MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgsubstlem Structured version   Visualization version   GIF version

Theorem itgsubstlem 24348
Description: Lemma for itgsubst 24349. (Contributed by Mario Carneiro, 12-Sep-2014.)
Hypotheses
Ref Expression
itgsubst.x (𝜑𝑋 ∈ ℝ)
itgsubst.y (𝜑𝑌 ∈ ℝ)
itgsubst.le (𝜑𝑋𝑌)
itgsubst.z (𝜑𝑍 ∈ ℝ*)
itgsubst.w (𝜑𝑊 ∈ ℝ*)
itgsubst.a (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)))
itgsubst.b (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1))
itgsubst.c (𝜑 → (𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) ∈ ((𝑍(,)𝑊)–cn→ℂ))
itgsubst.da (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵))
itgsubst.e (𝑢 = 𝐴𝐶 = 𝐸)
itgsubst.k (𝑥 = 𝑋𝐴 = 𝐾)
itgsubst.l (𝑥 = 𝑌𝐴 = 𝐿)
itgsubst.m (𝜑𝑀 ∈ (𝑍(,)𝑊))
itgsubst.n (𝜑𝑁 ∈ (𝑍(,)𝑊))
itgsubst.cl2 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → 𝐴 ∈ (𝑀(,)𝑁))
Assertion
Ref Expression
itgsubstlem (𝜑 → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
Distinct variable groups:   𝑢,𝐸   𝑥,𝑢,𝐾   𝑢,𝑀,𝑥   𝜑,𝑢,𝑥   𝑢,𝑋,𝑥   𝑢,𝑌,𝑥   𝑢,𝐴   𝑥,𝐶   𝑢,𝑊,𝑥   𝑢,𝐿,𝑥   𝑢,𝑁,𝑥   𝑢,𝑍,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑢)   𝐶(𝑢)   𝐸(𝑥)

Proof of Theorem itgsubstlem
Dummy variables 𝑦 𝑧 𝑡 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgsubst.le . . 3 (𝜑𝑋𝑌)
21ditgpos 24157 . 2 (𝜑 → ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥 = ∫(𝑋(,)𝑌)(𝐸 · 𝐵) d𝑥)
3 itgsubst.x . . . 4 (𝜑𝑋 ∈ ℝ)
4 itgsubst.y . . . 4 (𝜑𝑌 ∈ ℝ)
5 ax-resscn 10392 . . . . . . . 8 ℝ ⊆ ℂ
65a1i 11 . . . . . . 7 (𝜑 → ℝ ⊆ ℂ)
7 iccssre 12634 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋[,]𝑌) ⊆ ℝ)
83, 4, 7syl2anc 576 . . . . . . 7 (𝜑 → (𝑋[,]𝑌) ⊆ ℝ)
9 itgsubst.cl2 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → 𝐴 ∈ (𝑀(,)𝑁))
10 eqidd 2780 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) = (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴))
11 eqidd 2780 . . . . . . . . . . 11 (𝜑 → (𝑣 ∈ (𝑀(,)𝑁) ↦ ∫(𝑀(,)𝑣)𝐶 d𝑢) = (𝑣 ∈ (𝑀(,)𝑁) ↦ ∫(𝑀(,)𝑣)𝐶 d𝑢))
12 oveq2 6984 . . . . . . . . . . . 12 (𝑣 = 𝐴 → (𝑀(,)𝑣) = (𝑀(,)𝐴))
13 itgeq1 24076 . . . . . . . . . . . 12 ((𝑀(,)𝑣) = (𝑀(,)𝐴) → ∫(𝑀(,)𝑣)𝐶 d𝑢 = ∫(𝑀(,)𝐴)𝐶 d𝑢)
1412, 13syl 17 . . . . . . . . . . 11 (𝑣 = 𝐴 → ∫(𝑀(,)𝑣)𝐶 d𝑢 = ∫(𝑀(,)𝐴)𝐶 d𝑢)
159, 10, 11, 14fmptco 6714 . . . . . . . . . 10 (𝜑 → ((𝑣 ∈ (𝑀(,)𝑁) ↦ ∫(𝑀(,)𝑣)𝐶 d𝑢) ∘ (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢))
169fmpttd 6702 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑀(,)𝑁))
17 ioossicc 12638 . . . . . . . . . . . . . . 15 (𝑀(,)𝑁) ⊆ (𝑀[,]𝑁)
18 itgsubst.z . . . . . . . . . . . . . . . 16 (𝜑𝑍 ∈ ℝ*)
19 itgsubst.w . . . . . . . . . . . . . . . 16 (𝜑𝑊 ∈ ℝ*)
20 itgsubst.m . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ (𝑍(,)𝑊))
21 eliooord 12612 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ (𝑍(,)𝑊) → (𝑍 < 𝑀𝑀 < 𝑊))
2220, 21syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑍 < 𝑀𝑀 < 𝑊))
2322simpld 487 . . . . . . . . . . . . . . . 16 (𝜑𝑍 < 𝑀)
24 itgsubst.n . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ (𝑍(,)𝑊))
25 eliooord 12612 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (𝑍(,)𝑊) → (𝑍 < 𝑁𝑁 < 𝑊))
2624, 25syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑍 < 𝑁𝑁 < 𝑊))
2726simprd 488 . . . . . . . . . . . . . . . 16 (𝜑𝑁 < 𝑊)
28 iccssioo 12621 . . . . . . . . . . . . . . . 16 (((𝑍 ∈ ℝ*𝑊 ∈ ℝ*) ∧ (𝑍 < 𝑀𝑁 < 𝑊)) → (𝑀[,]𝑁) ⊆ (𝑍(,)𝑊))
2918, 19, 23, 27, 28syl22anc 826 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀[,]𝑁) ⊆ (𝑍(,)𝑊))
3017, 29syl5ss 3870 . . . . . . . . . . . . . 14 (𝜑 → (𝑀(,)𝑁) ⊆ (𝑍(,)𝑊))
31 ioossre 12614 . . . . . . . . . . . . . . . 16 (𝑍(,)𝑊) ⊆ ℝ
3231a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝑍(,)𝑊) ⊆ ℝ)
3332, 5syl6ss 3871 . . . . . . . . . . . . . 14 (𝜑 → (𝑍(,)𝑊) ⊆ ℂ)
3430, 33sstrd 3869 . . . . . . . . . . . . 13 (𝜑 → (𝑀(,)𝑁) ⊆ ℂ)
35 itgsubst.a . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)))
36 cncffvrn 23209 . . . . . . . . . . . . 13 (((𝑀(,)𝑁) ⊆ ℂ ∧ (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑀(,)𝑁)) ↔ (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑀(,)𝑁)))
3734, 35, 36syl2anc 576 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑀(,)𝑁)) ↔ (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑀(,)𝑁)))
3816, 37mpbird 249 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑀(,)𝑁)))
3917sseli 3855 . . . . . . . . . . . . . 14 (𝑣 ∈ (𝑀(,)𝑁) → 𝑣 ∈ (𝑀[,]𝑁))
4031, 24sseldi 3857 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ∈ ℝ)
4140rexrd 10490 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℝ*)
4241adantr 473 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑣 ∈ (𝑀[,]𝑁)) → 𝑁 ∈ ℝ*)
4331, 20sseldi 3857 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑀 ∈ ℝ)
44 elicc2 12617 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑣 ∈ (𝑀[,]𝑁) ↔ (𝑣 ∈ ℝ ∧ 𝑀𝑣𝑣𝑁)))
4543, 40, 44syl2anc 576 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑣 ∈ (𝑀[,]𝑁) ↔ (𝑣 ∈ ℝ ∧ 𝑀𝑣𝑣𝑁)))
4645biimpa 469 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑣 ∈ (𝑀[,]𝑁)) → (𝑣 ∈ ℝ ∧ 𝑀𝑣𝑣𝑁))
4746simp3d 1124 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑣 ∈ (𝑀[,]𝑁)) → 𝑣𝑁)
48 iooss2 12590 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℝ*𝑣𝑁) → (𝑀(,)𝑣) ⊆ (𝑀(,)𝑁))
4942, 47, 48syl2anc 576 . . . . . . . . . . . . . . . . 17 ((𝜑𝑣 ∈ (𝑀[,]𝑁)) → (𝑀(,)𝑣) ⊆ (𝑀(,)𝑁))
5049sselda 3859 . . . . . . . . . . . . . . . 16 (((𝜑𝑣 ∈ (𝑀[,]𝑁)) ∧ 𝑢 ∈ (𝑀(,)𝑣)) → 𝑢 ∈ (𝑀(,)𝑁))
5130sselda 3859 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (𝑀(,)𝑁)) → 𝑢 ∈ (𝑍(,)𝑊))
52 itgsubst.c . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) ∈ ((𝑍(,)𝑊)–cn→ℂ))
53 cncff 23204 . . . . . . . . . . . . . . . . . . . 20 ((𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) ∈ ((𝑍(,)𝑊)–cn→ℂ) → (𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶):(𝑍(,)𝑊)⟶ℂ)
5452, 53syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶):(𝑍(,)𝑊)⟶ℂ)
5554fvmptelrn 6700 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (𝑍(,)𝑊)) → 𝐶 ∈ ℂ)
5651, 55syldan 582 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑀(,)𝑁)) → 𝐶 ∈ ℂ)
5756adantlr 702 . . . . . . . . . . . . . . . 16 (((𝜑𝑣 ∈ (𝑀[,]𝑁)) ∧ 𝑢 ∈ (𝑀(,)𝑁)) → 𝐶 ∈ ℂ)
5850, 57syldan 582 . . . . . . . . . . . . . . 15 (((𝜑𝑣 ∈ (𝑀[,]𝑁)) ∧ 𝑢 ∈ (𝑀(,)𝑣)) → 𝐶 ∈ ℂ)
59 ioombl 23869 . . . . . . . . . . . . . . . . 17 (𝑀(,)𝑣) ∈ dom vol
6059a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑣 ∈ (𝑀[,]𝑁)) → (𝑀(,)𝑣) ∈ dom vol)
6117a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀(,)𝑁) ⊆ (𝑀[,]𝑁))
62 ioombl 23869 . . . . . . . . . . . . . . . . . . 19 (𝑀(,)𝑁) ∈ dom vol
6362a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀(,)𝑁) ∈ dom vol)
6429sselda 3859 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ (𝑀[,]𝑁)) → 𝑢 ∈ (𝑍(,)𝑊))
6564, 55syldan 582 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (𝑀[,]𝑁)) → 𝐶 ∈ ℂ)
6629resmptd 5753 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) ↾ (𝑀[,]𝑁)) = (𝑢 ∈ (𝑀[,]𝑁) ↦ 𝐶))
67 rescncf 23208 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀[,]𝑁) ⊆ (𝑍(,)𝑊) → ((𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) ∈ ((𝑍(,)𝑊)–cn→ℂ) → ((𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℂ)))
6829, 52, 67sylc 65 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℂ))
6966, 68eqeltrrd 2868 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑢 ∈ (𝑀[,]𝑁) ↦ 𝐶) ∈ ((𝑀[,]𝑁)–cn→ℂ))
70 cniccibl 24144 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑢 ∈ (𝑀[,]𝑁) ↦ 𝐶) ∈ ((𝑀[,]𝑁)–cn→ℂ)) → (𝑢 ∈ (𝑀[,]𝑁) ↦ 𝐶) ∈ 𝐿1)
7143, 40, 69, 70syl3anc 1351 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑢 ∈ (𝑀[,]𝑁) ↦ 𝐶) ∈ 𝐿1)
7261, 63, 65, 71iblss 24108 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑢 ∈ (𝑀(,)𝑁) ↦ 𝐶) ∈ 𝐿1)
7372adantr 473 . . . . . . . . . . . . . . . 16 ((𝜑𝑣 ∈ (𝑀[,]𝑁)) → (𝑢 ∈ (𝑀(,)𝑁) ↦ 𝐶) ∈ 𝐿1)
7449, 60, 57, 73iblss 24108 . . . . . . . . . . . . . . 15 ((𝜑𝑣 ∈ (𝑀[,]𝑁)) → (𝑢 ∈ (𝑀(,)𝑣) ↦ 𝐶) ∈ 𝐿1)
7558, 74itgcl 24087 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ (𝑀[,]𝑁)) → ∫(𝑀(,)𝑣)𝐶 d𝑢 ∈ ℂ)
7639, 75sylan2 583 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝑀(,)𝑁)) → ∫(𝑀(,)𝑣)𝐶 d𝑢 ∈ ℂ)
7776fmpttd 6702 . . . . . . . . . . . 12 (𝜑 → (𝑣 ∈ (𝑀(,)𝑁) ↦ ∫(𝑀(,)𝑣)𝐶 d𝑢):(𝑀(,)𝑁)⟶ℂ)
7830, 31syl6ss 3871 . . . . . . . . . . . 12 (𝜑 → (𝑀(,)𝑁) ⊆ ℝ)
79 fveq2 6499 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑢 → ((𝑢 ∈ (𝑀(,)𝑁) ↦ 𝐶)‘𝑡) = ((𝑢 ∈ (𝑀(,)𝑁) ↦ 𝐶)‘𝑢))
80 nffvmpt1 6510 . . . . . . . . . . . . . . . . . . 19 𝑢((𝑢 ∈ (𝑀(,)𝑁) ↦ 𝐶)‘𝑡)
81 nfcv 2933 . . . . . . . . . . . . . . . . . . 19 𝑡((𝑢 ∈ (𝑀(,)𝑁) ↦ 𝐶)‘𝑢)
8279, 80, 81cbvitg 24079 . . . . . . . . . . . . . . . . . 18 ∫(𝑀(,)𝑣)((𝑢 ∈ (𝑀(,)𝑁) ↦ 𝐶)‘𝑡) d𝑡 = ∫(𝑀(,)𝑣)((𝑢 ∈ (𝑀(,)𝑁) ↦ 𝐶)‘𝑢) d𝑢
83 eqid 2779 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 ∈ (𝑀(,)𝑁) ↦ 𝐶) = (𝑢 ∈ (𝑀(,)𝑁) ↦ 𝐶)
8483fvmpt2 6605 . . . . . . . . . . . . . . . . . . . 20 ((𝑢 ∈ (𝑀(,)𝑁) ∧ 𝐶 ∈ ℂ) → ((𝑢 ∈ (𝑀(,)𝑁) ↦ 𝐶)‘𝑢) = 𝐶)
8550, 58, 84syl2anc 576 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑣 ∈ (𝑀[,]𝑁)) ∧ 𝑢 ∈ (𝑀(,)𝑣)) → ((𝑢 ∈ (𝑀(,)𝑁) ↦ 𝐶)‘𝑢) = 𝐶)
8685itgeq2dv 24085 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑣 ∈ (𝑀[,]𝑁)) → ∫(𝑀(,)𝑣)((𝑢 ∈ (𝑀(,)𝑁) ↦ 𝐶)‘𝑢) d𝑢 = ∫(𝑀(,)𝑣)𝐶 d𝑢)
8782, 86syl5eq 2827 . . . . . . . . . . . . . . . . 17 ((𝜑𝑣 ∈ (𝑀[,]𝑁)) → ∫(𝑀(,)𝑣)((𝑢 ∈ (𝑀(,)𝑁) ↦ 𝐶)‘𝑡) d𝑡 = ∫(𝑀(,)𝑣)𝐶 d𝑢)
8887mpteq2dva 5022 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑣 ∈ (𝑀[,]𝑁) ↦ ∫(𝑀(,)𝑣)((𝑢 ∈ (𝑀(,)𝑁) ↦ 𝐶)‘𝑡) d𝑡) = (𝑣 ∈ (𝑀[,]𝑁) ↦ ∫(𝑀(,)𝑣)𝐶 d𝑢))
8988oveq2d 6992 . . . . . . . . . . . . . . 15 (𝜑 → (ℝ D (𝑣 ∈ (𝑀[,]𝑁) ↦ ∫(𝑀(,)𝑣)((𝑢 ∈ (𝑀(,)𝑁) ↦ 𝐶)‘𝑡) d𝑡)) = (ℝ D (𝑣 ∈ (𝑀[,]𝑁) ↦ ∫(𝑀(,)𝑣)𝐶 d𝑢)))
90 eqid 2779 . . . . . . . . . . . . . . . 16 (𝑣 ∈ (𝑀[,]𝑁) ↦ ∫(𝑀(,)𝑣)((𝑢 ∈ (𝑀(,)𝑁) ↦ 𝐶)‘𝑡) d𝑡) = (𝑣 ∈ (𝑀[,]𝑁) ↦ ∫(𝑀(,)𝑣)((𝑢 ∈ (𝑀(,)𝑁) ↦ 𝐶)‘𝑡) d𝑡)
913rexrd 10490 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑋 ∈ ℝ*)
924rexrd 10490 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑌 ∈ ℝ*)
93 lbicc2 12668 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 ∈ ℝ*𝑌 ∈ ℝ*𝑋𝑌) → 𝑋 ∈ (𝑋[,]𝑌))
9491, 92, 1, 93syl3anc 1351 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑋 ∈ (𝑋[,]𝑌))
95 n0i 4186 . . . . . . . . . . . . . . . . . . . 20 (𝑋 ∈ (𝑋[,]𝑌) → ¬ (𝑋[,]𝑌) = ∅)
9694, 95syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ¬ (𝑋[,]𝑌) = ∅)
97 feq3 6327 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀(,)𝑁) = ∅ → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑀(,)𝑁) ↔ (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶∅))
9816, 97syl5ibcom 237 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑀(,)𝑁) = ∅ → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶∅))
99 f00 6390 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶∅ ↔ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) = ∅ ∧ (𝑋[,]𝑌) = ∅))
10099simprbi 489 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶∅ → (𝑋[,]𝑌) = ∅)
10198, 100syl6 35 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑀(,)𝑁) = ∅ → (𝑋[,]𝑌) = ∅))
10296, 101mtod 190 . . . . . . . . . . . . . . . . . 18 (𝜑 → ¬ (𝑀(,)𝑁) = ∅)
10343rexrd 10490 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℝ*)
104 ioo0 12579 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℝ*𝑁 ∈ ℝ*) → ((𝑀(,)𝑁) = ∅ ↔ 𝑁𝑀))
105103, 41, 104syl2anc 576 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑀(,)𝑁) = ∅ ↔ 𝑁𝑀))
106102, 105mtbid 316 . . . . . . . . . . . . . . . . 17 (𝜑 → ¬ 𝑁𝑀)
10740, 43letrid 10592 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑁𝑀𝑀𝑁))
108107ord 850 . . . . . . . . . . . . . . . . 17 (𝜑 → (¬ 𝑁𝑀𝑀𝑁))
109106, 108mpd 15 . . . . . . . . . . . . . . . 16 (𝜑𝑀𝑁)
110 resmpt 5750 . . . . . . . . . . . . . . . . . 18 ((𝑀(,)𝑁) ⊆ (𝑀[,]𝑁) → ((𝑢 ∈ (𝑀[,]𝑁) ↦ 𝐶) ↾ (𝑀(,)𝑁)) = (𝑢 ∈ (𝑀(,)𝑁) ↦ 𝐶))
11117, 110ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ (𝑀[,]𝑁) ↦ 𝐶) ↾ (𝑀(,)𝑁)) = (𝑢 ∈ (𝑀(,)𝑁) ↦ 𝐶)
112 rescncf 23208 . . . . . . . . . . . . . . . . . 18 ((𝑀(,)𝑁) ⊆ (𝑀[,]𝑁) → ((𝑢 ∈ (𝑀[,]𝑁) ↦ 𝐶) ∈ ((𝑀[,]𝑁)–cn→ℂ) → ((𝑢 ∈ (𝑀[,]𝑁) ↦ 𝐶) ↾ (𝑀(,)𝑁)) ∈ ((𝑀(,)𝑁)–cn→ℂ)))
11317, 69, 112mpsyl 68 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑢 ∈ (𝑀[,]𝑁) ↦ 𝐶) ↾ (𝑀(,)𝑁)) ∈ ((𝑀(,)𝑁)–cn→ℂ))
114111, 113syl5eqelr 2872 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑢 ∈ (𝑀(,)𝑁) ↦ 𝐶) ∈ ((𝑀(,)𝑁)–cn→ℂ))
11590, 43, 40, 109, 114, 72ftc1cn 24343 . . . . . . . . . . . . . . 15 (𝜑 → (ℝ D (𝑣 ∈ (𝑀[,]𝑁) ↦ ∫(𝑀(,)𝑣)((𝑢 ∈ (𝑀(,)𝑁) ↦ 𝐶)‘𝑡) d𝑡)) = (𝑢 ∈ (𝑀(,)𝑁) ↦ 𝐶))
11629, 31syl6ss 3871 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀[,]𝑁) ⊆ ℝ)
117 eqid 2779 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
118117tgioo2 23114 . . . . . . . . . . . . . . . 16 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
119 iccntr 23132 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑀[,]𝑁)) = (𝑀(,)𝑁))
12043, 40, 119syl2anc 576 . . . . . . . . . . . . . . . 16 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝑀[,]𝑁)) = (𝑀(,)𝑁))
1216, 116, 75, 118, 117, 120dvmptntr 24271 . . . . . . . . . . . . . . 15 (𝜑 → (ℝ D (𝑣 ∈ (𝑀[,]𝑁) ↦ ∫(𝑀(,)𝑣)𝐶 d𝑢)) = (ℝ D (𝑣 ∈ (𝑀(,)𝑁) ↦ ∫(𝑀(,)𝑣)𝐶 d𝑢)))
12289, 115, 1213eqtr3rd 2824 . . . . . . . . . . . . . 14 (𝜑 → (ℝ D (𝑣 ∈ (𝑀(,)𝑁) ↦ ∫(𝑀(,)𝑣)𝐶 d𝑢)) = (𝑢 ∈ (𝑀(,)𝑁) ↦ 𝐶))
123122dmeqd 5624 . . . . . . . . . . . . 13 (𝜑 → dom (ℝ D (𝑣 ∈ (𝑀(,)𝑁) ↦ ∫(𝑀(,)𝑣)𝐶 d𝑢)) = dom (𝑢 ∈ (𝑀(,)𝑁) ↦ 𝐶))
12483, 56dmmptd 6323 . . . . . . . . . . . . 13 (𝜑 → dom (𝑢 ∈ (𝑀(,)𝑁) ↦ 𝐶) = (𝑀(,)𝑁))
125123, 124eqtrd 2815 . . . . . . . . . . . 12 (𝜑 → dom (ℝ D (𝑣 ∈ (𝑀(,)𝑁) ↦ ∫(𝑀(,)𝑣)𝐶 d𝑢)) = (𝑀(,)𝑁))
126 dvcn 24221 . . . . . . . . . . . 12 (((ℝ ⊆ ℂ ∧ (𝑣 ∈ (𝑀(,)𝑁) ↦ ∫(𝑀(,)𝑣)𝐶 d𝑢):(𝑀(,)𝑁)⟶ℂ ∧ (𝑀(,)𝑁) ⊆ ℝ) ∧ dom (ℝ D (𝑣 ∈ (𝑀(,)𝑁) ↦ ∫(𝑀(,)𝑣)𝐶 d𝑢)) = (𝑀(,)𝑁)) → (𝑣 ∈ (𝑀(,)𝑁) ↦ ∫(𝑀(,)𝑣)𝐶 d𝑢) ∈ ((𝑀(,)𝑁)–cn→ℂ))
1276, 77, 78, 125, 126syl31anc 1353 . . . . . . . . . . 11 (𝜑 → (𝑣 ∈ (𝑀(,)𝑁) ↦ ∫(𝑀(,)𝑣)𝐶 d𝑢) ∈ ((𝑀(,)𝑁)–cn→ℂ))
12838, 127cncfco 23218 . . . . . . . . . 10 (𝜑 → ((𝑣 ∈ (𝑀(,)𝑁) ↦ ∫(𝑀(,)𝑣)𝐶 d𝑢) ∘ (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) ∈ ((𝑋[,]𝑌)–cn→ℂ))
12915, 128eqeltrrd 2868 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢) ∈ ((𝑋[,]𝑌)–cn→ℂ))
130 cncff 23204 . . . . . . . . 9 ((𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢) ∈ ((𝑋[,]𝑌)–cn→ℂ) → (𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢):(𝑋[,]𝑌)⟶ℂ)
131129, 130syl 17 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢):(𝑋[,]𝑌)⟶ℂ)
132131fvmptelrn 6700 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → ∫(𝑀(,)𝐴)𝐶 d𝑢 ∈ ℂ)
133 iccntr 23132 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑋[,]𝑌)) = (𝑋(,)𝑌))
1343, 4, 133syl2anc 576 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝑋[,]𝑌)) = (𝑋(,)𝑌))
1356, 8, 132, 118, 117, 134dvmptntr 24271 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢)) = (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢)))
136 reelprrecn 10427 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
137136a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
138 ioossicc 12638 . . . . . . . . 9 (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌)
139138sseli 3855 . . . . . . . 8 (𝑥 ∈ (𝑋(,)𝑌) → 𝑥 ∈ (𝑋[,]𝑌))
140139, 9sylan2 583 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐴 ∈ (𝑀(,)𝑁))
141 itgsubst.b . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1))
142 elin 4058 . . . . . . . . . . 11 ((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1) ↔ ((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ ((𝑋(,)𝑌)–cn→ℂ) ∧ (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ 𝐿1))
143141, 142sylib 210 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ ((𝑋(,)𝑌)–cn→ℂ) ∧ (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ 𝐿1))
144143simpld 487 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ ((𝑋(,)𝑌)–cn→ℂ))
145 cncff 23204 . . . . . . . . 9 ((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ ((𝑋(,)𝑌)–cn→ℂ) → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵):(𝑋(,)𝑌)⟶ℂ)
146144, 145syl 17 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵):(𝑋(,)𝑌)⟶ℂ)
147146fvmptelrn 6700 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐵 ∈ ℂ)
14856fmpttd 6702 . . . . . . . . 9 (𝜑 → (𝑢 ∈ (𝑀(,)𝑁) ↦ 𝐶):(𝑀(,)𝑁)⟶ℂ)
149 nfcv 2933 . . . . . . . . . . 11 𝑣𝐶
150 nfcsb1v 3805 . . . . . . . . . . 11 𝑢𝑣 / 𝑢𝐶
151 csbeq1a 3796 . . . . . . . . . . 11 (𝑢 = 𝑣𝐶 = 𝑣 / 𝑢𝐶)
152149, 150, 151cbvmpt 5027 . . . . . . . . . 10 (𝑢 ∈ (𝑀(,)𝑁) ↦ 𝐶) = (𝑣 ∈ (𝑀(,)𝑁) ↦ 𝑣 / 𝑢𝐶)
153152fmpt 6697 . . . . . . . . 9 (∀𝑣 ∈ (𝑀(,)𝑁)𝑣 / 𝑢𝐶 ∈ ℂ ↔ (𝑢 ∈ (𝑀(,)𝑁) ↦ 𝐶):(𝑀(,)𝑁)⟶ℂ)
154148, 153sylibr 226 . . . . . . . 8 (𝜑 → ∀𝑣 ∈ (𝑀(,)𝑁)𝑣 / 𝑢𝐶 ∈ ℂ)
155154r19.21bi 3159 . . . . . . 7 ((𝜑𝑣 ∈ (𝑀(,)𝑁)) → 𝑣 / 𝑢𝐶 ∈ ℂ)
15631, 5sstri 3868 . . . . . . . . . 10 (𝑍(,)𝑊) ⊆ ℂ
157 cncff 23204 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊))
15835, 157syl 17 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊))
159158fvmptelrn 6700 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → 𝐴 ∈ (𝑍(,)𝑊))
160156, 159sseldi 3857 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → 𝐴 ∈ ℂ)
1616, 8, 160, 118, 117, 134dvmptntr 24271 . . . . . . . 8 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐴)))
162 itgsubst.da . . . . . . . 8 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵))
163161, 162eqtr3d 2817 . . . . . . 7 (𝜑 → (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵))
164122, 152syl6eq 2831 . . . . . . 7 (𝜑 → (ℝ D (𝑣 ∈ (𝑀(,)𝑁) ↦ ∫(𝑀(,)𝑣)𝐶 d𝑢)) = (𝑣 ∈ (𝑀(,)𝑁) ↦ 𝑣 / 𝑢𝐶))
165 csbeq1 3790 . . . . . . 7 (𝑣 = 𝐴𝑣 / 𝑢𝐶 = 𝐴 / 𝑢𝐶)
166137, 137, 140, 147, 76, 155, 163, 164, 14, 165dvmptco 24272 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐴 / 𝑢𝐶 · 𝐵)))
167 nfcvd 2934 . . . . . . . . . 10 (𝐴 ∈ (𝑀(,)𝑁) → 𝑢𝐸)
168 itgsubst.e . . . . . . . . . 10 (𝑢 = 𝐴𝐶 = 𝐸)
169167, 168csbiegf 3813 . . . . . . . . 9 (𝐴 ∈ (𝑀(,)𝑁) → 𝐴 / 𝑢𝐶 = 𝐸)
170140, 169syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐴 / 𝑢𝐶 = 𝐸)
171170oveq1d 6991 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → (𝐴 / 𝑢𝐶 · 𝐵) = (𝐸 · 𝐵))
172171mpteq2dva 5022 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐴 / 𝑢𝐶 · 𝐵)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐸 · 𝐵)))
173135, 166, 1723eqtrd 2819 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐸 · 𝐵)))
174 resmpt 5750 . . . . . . . 8 ((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐸) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸))
175138, 174ax-mp 5 . . . . . . 7 ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐸) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸)
176 eqidd 2780 . . . . . . . . . 10 (𝜑 → (𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) = (𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶))
177159, 10, 176, 168fmptco 6714 . . . . . . . . 9 (𝜑 → ((𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) ∘ (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐸))
17835, 52cncfco 23218 . . . . . . . . 9 (𝜑 → ((𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) ∘ (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) ∈ ((𝑋[,]𝑌)–cn→ℂ))
179177, 178eqeltrrd 2868 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐸) ∈ ((𝑋[,]𝑌)–cn→ℂ))
180 rescncf 23208 . . . . . . . 8 ((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐸) ∈ ((𝑋[,]𝑌)–cn→ℂ) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐸) ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ)))
181138, 179, 180mpsyl 68 . . . . . . 7 (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐸) ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
182175, 181syl5eqelr 2872 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ ((𝑋(,)𝑌)–cn→ℂ))
183182, 144mulcncf 23750 . . . . 5 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐸 · 𝐵)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
184173, 183eqeltrd 2867 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
185 ioombl 23869 . . . . . . . 8 (𝑋(,)𝑌) ∈ dom vol
186185a1i 11 . . . . . . 7 (𝜑 → (𝑋(,)𝑌) ∈ dom vol)
187 fco 6361 . . . . . . . . . . 11 (((𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶):(𝑍(,)𝑊)⟶ℂ ∧ (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊)) → ((𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) ∘ (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)):(𝑋[,]𝑌)⟶ℂ)
18854, 158, 187syl2anc 576 . . . . . . . . . 10 (𝜑 → ((𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) ∘ (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)):(𝑋[,]𝑌)⟶ℂ)
189177feq1d 6329 . . . . . . . . . 10 (𝜑 → (((𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) ∘ (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)):(𝑋[,]𝑌)⟶ℂ ↔ (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐸):(𝑋[,]𝑌)⟶ℂ))
190188, 189mpbid 224 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐸):(𝑋[,]𝑌)⟶ℂ)
191190fvmptelrn 6700 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → 𝐸 ∈ ℂ)
192139, 191sylan2 583 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐸 ∈ ℂ)
193 eqidd 2780 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸))
194 eqidd 2780 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵))
195186, 192, 147, 193, 194offval2 7244 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∘𝑓 · (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐸 · 𝐵)))
196173, 195eqtr4d 2818 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢)) = ((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∘𝑓 · (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)))
197138a1i 11 . . . . . . . 8 (𝜑 → (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌))
198 cniccibl 24144 . . . . . . . . 9 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐸) ∈ ((𝑋[,]𝑌)–cn→ℂ)) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐸) ∈ 𝐿1)
1993, 4, 179, 198syl3anc 1351 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐸) ∈ 𝐿1)
200197, 186, 191, 199iblss 24108 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ 𝐿1)
201 iblmbf 24071 . . . . . . 7 ((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ 𝐿1 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ MblFn)
202200, 201syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ MblFn)
203143simprd 488 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ 𝐿1)
204 cniccbdd 23765 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐸) ∈ ((𝑋[,]𝑌)–cn→ℂ)) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝑋[,]𝑌)(abs‘((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐸)‘𝑧)) ≤ 𝑦)
2053, 4, 179, 204syl3anc 1351 . . . . . . 7 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝑋[,]𝑌)(abs‘((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐸)‘𝑧)) ≤ 𝑦)
206 ssralv 3924 . . . . . . . . . 10 ((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) → (∀𝑧 ∈ (𝑋[,]𝑌)(abs‘((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐸)‘𝑧)) ≤ 𝑦 → ∀𝑧 ∈ (𝑋(,)𝑌)(abs‘((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐸)‘𝑧)) ≤ 𝑦))
207138, 206ax-mp 5 . . . . . . . . 9 (∀𝑧 ∈ (𝑋[,]𝑌)(abs‘((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐸)‘𝑧)) ≤ 𝑦 → ∀𝑧 ∈ (𝑋(,)𝑌)(abs‘((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐸)‘𝑧)) ≤ 𝑦)
208 eqid 2779 . . . . . . . . . . . 12 (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸)
209208, 192dmmptd 6323 . . . . . . . . . . 11 (𝜑 → dom (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸) = (𝑋(,)𝑌))
210209raleqdv 3356 . . . . . . . . . 10 (𝜑 → (∀𝑧 ∈ dom (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸)(abs‘((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸)‘𝑧)) ≤ 𝑦 ↔ ∀𝑧 ∈ (𝑋(,)𝑌)(abs‘((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸)‘𝑧)) ≤ 𝑦))
211175fveq1i 6500 . . . . . . . . . . . . . 14 (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐸) ↾ (𝑋(,)𝑌))‘𝑧) = ((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸)‘𝑧)
212 fvres 6518 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑋(,)𝑌) → (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐸) ↾ (𝑋(,)𝑌))‘𝑧) = ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐸)‘𝑧))
213211, 212syl5eqr 2829 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑋(,)𝑌) → ((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸)‘𝑧) = ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐸)‘𝑧))
214213fveq2d 6503 . . . . . . . . . . . 12 (𝑧 ∈ (𝑋(,)𝑌) → (abs‘((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸)‘𝑧)) = (abs‘((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐸)‘𝑧)))
215214breq1d 4939 . . . . . . . . . . 11 (𝑧 ∈ (𝑋(,)𝑌) → ((abs‘((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸)‘𝑧)) ≤ 𝑦 ↔ (abs‘((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐸)‘𝑧)) ≤ 𝑦))
216215ralbiia 3115 . . . . . . . . . 10 (∀𝑧 ∈ (𝑋(,)𝑌)(abs‘((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸)‘𝑧)) ≤ 𝑦 ↔ ∀𝑧 ∈ (𝑋(,)𝑌)(abs‘((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐸)‘𝑧)) ≤ 𝑦)
217210, 216syl6rbb 280 . . . . . . . . 9 (𝜑 → (∀𝑧 ∈ (𝑋(,)𝑌)(abs‘((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐸)‘𝑧)) ≤ 𝑦 ↔ ∀𝑧 ∈ dom (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸)(abs‘((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸)‘𝑧)) ≤ 𝑦))
218207, 217syl5ib 236 . . . . . . . 8 (𝜑 → (∀𝑧 ∈ (𝑋[,]𝑌)(abs‘((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐸)‘𝑧)) ≤ 𝑦 → ∀𝑧 ∈ dom (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸)(abs‘((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸)‘𝑧)) ≤ 𝑦))
219218reximdv 3219 . . . . . . 7 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝑋[,]𝑌)(abs‘((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐸)‘𝑧)) ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸)(abs‘((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸)‘𝑧)) ≤ 𝑦))
220205, 219mpd 15 . . . . . 6 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸)(abs‘((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸)‘𝑧)) ≤ 𝑦)
221 bddmulibl 24142 . . . . . 6 (((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ MblFn ∧ (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ 𝐿1 ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸)(abs‘((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸)‘𝑧)) ≤ 𝑦) → ((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∘𝑓 · (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)) ∈ 𝐿1)
222202, 203, 220, 221syl3anc 1351 . . . . 5 (𝜑 → ((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∘𝑓 · (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)) ∈ 𝐿1)
223196, 222eqeltrd 2867 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢)) ∈ 𝐿1)
2243, 4, 1, 184, 223, 129ftc2 24344 . . 3 (𝜑 → ∫(𝑋(,)𝑌)((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢))‘𝑡) d𝑡 = (((𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢)‘𝑌) − ((𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢)‘𝑋)))
225 fveq2 6499 . . . . 5 (𝑡 = 𝑥 → ((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢))‘𝑡) = ((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢))‘𝑥))
226 nfcv 2933 . . . . . . 7 𝑥
227 nfcv 2933 . . . . . . 7 𝑥 D
228 nfmpt1 5025 . . . . . . 7 𝑥(𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢)
229226, 227, 228nfov 7006 . . . . . 6 𝑥(ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢))
230 nfcv 2933 . . . . . 6 𝑥𝑡
231229, 230nffv 6509 . . . . 5 𝑥((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢))‘𝑡)
232 nfcv 2933 . . . . 5 𝑡((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢))‘𝑥)
233225, 231, 232cbvitg 24079 . . . 4 ∫(𝑋(,)𝑌)((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢))‘𝑡) d𝑡 = ∫(𝑋(,)𝑌)((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢))‘𝑥) d𝑥
234173fveq1d 6501 . . . . . 6 (𝜑 → ((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢))‘𝑥) = ((𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐸 · 𝐵))‘𝑥))
235 ovex 7008 . . . . . . 7 (𝐸 · 𝐵) ∈ V
236 eqid 2779 . . . . . . . 8 (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐸 · 𝐵)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐸 · 𝐵))
237236fvmpt2 6605 . . . . . . 7 ((𝑥 ∈ (𝑋(,)𝑌) ∧ (𝐸 · 𝐵) ∈ V) → ((𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐸 · 𝐵))‘𝑥) = (𝐸 · 𝐵))
238235, 237mpan2 678 . . . . . 6 (𝑥 ∈ (𝑋(,)𝑌) → ((𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐸 · 𝐵))‘𝑥) = (𝐸 · 𝐵))
239234, 238sylan9eq 2835 . . . . 5 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → ((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢))‘𝑥) = (𝐸 · 𝐵))
240239itgeq2dv 24085 . . . 4 (𝜑 → ∫(𝑋(,)𝑌)((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢))‘𝑥) d𝑥 = ∫(𝑋(,)𝑌)(𝐸 · 𝐵) d𝑥)
241233, 240syl5eq 2827 . . 3 (𝜑 → ∫(𝑋(,)𝑌)((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢))‘𝑡) d𝑡 = ∫(𝑋(,)𝑌)(𝐸 · 𝐵) d𝑥)
24217, 9sseldi 3857 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → 𝐴 ∈ (𝑀[,]𝑁))
243 elicc2 12617 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐴 ∈ (𝑀[,]𝑁) ↔ (𝐴 ∈ ℝ ∧ 𝑀𝐴𝐴𝑁)))
24443, 40, 243syl2anc 576 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∈ (𝑀[,]𝑁) ↔ (𝐴 ∈ ℝ ∧ 𝑀𝐴𝐴𝑁)))
245244adantr 473 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → (𝐴 ∈ (𝑀[,]𝑁) ↔ (𝐴 ∈ ℝ ∧ 𝑀𝐴𝐴𝑁)))
246242, 245mpbid 224 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → (𝐴 ∈ ℝ ∧ 𝑀𝐴𝐴𝑁))
247246simp2d 1123 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → 𝑀𝐴)
248247ditgpos 24157 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → ⨜[𝑀𝐴]𝐶 d𝑢 = ∫(𝑀(,)𝐴)𝐶 d𝑢)
249248mpteq2dva 5022 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ ⨜[𝑀𝐴]𝐶 d𝑢) = (𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢))
250249fveq1d 6501 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ ⨜[𝑀𝐴]𝐶 d𝑢)‘𝑌) = ((𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢)‘𝑌))
251 ubicc2 12669 . . . . . . . 8 ((𝑋 ∈ ℝ*𝑌 ∈ ℝ*𝑋𝑌) → 𝑌 ∈ (𝑋[,]𝑌))
25291, 92, 1, 251syl3anc 1351 . . . . . . 7 (𝜑𝑌 ∈ (𝑋[,]𝑌))
253 itgsubst.l . . . . . . . . 9 (𝑥 = 𝑌𝐴 = 𝐿)
254 ditgeq2 24150 . . . . . . . . 9 (𝐴 = 𝐿 → ⨜[𝑀𝐴]𝐶 d𝑢 = ⨜[𝑀𝐿]𝐶 d𝑢)
255253, 254syl 17 . . . . . . . 8 (𝑥 = 𝑌 → ⨜[𝑀𝐴]𝐶 d𝑢 = ⨜[𝑀𝐿]𝐶 d𝑢)
256 eqid 2779 . . . . . . . 8 (𝑥 ∈ (𝑋[,]𝑌) ↦ ⨜[𝑀𝐴]𝐶 d𝑢) = (𝑥 ∈ (𝑋[,]𝑌) ↦ ⨜[𝑀𝐴]𝐶 d𝑢)
257 ditgex 24153 . . . . . . . 8 ⨜[𝑀𝐿]𝐶 d𝑢 ∈ V
258255, 256, 257fvmpt 6595 . . . . . . 7 (𝑌 ∈ (𝑋[,]𝑌) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ ⨜[𝑀𝐴]𝐶 d𝑢)‘𝑌) = ⨜[𝑀𝐿]𝐶 d𝑢)
259252, 258syl 17 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ ⨜[𝑀𝐴]𝐶 d𝑢)‘𝑌) = ⨜[𝑀𝐿]𝐶 d𝑢)
260250, 259eqtr3d 2817 . . . . 5 (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢)‘𝑌) = ⨜[𝑀𝐿]𝐶 d𝑢)
261249fveq1d 6501 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ ⨜[𝑀𝐴]𝐶 d𝑢)‘𝑋) = ((𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢)‘𝑋))
262 itgsubst.k . . . . . . . . 9 (𝑥 = 𝑋𝐴 = 𝐾)
263 ditgeq2 24150 . . . . . . . . 9 (𝐴 = 𝐾 → ⨜[𝑀𝐴]𝐶 d𝑢 = ⨜[𝑀𝐾]𝐶 d𝑢)
264262, 263syl 17 . . . . . . . 8 (𝑥 = 𝑋 → ⨜[𝑀𝐴]𝐶 d𝑢 = ⨜[𝑀𝐾]𝐶 d𝑢)
265 ditgex 24153 . . . . . . . 8 ⨜[𝑀𝐾]𝐶 d𝑢 ∈ V
266264, 256, 265fvmpt 6595 . . . . . . 7 (𝑋 ∈ (𝑋[,]𝑌) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ ⨜[𝑀𝐴]𝐶 d𝑢)‘𝑋) = ⨜[𝑀𝐾]𝐶 d𝑢)
26794, 266syl 17 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ ⨜[𝑀𝐴]𝐶 d𝑢)‘𝑋) = ⨜[𝑀𝐾]𝐶 d𝑢)
268261, 267eqtr3d 2817 . . . . 5 (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢)‘𝑋) = ⨜[𝑀𝐾]𝐶 d𝑢)
269260, 268oveq12d 6994 . . . 4 (𝜑 → (((𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢)‘𝑌) − ((𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢)‘𝑋)) = (⨜[𝑀𝐿]𝐶 d𝑢 − ⨜[𝑀𝐾]𝐶 d𝑢))
270 lbicc2 12668 . . . . . . 7 ((𝑀 ∈ ℝ*𝑁 ∈ ℝ*𝑀𝑁) → 𝑀 ∈ (𝑀[,]𝑁))
271103, 41, 109, 270syl3anc 1351 . . . . . 6 (𝜑𝑀 ∈ (𝑀[,]𝑁))
272262eleq1d 2851 . . . . . . 7 (𝑥 = 𝑋 → (𝐴 ∈ (𝑀[,]𝑁) ↔ 𝐾 ∈ (𝑀[,]𝑁)))
273242ralrimiva 3133 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑀[,]𝑁))
274272, 273, 94rspcdva 3542 . . . . . 6 (𝜑𝐾 ∈ (𝑀[,]𝑁))
275253eleq1d 2851 . . . . . . 7 (𝑥 = 𝑌 → (𝐴 ∈ (𝑀[,]𝑁) ↔ 𝐿 ∈ (𝑀[,]𝑁)))
276275, 273, 252rspcdva 3542 . . . . . 6 (𝜑𝐿 ∈ (𝑀[,]𝑁))
27743, 40, 271, 274, 276, 56, 72ditgsplit 24162 . . . . 5 (𝜑 → ⨜[𝑀𝐿]𝐶 d𝑢 = (⨜[𝑀𝐾]𝐶 d𝑢 + ⨜[𝐾𝐿]𝐶 d𝑢))
278277oveq1d 6991 . . . 4 (𝜑 → (⨜[𝑀𝐿]𝐶 d𝑢 − ⨜[𝑀𝐾]𝐶 d𝑢) = ((⨜[𝑀𝐾]𝐶 d𝑢 + ⨜[𝐾𝐿]𝐶 d𝑢) − ⨜[𝑀𝐾]𝐶 d𝑢))
27943, 40, 271, 274, 56, 72ditgcl 24159 . . . . 5 (𝜑 → ⨜[𝑀𝐾]𝐶 d𝑢 ∈ ℂ)
28043, 40, 274, 276, 56, 72ditgcl 24159 . . . . 5 (𝜑 → ⨜[𝐾𝐿]𝐶 d𝑢 ∈ ℂ)
281279, 280pncan2d 10800 . . . 4 (𝜑 → ((⨜[𝑀𝐾]𝐶 d𝑢 + ⨜[𝐾𝐿]𝐶 d𝑢) − ⨜[𝑀𝐾]𝐶 d𝑢) = ⨜[𝐾𝐿]𝐶 d𝑢)
282269, 278, 2813eqtrd 2819 . . 3 (𝜑 → (((𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢)‘𝑌) − ((𝑥 ∈ (𝑋[,]𝑌) ↦ ∫(𝑀(,)𝐴)𝐶 d𝑢)‘𝑋)) = ⨜[𝐾𝐿]𝐶 d𝑢)
283224, 241, 2823eqtr3d 2823 . 2 (𝜑 → ∫(𝑋(,)𝑌)(𝐸 · 𝐵) d𝑥 = ⨜[𝐾𝐿]𝐶 d𝑢)
2842, 283eqtr2d 2816 1 (𝜑 → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wral 3089  wrex 3090  Vcvv 3416  csb 3787  cin 3829  wss 3830  c0 4179  {cpr 4443   class class class wbr 4929  cmpt 5008  dom cdm 5407  ran crn 5408  cres 5409  ccom 5411  wf 6184  cfv 6188  (class class class)co 6976  𝑓 cof 7225  cc 10333  cr 10334   + caddc 10338   · cmul 10340  *cxr 10473   < clt 10474  cle 10475  cmin 10670  (,)cioo 12554  [,]cicc 12557  abscabs 14454  TopOpenctopn 16551  topGenctg 16567  fldccnfld 20247  intcnt 21329  cnccncf 23187  volcvol 23767  MblFncmbf 23918  𝐿1cibl 23921  citg 23922  cdit 24147   D cdv 24164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-inf2 8898  ax-cc 9655  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413  ax-addf 10414  ax-mulf 10415
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-symdif 4107  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-iin 4795  df-disj 4898  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-se 5367  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-isom 6197  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-of 7227  df-ofr 7228  df-om 7397  df-1st 7501  df-2nd 7502  df-supp 7634  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-2o 7906  df-oadd 7909  df-omul 7910  df-er 8089  df-map 8208  df-pm 8209  df-ixp 8260  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-fsupp 8629  df-fi 8670  df-sup 8701  df-inf 8702  df-oi 8769  df-dju 9124  df-card 9162  df-acn 9165  df-cda 9388  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-3 11504  df-4 11505  df-5 11506  df-6 11507  df-7 11508  df-8 11509  df-9 11510  df-n0 11708  df-z 11794  df-dec 11912  df-uz 12059  df-q 12163  df-rp 12205  df-xneg 12324  df-xadd 12325  df-xmul 12326  df-ioo 12558  df-ioc 12559  df-ico 12560  df-icc 12561  df-fz 12709  df-fzo 12850  df-fl 12977  df-mod 13053  df-seq 13185  df-exp 13245  df-hash 13506  df-cj 14319  df-re 14320  df-im 14321  df-sqrt 14455  df-abs 14456  df-limsup 14689  df-clim 14706  df-rlim 14707  df-sum 14904  df-struct 16341  df-ndx 16342  df-slot 16343  df-base 16345  df-sets 16346  df-ress 16347  df-plusg 16434  df-mulr 16435  df-starv 16436  df-sca 16437  df-vsca 16438  df-ip 16439  df-tset 16440  df-ple 16441  df-ds 16443  df-unif 16444  df-hom 16445  df-cco 16446  df-rest 16552  df-topn 16553  df-0g 16571  df-gsum 16572  df-topgen 16573  df-pt 16574  df-prds 16577  df-xrs 16631  df-qtop 16636  df-imas 16637  df-xps 16639  df-mre 16715  df-mrc 16716  df-acs 16718  df-mgm 17710  df-sgrp 17752  df-mnd 17763  df-submnd 17804  df-mulg 18012  df-cntz 18218  df-cmn 18668  df-psmet 20239  df-xmet 20240  df-met 20241  df-bl 20242  df-mopn 20243  df-fbas 20244  df-fg 20245  df-cnfld 20248  df-top 21206  df-topon 21223  df-topsp 21245  df-bases 21258  df-cld 21331  df-ntr 21332  df-cls 21333  df-nei 21410  df-lp 21448  df-perf 21449  df-cn 21539  df-cnp 21540  df-haus 21627  df-cmp 21699  df-tx 21874  df-hmeo 22067  df-fil 22158  df-fm 22250  df-flim 22251  df-flf 22252  df-xms 22633  df-ms 22634  df-tms 22635  df-cncf 23189  df-ovol 23768  df-vol 23769  df-mbf 23923  df-itg1 23924  df-itg2 23925  df-ibl 23926  df-itg 23927  df-0p 23974  df-ditg 24148  df-limc 24167  df-dv 24168
This theorem is referenced by:  itgsubst  24349
  Copyright terms: Public domain W3C validator