MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgsplitlem Structured version   Visualization version   GIF version

Theorem ditgsplitlem 25224
Description: Lemma for ditgsplit 25225. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypotheses
Ref Expression
ditgsplit.x (𝜑𝑋 ∈ ℝ)
ditgsplit.y (𝜑𝑌 ∈ ℝ)
ditgsplit.a (𝜑𝐴 ∈ (𝑋[,]𝑌))
ditgsplit.b (𝜑𝐵 ∈ (𝑋[,]𝑌))
ditgsplit.c (𝜑𝐶 ∈ (𝑋[,]𝑌))
ditgsplit.d ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐷𝑉)
ditgsplit.i (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ 𝐿1)
ditgsplit.1 ((𝜓𝜃) ↔ (𝐴𝐵𝐵𝐶))
Assertion
Ref Expression
ditgsplitlem (((𝜑𝜓) ∧ 𝜃) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥   𝜓,𝑥   𝜃,𝑥   𝑥,𝑉   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem ditgsplitlem
StepHypRef Expression
1 ditgsplit.a . . . . . . 7 (𝜑𝐴 ∈ (𝑋[,]𝑌))
2 ditgsplit.x . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
3 ditgsplit.y . . . . . . . 8 (𝜑𝑌 ∈ ℝ)
4 elicc2 13329 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
52, 3, 4syl2anc 584 . . . . . . 7 (𝜑 → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
61, 5mpbid 231 . . . . . 6 (𝜑 → (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌))
76simp1d 1142 . . . . 5 (𝜑𝐴 ∈ ℝ)
87adantr 481 . . . 4 ((𝜑 ∧ (𝜓𝜃)) → 𝐴 ∈ ℝ)
9 ditgsplit.c . . . . . . 7 (𝜑𝐶 ∈ (𝑋[,]𝑌))
10 elicc2 13329 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐶 ∈ (𝑋[,]𝑌) ↔ (𝐶 ∈ ℝ ∧ 𝑋𝐶𝐶𝑌)))
112, 3, 10syl2anc 584 . . . . . . 7 (𝜑 → (𝐶 ∈ (𝑋[,]𝑌) ↔ (𝐶 ∈ ℝ ∧ 𝑋𝐶𝐶𝑌)))
129, 11mpbid 231 . . . . . 6 (𝜑 → (𝐶 ∈ ℝ ∧ 𝑋𝐶𝐶𝑌))
1312simp1d 1142 . . . . 5 (𝜑𝐶 ∈ ℝ)
1413adantr 481 . . . 4 ((𝜑 ∧ (𝜓𝜃)) → 𝐶 ∈ ℝ)
15 ditgsplit.b . . . . . . . 8 (𝜑𝐵 ∈ (𝑋[,]𝑌))
16 elicc2 13329 . . . . . . . . 9 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
172, 3, 16syl2anc 584 . . . . . . . 8 (𝜑 → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
1815, 17mpbid 231 . . . . . . 7 (𝜑 → (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌))
1918simp1d 1142 . . . . . 6 (𝜑𝐵 ∈ ℝ)
2019adantr 481 . . . . 5 ((𝜑 ∧ (𝜓𝜃)) → 𝐵 ∈ ℝ)
21 simpr 485 . . . . . . 7 ((𝜑 ∧ (𝜓𝜃)) → (𝜓𝜃))
22 ditgsplit.1 . . . . . . 7 ((𝜓𝜃) ↔ (𝐴𝐵𝐵𝐶))
2321, 22sylib 217 . . . . . 6 ((𝜑 ∧ (𝜓𝜃)) → (𝐴𝐵𝐵𝐶))
2423simpld 495 . . . . 5 ((𝜑 ∧ (𝜓𝜃)) → 𝐴𝐵)
2523simprd 496 . . . . 5 ((𝜑 ∧ (𝜓𝜃)) → 𝐵𝐶)
26 elicc2 13329 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐶)))
277, 13, 26syl2anc 584 . . . . . 6 (𝜑 → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐶)))
2827adantr 481 . . . . 5 ((𝜑 ∧ (𝜓𝜃)) → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐶)))
2920, 24, 25, 28mpbir3and 1342 . . . 4 ((𝜑 ∧ (𝜓𝜃)) → 𝐵 ∈ (𝐴[,]𝐶))
302rexrd 11205 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ*)
316simp2d 1143 . . . . . . . . 9 (𝜑𝑋𝐴)
32 iooss1 13299 . . . . . . . . 9 ((𝑋 ∈ ℝ*𝑋𝐴) → (𝐴(,)𝐶) ⊆ (𝑋(,)𝐶))
3330, 31, 32syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴(,)𝐶) ⊆ (𝑋(,)𝐶))
343rexrd 11205 . . . . . . . . 9 (𝜑𝑌 ∈ ℝ*)
3512simp3d 1144 . . . . . . . . 9 (𝜑𝐶𝑌)
36 iooss2 13300 . . . . . . . . 9 ((𝑌 ∈ ℝ*𝐶𝑌) → (𝑋(,)𝐶) ⊆ (𝑋(,)𝑌))
3734, 35, 36syl2anc 584 . . . . . . . 8 (𝜑 → (𝑋(,)𝐶) ⊆ (𝑋(,)𝑌))
3833, 37sstrd 3954 . . . . . . 7 (𝜑 → (𝐴(,)𝐶) ⊆ (𝑋(,)𝑌))
3938sselda 3944 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐶)) → 𝑥 ∈ (𝑋(,)𝑌))
40 ditgsplit.i . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ 𝐿1)
41 iblmbf 25132 . . . . . . . 8 ((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ 𝐿1 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ MblFn)
4240, 41syl 17 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ MblFn)
43 ditgsplit.d . . . . . . 7 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐷𝑉)
4442, 43mbfmptcl 25000 . . . . . 6 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐷 ∈ ℂ)
4539, 44syldan 591 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐶)) → 𝐷 ∈ ℂ)
4645adantlr 713 . . . 4 (((𝜑 ∧ (𝜓𝜃)) ∧ 𝑥 ∈ (𝐴(,)𝐶)) → 𝐷 ∈ ℂ)
47 iooss1 13299 . . . . . . . 8 ((𝑋 ∈ ℝ*𝑋𝐴) → (𝐴(,)𝐵) ⊆ (𝑋(,)𝐵))
4830, 31, 47syl2anc 584 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ (𝑋(,)𝐵))
4918simp3d 1144 . . . . . . . 8 (𝜑𝐵𝑌)
50 iooss2 13300 . . . . . . . 8 ((𝑌 ∈ ℝ*𝐵𝑌) → (𝑋(,)𝐵) ⊆ (𝑋(,)𝑌))
5134, 49, 50syl2anc 584 . . . . . . 7 (𝜑 → (𝑋(,)𝐵) ⊆ (𝑋(,)𝑌))
5248, 51sstrd 3954 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ (𝑋(,)𝑌))
53 ioombl 24929 . . . . . . 7 (𝐴(,)𝐵) ∈ dom vol
5453a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
5552, 54, 43, 40iblss 25169 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1)
5655adantr 481 . . . 4 ((𝜑 ∧ (𝜓𝜃)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1)
5718simp2d 1143 . . . . . . . 8 (𝜑𝑋𝐵)
58 iooss1 13299 . . . . . . . 8 ((𝑋 ∈ ℝ*𝑋𝐵) → (𝐵(,)𝐶) ⊆ (𝑋(,)𝐶))
5930, 57, 58syl2anc 584 . . . . . . 7 (𝜑 → (𝐵(,)𝐶) ⊆ (𝑋(,)𝐶))
6059, 37sstrd 3954 . . . . . 6 (𝜑 → (𝐵(,)𝐶) ⊆ (𝑋(,)𝑌))
61 ioombl 24929 . . . . . . 7 (𝐵(,)𝐶) ∈ dom vol
6261a1i 11 . . . . . 6 (𝜑 → (𝐵(,)𝐶) ∈ dom vol)
6360, 62, 43, 40iblss 25169 . . . . 5 (𝜑 → (𝑥 ∈ (𝐵(,)𝐶) ↦ 𝐷) ∈ 𝐿1)
6463adantr 481 . . . 4 ((𝜑 ∧ (𝜓𝜃)) → (𝑥 ∈ (𝐵(,)𝐶) ↦ 𝐷) ∈ 𝐿1)
658, 14, 29, 46, 56, 64itgsplitioo 25202 . . 3 ((𝜑 ∧ (𝜓𝜃)) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
668, 20, 14, 24, 25letrd 11312 . . . 4 ((𝜑 ∧ (𝜓𝜃)) → 𝐴𝐶)
6766ditgpos 25220 . . 3 ((𝜑 ∧ (𝜓𝜃)) → ⨜[𝐴𝐶]𝐷 d𝑥 = ∫(𝐴(,)𝐶)𝐷 d𝑥)
6824ditgpos 25220 . . . 4 ((𝜑 ∧ (𝜓𝜃)) → ⨜[𝐴𝐵]𝐷 d𝑥 = ∫(𝐴(,)𝐵)𝐷 d𝑥)
6925ditgpos 25220 . . . 4 ((𝜑 ∧ (𝜓𝜃)) → ⨜[𝐵𝐶]𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
7068, 69oveq12d 7375 . . 3 ((𝜑 ∧ (𝜓𝜃)) → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
7165, 67, 703eqtr4d 2786 . 2 ((𝜑 ∧ (𝜓𝜃)) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
7271anassrs 468 1 (((𝜑𝜓) ∧ 𝜃) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wss 3910   class class class wbr 5105  cmpt 5188  dom cdm 5633  (class class class)co 7357  cc 11049  cr 11050   + caddc 11054  *cxr 11188  cle 11190  (,)cioo 13264  [,]cicc 13267  volcvol 24827  MblFncmbf 24978  𝐿1cibl 24981  citg 24982  cdit 25210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-symdif 4202  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-sum 15571  df-rest 17304  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-top 22243  df-topon 22260  df-bases 22296  df-cmp 22738  df-ovol 24828  df-vol 24829  df-mbf 24983  df-itg1 24984  df-itg2 24985  df-ibl 24986  df-itg 24987  df-0p 25034  df-ditg 25211
This theorem is referenced by:  ditgsplit  25225
  Copyright terms: Public domain W3C validator