| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ditgeqiooicc | Structured version Visualization version GIF version | ||
| Description: A function 𝐹 on an open interval, has the same directed integral as its extension 𝐺 on the closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ditgeqiooicc.1 | ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) |
| ditgeqiooicc.2 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ditgeqiooicc.3 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ditgeqiooicc.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| ditgeqiooicc.5 | ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
| Ref | Expression |
|---|---|
| ditgeqiooicc | ⊢ (𝜑 → ⨜[𝐴 → 𝐵](𝐹‘𝑥) d𝑥 = ⨜[𝐴 → 𝐵](𝐺‘𝑥) d𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioossicc 13370 | . . . . . . 7 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | |
| 2 | 1 | sseli 3939 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ (𝐴[,]𝐵)) |
| 3 | 2 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴[,]𝐵)) |
| 4 | ditgeqiooicc.2 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 5 | 4 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ) |
| 6 | simpr 484 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵)) | |
| 7 | 5 | rexrd 11200 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*) |
| 8 | ditgeqiooicc.3 | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 9 | 8 | adantr 480 | . . . . . . . . . . . . . 14 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ) |
| 10 | 9 | rexrd 11200 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*) |
| 11 | elioo2 13323 | . . . . . . . . . . . . 13 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) | |
| 12 | 7, 10, 11 | syl2anc 584 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
| 13 | 6, 12 | mpbid 232 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) |
| 14 | 13 | simp2d 1143 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑥) |
| 15 | 5, 14 | gtned 11285 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 𝐴) |
| 16 | 15 | neneqd 2930 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐴) |
| 17 | 16 | iffalsed 4495 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) |
| 18 | 13 | simp1d 1142 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ) |
| 19 | 13 | simp3d 1144 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 < 𝐵) |
| 20 | 18, 19 | ltned 11286 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 𝐵) |
| 21 | 20 | neneqd 2930 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐵) |
| 22 | 21 | iffalsed 4495 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)) = (𝐹‘𝑥)) |
| 23 | 17, 22 | eqtrd 2764 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = (𝐹‘𝑥)) |
| 24 | ditgeqiooicc.5 | . . . . . . 7 ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) | |
| 25 | 24 | ffvelcdmda 7038 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
| 26 | 23, 25 | eqeltrd 2828 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℝ) |
| 27 | ditgeqiooicc.1 | . . . . . 6 ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) | |
| 28 | 27 | fvmpt2 6961 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴[,]𝐵) ∧ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℝ) → (𝐺‘𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) |
| 29 | 3, 26, 28 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝐺‘𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) |
| 30 | 29, 17, 22 | 3eqtrrd 2769 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 31 | 30 | itgeq2dv 25716 | . 2 ⊢ (𝜑 → ∫(𝐴(,)𝐵)(𝐹‘𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐺‘𝑥) d𝑥) |
| 32 | ditgeqiooicc.4 | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 33 | 32 | ditgpos 25790 | . 2 ⊢ (𝜑 → ⨜[𝐴 → 𝐵](𝐹‘𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐹‘𝑥) d𝑥) |
| 34 | 32 | ditgpos 25790 | . 2 ⊢ (𝜑 → ⨜[𝐴 → 𝐵](𝐺‘𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐺‘𝑥) d𝑥) |
| 35 | 31, 33, 34 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → ⨜[𝐴 → 𝐵](𝐹‘𝑥) d𝑥 = ⨜[𝐴 → 𝐵](𝐺‘𝑥) d𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ifcif 4484 class class class wbr 5102 ↦ cmpt 5183 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ℝcr 11043 ℝ*cxr 11183 < clt 11184 ≤ cle 11185 (,)cioo 13282 [,]cicc 13285 ∫citg 25552 ⨜cdit 25780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-ioo 13286 df-icc 13289 df-fz 13445 df-seq 13943 df-sum 15629 df-itg 25557 df-ditg 25781 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |