MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgsplitlem Structured version   Visualization version   GIF version

Theorem ditgsplitlem 25761
Description: Lemma for ditgsplit 25762. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypotheses
Ref Expression
ditgsplit.x (𝜑𝑋 ∈ ℝ)
ditgsplit.y (𝜑𝑌 ∈ ℝ)
ditgsplit.a (𝜑𝐴 ∈ (𝑋[,]𝑌))
ditgsplit.b (𝜑𝐵 ∈ (𝑋[,]𝑌))
ditgsplit.c (𝜑𝐶 ∈ (𝑋[,]𝑌))
ditgsplit.d ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐷𝑉)
ditgsplit.i (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ 𝐿1)
ditgsplit.1 ((𝜓𝜃) ↔ (𝐴𝐵𝐵𝐶))
Assertion
Ref Expression
ditgsplitlem (((𝜑𝜓) ∧ 𝜃) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥   𝜓,𝑥   𝜃,𝑥   𝑥,𝑉   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem ditgsplitlem
StepHypRef Expression
1 ditgsplit.a . . . . . . 7 (𝜑𝐴 ∈ (𝑋[,]𝑌))
2 ditgsplit.x . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
3 ditgsplit.y . . . . . . . 8 (𝜑𝑌 ∈ ℝ)
4 elicc2 13372 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
52, 3, 4syl2anc 584 . . . . . . 7 (𝜑 → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
61, 5mpbid 232 . . . . . 6 (𝜑 → (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌))
76simp1d 1142 . . . . 5 (𝜑𝐴 ∈ ℝ)
87adantr 480 . . . 4 ((𝜑 ∧ (𝜓𝜃)) → 𝐴 ∈ ℝ)
9 ditgsplit.c . . . . . . 7 (𝜑𝐶 ∈ (𝑋[,]𝑌))
10 elicc2 13372 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐶 ∈ (𝑋[,]𝑌) ↔ (𝐶 ∈ ℝ ∧ 𝑋𝐶𝐶𝑌)))
112, 3, 10syl2anc 584 . . . . . . 7 (𝜑 → (𝐶 ∈ (𝑋[,]𝑌) ↔ (𝐶 ∈ ℝ ∧ 𝑋𝐶𝐶𝑌)))
129, 11mpbid 232 . . . . . 6 (𝜑 → (𝐶 ∈ ℝ ∧ 𝑋𝐶𝐶𝑌))
1312simp1d 1142 . . . . 5 (𝜑𝐶 ∈ ℝ)
1413adantr 480 . . . 4 ((𝜑 ∧ (𝜓𝜃)) → 𝐶 ∈ ℝ)
15 ditgsplit.b . . . . . . . 8 (𝜑𝐵 ∈ (𝑋[,]𝑌))
16 elicc2 13372 . . . . . . . . 9 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
172, 3, 16syl2anc 584 . . . . . . . 8 (𝜑 → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
1815, 17mpbid 232 . . . . . . 7 (𝜑 → (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌))
1918simp1d 1142 . . . . . 6 (𝜑𝐵 ∈ ℝ)
2019adantr 480 . . . . 5 ((𝜑 ∧ (𝜓𝜃)) → 𝐵 ∈ ℝ)
21 simpr 484 . . . . . . 7 ((𝜑 ∧ (𝜓𝜃)) → (𝜓𝜃))
22 ditgsplit.1 . . . . . . 7 ((𝜓𝜃) ↔ (𝐴𝐵𝐵𝐶))
2321, 22sylib 218 . . . . . 6 ((𝜑 ∧ (𝜓𝜃)) → (𝐴𝐵𝐵𝐶))
2423simpld 494 . . . . 5 ((𝜑 ∧ (𝜓𝜃)) → 𝐴𝐵)
2523simprd 495 . . . . 5 ((𝜑 ∧ (𝜓𝜃)) → 𝐵𝐶)
26 elicc2 13372 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐶)))
277, 13, 26syl2anc 584 . . . . . 6 (𝜑 → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐶)))
2827adantr 480 . . . . 5 ((𝜑 ∧ (𝜓𝜃)) → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐶)))
2920, 24, 25, 28mpbir3and 1343 . . . 4 ((𝜑 ∧ (𝜓𝜃)) → 𝐵 ∈ (𝐴[,]𝐶))
302rexrd 11224 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ*)
316simp2d 1143 . . . . . . . . 9 (𝜑𝑋𝐴)
32 iooss1 13341 . . . . . . . . 9 ((𝑋 ∈ ℝ*𝑋𝐴) → (𝐴(,)𝐶) ⊆ (𝑋(,)𝐶))
3330, 31, 32syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴(,)𝐶) ⊆ (𝑋(,)𝐶))
343rexrd 11224 . . . . . . . . 9 (𝜑𝑌 ∈ ℝ*)
3512simp3d 1144 . . . . . . . . 9 (𝜑𝐶𝑌)
36 iooss2 13342 . . . . . . . . 9 ((𝑌 ∈ ℝ*𝐶𝑌) → (𝑋(,)𝐶) ⊆ (𝑋(,)𝑌))
3734, 35, 36syl2anc 584 . . . . . . . 8 (𝜑 → (𝑋(,)𝐶) ⊆ (𝑋(,)𝑌))
3833, 37sstrd 3957 . . . . . . 7 (𝜑 → (𝐴(,)𝐶) ⊆ (𝑋(,)𝑌))
3938sselda 3946 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐶)) → 𝑥 ∈ (𝑋(,)𝑌))
40 ditgsplit.i . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ 𝐿1)
41 iblmbf 25668 . . . . . . . 8 ((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ 𝐿1 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ MblFn)
4240, 41syl 17 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ MblFn)
43 ditgsplit.d . . . . . . 7 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐷𝑉)
4442, 43mbfmptcl 25537 . . . . . 6 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐷 ∈ ℂ)
4539, 44syldan 591 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐶)) → 𝐷 ∈ ℂ)
4645adantlr 715 . . . 4 (((𝜑 ∧ (𝜓𝜃)) ∧ 𝑥 ∈ (𝐴(,)𝐶)) → 𝐷 ∈ ℂ)
47 iooss1 13341 . . . . . . . 8 ((𝑋 ∈ ℝ*𝑋𝐴) → (𝐴(,)𝐵) ⊆ (𝑋(,)𝐵))
4830, 31, 47syl2anc 584 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ (𝑋(,)𝐵))
4918simp3d 1144 . . . . . . . 8 (𝜑𝐵𝑌)
50 iooss2 13342 . . . . . . . 8 ((𝑌 ∈ ℝ*𝐵𝑌) → (𝑋(,)𝐵) ⊆ (𝑋(,)𝑌))
5134, 49, 50syl2anc 584 . . . . . . 7 (𝜑 → (𝑋(,)𝐵) ⊆ (𝑋(,)𝑌))
5248, 51sstrd 3957 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ (𝑋(,)𝑌))
53 ioombl 25466 . . . . . . 7 (𝐴(,)𝐵) ∈ dom vol
5453a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
5552, 54, 43, 40iblss 25706 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1)
5655adantr 480 . . . 4 ((𝜑 ∧ (𝜓𝜃)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1)
5718simp2d 1143 . . . . . . . 8 (𝜑𝑋𝐵)
58 iooss1 13341 . . . . . . . 8 ((𝑋 ∈ ℝ*𝑋𝐵) → (𝐵(,)𝐶) ⊆ (𝑋(,)𝐶))
5930, 57, 58syl2anc 584 . . . . . . 7 (𝜑 → (𝐵(,)𝐶) ⊆ (𝑋(,)𝐶))
6059, 37sstrd 3957 . . . . . 6 (𝜑 → (𝐵(,)𝐶) ⊆ (𝑋(,)𝑌))
61 ioombl 25466 . . . . . . 7 (𝐵(,)𝐶) ∈ dom vol
6261a1i 11 . . . . . 6 (𝜑 → (𝐵(,)𝐶) ∈ dom vol)
6360, 62, 43, 40iblss 25706 . . . . 5 (𝜑 → (𝑥 ∈ (𝐵(,)𝐶) ↦ 𝐷) ∈ 𝐿1)
6463adantr 480 . . . 4 ((𝜑 ∧ (𝜓𝜃)) → (𝑥 ∈ (𝐵(,)𝐶) ↦ 𝐷) ∈ 𝐿1)
658, 14, 29, 46, 56, 64itgsplitioo 25739 . . 3 ((𝜑 ∧ (𝜓𝜃)) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
668, 20, 14, 24, 25letrd 11331 . . . 4 ((𝜑 ∧ (𝜓𝜃)) → 𝐴𝐶)
6766ditgpos 25757 . . 3 ((𝜑 ∧ (𝜓𝜃)) → ⨜[𝐴𝐶]𝐷 d𝑥 = ∫(𝐴(,)𝐶)𝐷 d𝑥)
6824ditgpos 25757 . . . 4 ((𝜑 ∧ (𝜓𝜃)) → ⨜[𝐴𝐵]𝐷 d𝑥 = ∫(𝐴(,)𝐵)𝐷 d𝑥)
6925ditgpos 25757 . . . 4 ((𝜑 ∧ (𝜓𝜃)) → ⨜[𝐵𝐶]𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
7068, 69oveq12d 7405 . . 3 ((𝜑 ∧ (𝜓𝜃)) → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
7165, 67, 703eqtr4d 2774 . 2 ((𝜑 ∧ (𝜓𝜃)) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
7271anassrs 467 1 (((𝜑𝜓) ∧ 𝜃) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3914   class class class wbr 5107  cmpt 5188  dom cdm 5638  (class class class)co 7387  cc 11066  cr 11067   + caddc 11071  *cxr 11207  cle 11209  (,)cioo 13306  [,]cicc 13309  volcvol 25364  MblFncmbf 25515  𝐿1cibl 25518  citg 25519  cdit 25747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-symdif 4216  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-rest 17385  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-cmp 23274  df-ovol 25365  df-vol 25366  df-mbf 25520  df-itg1 25521  df-itg2 25522  df-ibl 25523  df-itg 25524  df-0p 25571  df-ditg 25748
This theorem is referenced by:  ditgsplit  25762
  Copyright terms: Public domain W3C validator