . 5 (𝜑 → (𝑥 ∈ (𝐵(,)𝐶) ↦ 𝐷) ∈ 𝐿1)
6463adantr 483 . . . 4 ((𝜑 ∧ (𝜓𝜃)) → (𝑥 ∈ (𝐵(,)𝐶) ↦ 𝐷) ∈ 𝐿1)
658, 14, 29, 46, 56, 64itgsplitioo 24441 . . 3 ((𝜑 ∧ (𝜓𝜃)) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
668, 20, 14, 24, 25letrd 10800 . . . 4 ((𝜑 ∧ (𝜓𝜃)) → 𝐴𝐶)
6766ditgpos 24457 . . 3 ((𝜑 ∧ (𝜓𝜃)) → ⨜[𝐴𝐶]𝐷 d𝑥 = ∫(𝐴(,)𝐶)𝐷 d𝑥)
6824ditgpos 24457 . . . 4 ((𝜑 ∧ (𝜓𝜃)) → ⨜[𝐴𝐵]𝐷 d𝑥 = ∫(𝐴(,)𝐵)𝐷 d𝑥)
6925ditgpos 24457 . . . 4 ((𝜑 ∧ (𝜓𝜃)) → ⨜[𝐵𝐶]𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
7068, 69oveq12d 7177 . . 3 ((𝜑 ∧ (𝜓𝜃)) → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
7165, 67, 703eqtr4d 2869 . 2 ((𝜑 ∧ (𝜓𝜃)) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
7271anassrs 470 1 (((𝜑𝜓) ∧ 𝜃) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wss 3939   class class class wbr 5069  cmpt 5149  dom cdm 5558  (class class class)co 7159  cc 10538  cr 10539   + caddc 10543  *cxr 10677  cle 10679  (,)cioo 12741  [,]cicc 12744  volcvol 24067  MblFncmbf 24218  𝐿1cibl 24221  citg 24222  cdit 24447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-symdif 4222  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-disj 5035  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-ofr 7413  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-rlim 14849  df-sum 15046  df-rest 16699  df-topgen 16720  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-top 21505  df-topon 21522  df-bases 21557  df-cmp 21998  df-ovol 24068  df-vol 24069  df-mbf 24223  df-itg1 24224  df-itg2 24225  df-ibl 24226  df-itg 24227  df-0p 24274  df-ditg 24448
This theorem is referenced by:  ditgsplit  24462
  Copyright terms: Public domain W3C validator