![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ditgeqiooicc | Structured version Visualization version GIF version |
Description: A function 𝐹 on an open interval, has the same directed integral as its extension 𝐺 on the closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
ditgeqiooicc.1 | ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) |
ditgeqiooicc.2 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ditgeqiooicc.3 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ditgeqiooicc.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
ditgeqiooicc.5 | ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
Ref | Expression |
---|---|
ditgeqiooicc | ⊢ (𝜑 → ⨜[𝐴 → 𝐵](𝐹‘𝑥) d𝑥 = ⨜[𝐴 → 𝐵](𝐺‘𝑥) d𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioossicc 12631 | . . . . . . 7 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | |
2 | 1 | sseli 3850 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ (𝐴[,]𝐵)) |
3 | 2 | adantl 474 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴[,]𝐵)) |
4 | ditgeqiooicc.2 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
5 | 4 | adantr 473 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ) |
6 | simpr 477 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵)) | |
7 | 5 | rexrd 10482 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*) |
8 | ditgeqiooicc.3 | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
9 | 8 | adantr 473 | . . . . . . . . . . . . . 14 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ) |
10 | 9 | rexrd 10482 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*) |
11 | elioo2 12588 | . . . . . . . . . . . . 13 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) | |
12 | 7, 10, 11 | syl2anc 576 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
13 | 6, 12 | mpbid 224 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) |
14 | 13 | simp2d 1123 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑥) |
15 | 5, 14 | gtned 10567 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 𝐴) |
16 | 15 | neneqd 2966 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐴) |
17 | 16 | iffalsed 4355 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) |
18 | 13 | simp1d 1122 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ) |
19 | 13 | simp3d 1124 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 < 𝐵) |
20 | 18, 19 | ltned 10568 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 𝐵) |
21 | 20 | neneqd 2966 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐵) |
22 | 21 | iffalsed 4355 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)) = (𝐹‘𝑥)) |
23 | 17, 22 | eqtrd 2808 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = (𝐹‘𝑥)) |
24 | ditgeqiooicc.5 | . . . . . . 7 ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) | |
25 | 24 | ffvelrnda 6670 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
26 | 23, 25 | eqeltrd 2860 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℝ) |
27 | ditgeqiooicc.1 | . . . . . 6 ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) | |
28 | 27 | fvmpt2 6599 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴[,]𝐵) ∧ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℝ) → (𝐺‘𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) |
29 | 3, 26, 28 | syl2anc 576 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝐺‘𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) |
30 | 29, 17, 22 | 3eqtrrd 2813 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
31 | 30 | itgeq2dv 24075 | . 2 ⊢ (𝜑 → ∫(𝐴(,)𝐵)(𝐹‘𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐺‘𝑥) d𝑥) |
32 | ditgeqiooicc.4 | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
33 | 32 | ditgpos 24147 | . 2 ⊢ (𝜑 → ⨜[𝐴 → 𝐵](𝐹‘𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐹‘𝑥) d𝑥) |
34 | 32 | ditgpos 24147 | . 2 ⊢ (𝜑 → ⨜[𝐴 → 𝐵](𝐺‘𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐺‘𝑥) d𝑥) |
35 | 31, 33, 34 | 3eqtr4d 2818 | 1 ⊢ (𝜑 → ⨜[𝐴 → 𝐵](𝐹‘𝑥) d𝑥 = ⨜[𝐴 → 𝐵](𝐺‘𝑥) d𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2048 ifcif 4344 class class class wbr 4923 ↦ cmpt 5002 ⟶wf 6178 ‘cfv 6182 (class class class)co 6970 ℝcr 10326 ℝ*cxr 10465 < clt 10466 ≤ cle 10467 (,)cioo 12547 [,]cicc 12550 ∫citg 23912 ⨜cdit 24137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7494 df-2nd 7495 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-nn 11432 df-n0 11701 df-z 11787 df-uz 12052 df-ioo 12551 df-icc 12554 df-fz 12702 df-seq 13178 df-sum 14894 df-itg 23917 df-ditg 24138 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |