| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ditgeqiooicc | Structured version Visualization version GIF version | ||
| Description: A function 𝐹 on an open interval, has the same directed integral as its extension 𝐺 on the closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ditgeqiooicc.1 | ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) |
| ditgeqiooicc.2 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ditgeqiooicc.3 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ditgeqiooicc.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| ditgeqiooicc.5 | ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
| Ref | Expression |
|---|---|
| ditgeqiooicc | ⊢ (𝜑 → ⨜[𝐴 → 𝐵](𝐹‘𝑥) d𝑥 = ⨜[𝐴 → 𝐵](𝐺‘𝑥) d𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioossicc 13400 | . . . . . . 7 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | |
| 2 | 1 | sseli 3944 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ (𝐴[,]𝐵)) |
| 3 | 2 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴[,]𝐵)) |
| 4 | ditgeqiooicc.2 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 5 | 4 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ) |
| 6 | simpr 484 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵)) | |
| 7 | 5 | rexrd 11230 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*) |
| 8 | ditgeqiooicc.3 | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 9 | 8 | adantr 480 | . . . . . . . . . . . . . 14 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ) |
| 10 | 9 | rexrd 11230 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*) |
| 11 | elioo2 13353 | . . . . . . . . . . . . 13 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) | |
| 12 | 7, 10, 11 | syl2anc 584 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
| 13 | 6, 12 | mpbid 232 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) |
| 14 | 13 | simp2d 1143 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑥) |
| 15 | 5, 14 | gtned 11315 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 𝐴) |
| 16 | 15 | neneqd 2931 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐴) |
| 17 | 16 | iffalsed 4501 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) |
| 18 | 13 | simp1d 1142 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ) |
| 19 | 13 | simp3d 1144 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 < 𝐵) |
| 20 | 18, 19 | ltned 11316 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 𝐵) |
| 21 | 20 | neneqd 2931 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐵) |
| 22 | 21 | iffalsed 4501 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)) = (𝐹‘𝑥)) |
| 23 | 17, 22 | eqtrd 2765 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = (𝐹‘𝑥)) |
| 24 | ditgeqiooicc.5 | . . . . . . 7 ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) | |
| 25 | 24 | ffvelcdmda 7058 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
| 26 | 23, 25 | eqeltrd 2829 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℝ) |
| 27 | ditgeqiooicc.1 | . . . . . 6 ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) | |
| 28 | 27 | fvmpt2 6981 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴[,]𝐵) ∧ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℝ) → (𝐺‘𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) |
| 29 | 3, 26, 28 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝐺‘𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) |
| 30 | 29, 17, 22 | 3eqtrrd 2770 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 31 | 30 | itgeq2dv 25689 | . 2 ⊢ (𝜑 → ∫(𝐴(,)𝐵)(𝐹‘𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐺‘𝑥) d𝑥) |
| 32 | ditgeqiooicc.4 | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 33 | 32 | ditgpos 25763 | . 2 ⊢ (𝜑 → ⨜[𝐴 → 𝐵](𝐹‘𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐹‘𝑥) d𝑥) |
| 34 | 32 | ditgpos 25763 | . 2 ⊢ (𝜑 → ⨜[𝐴 → 𝐵](𝐺‘𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐺‘𝑥) d𝑥) |
| 35 | 31, 33, 34 | 3eqtr4d 2775 | 1 ⊢ (𝜑 → ⨜[𝐴 → 𝐵](𝐹‘𝑥) d𝑥 = ⨜[𝐴 → 𝐵](𝐺‘𝑥) d𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ifcif 4490 class class class wbr 5109 ↦ cmpt 5190 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 ℝcr 11073 ℝ*cxr 11213 < clt 11214 ≤ cle 11215 (,)cioo 13312 [,]cicc 13315 ∫citg 25525 ⨜cdit 25753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-n0 12449 df-z 12536 df-uz 12800 df-ioo 13316 df-icc 13319 df-fz 13475 df-seq 13973 df-sum 15659 df-itg 25530 df-ditg 25754 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |