Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ditgeqiooicc Structured version   Visualization version   GIF version

Theorem ditgeqiooicc 45980
Description: A function 𝐹 on an open interval, has the same directed integral as its extension 𝐺 on the closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ditgeqiooicc.1 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
ditgeqiooicc.2 (𝜑𝐴 ∈ ℝ)
ditgeqiooicc.3 (𝜑𝐵 ∈ ℝ)
ditgeqiooicc.4 (𝜑𝐴𝐵)
ditgeqiooicc.5 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
Assertion
Ref Expression
ditgeqiooicc (𝜑 → ⨜[𝐴𝐵](𝐹𝑥) d𝑥 = ⨜[𝐴𝐵](𝐺𝑥) d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝑅(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐿(𝑥)

Proof of Theorem ditgeqiooicc
StepHypRef Expression
1 ioossicc 13474 . . . . . . 7 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
21sseli 3978 . . . . . 6 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
32adantl 481 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
4 ditgeqiooicc.2 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
54adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
6 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
75rexrd 11312 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
8 ditgeqiooicc.3 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ)
98adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
109rexrd 11312 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
11 elioo2 13429 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < 𝐵)))
127, 10, 11syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < 𝐵)))
136, 12mpbid 232 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < 𝐵))
1413simp2d 1143 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑥)
155, 14gtned 11397 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥𝐴)
1615neneqd 2944 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐴)
1716iffalsed 4535 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
1813simp1d 1142 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ)
1913simp3d 1144 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 < 𝐵)
2018, 19ltned 11398 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥𝐵)
2120neneqd 2944 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐵)
2221iffalsed 4535 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = (𝐹𝑥))
2317, 22eqtrd 2776 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = (𝐹𝑥))
24 ditgeqiooicc.5 . . . . . . 7 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
2524ffvelcdmda 7103 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℝ)
2623, 25eqeltrd 2840 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℝ)
27 ditgeqiooicc.1 . . . . . 6 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
2827fvmpt2 7026 . . . . 5 ((𝑥 ∈ (𝐴[,]𝐵) ∧ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℝ) → (𝐺𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
293, 26, 28syl2anc 584 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐺𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
3029, 17, 223eqtrrd 2781 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) = (𝐺𝑥))
3130itgeq2dv 25818 . 2 (𝜑 → ∫(𝐴(,)𝐵)(𝐹𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐺𝑥) d𝑥)
32 ditgeqiooicc.4 . . 3 (𝜑𝐴𝐵)
3332ditgpos 25892 . 2 (𝜑 → ⨜[𝐴𝐵](𝐹𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐹𝑥) d𝑥)
3432ditgpos 25892 . 2 (𝜑 → ⨜[𝐴𝐵](𝐺𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐺𝑥) d𝑥)
3531, 33, 343eqtr4d 2786 1 (𝜑 → ⨜[𝐴𝐵](𝐹𝑥) d𝑥 = ⨜[𝐴𝐵](𝐺𝑥) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  ifcif 4524   class class class wbr 5142  cmpt 5224  wf 6556  cfv 6560  (class class class)co 7432  cr 11155  *cxr 11295   < clt 11296  cle 11297  (,)cioo 13388  [,]cicc 13391  citg 25654  cdit 25882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-n0 12529  df-z 12616  df-uz 12880  df-ioo 13392  df-icc 13395  df-fz 13549  df-seq 14044  df-sum 15724  df-itg 25659  df-ditg 25883
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator