Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ditgeqiooicc Structured version   Visualization version   GIF version

Theorem ditgeqiooicc 44513
Description: A function 𝐹 on an open interval, has the same directed integral as its extension 𝐺 on the closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ditgeqiooicc.1 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
ditgeqiooicc.2 (𝜑𝐴 ∈ ℝ)
ditgeqiooicc.3 (𝜑𝐵 ∈ ℝ)
ditgeqiooicc.4 (𝜑𝐴𝐵)
ditgeqiooicc.5 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
Assertion
Ref Expression
ditgeqiooicc (𝜑 → ⨜[𝐴𝐵](𝐹𝑥) d𝑥 = ⨜[𝐴𝐵](𝐺𝑥) d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝑅(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐿(𝑥)

Proof of Theorem ditgeqiooicc
StepHypRef Expression
1 ioossicc 13394 . . . . . . 7 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
21sseli 3975 . . . . . 6 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
32adantl 482 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
4 ditgeqiooicc.2 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
54adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
6 simpr 485 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
75rexrd 11248 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
8 ditgeqiooicc.3 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ)
98adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
109rexrd 11248 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
11 elioo2 13349 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < 𝐵)))
127, 10, 11syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < 𝐵)))
136, 12mpbid 231 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < 𝐵))
1413simp2d 1143 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑥)
155, 14gtned 11333 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥𝐴)
1615neneqd 2945 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐴)
1716iffalsed 4534 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
1813simp1d 1142 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ)
1913simp3d 1144 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 < 𝐵)
2018, 19ltned 11334 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥𝐵)
2120neneqd 2945 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐵)
2221iffalsed 4534 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = (𝐹𝑥))
2317, 22eqtrd 2772 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = (𝐹𝑥))
24 ditgeqiooicc.5 . . . . . . 7 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
2524ffvelcdmda 7072 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℝ)
2623, 25eqeltrd 2833 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℝ)
27 ditgeqiooicc.1 . . . . . 6 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
2827fvmpt2 6996 . . . . 5 ((𝑥 ∈ (𝐴[,]𝐵) ∧ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℝ) → (𝐺𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
293, 26, 28syl2anc 584 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐺𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
3029, 17, 223eqtrrd 2777 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) = (𝐺𝑥))
3130itgeq2dv 25230 . 2 (𝜑 → ∫(𝐴(,)𝐵)(𝐹𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐺𝑥) d𝑥)
32 ditgeqiooicc.4 . . 3 (𝜑𝐴𝐵)
3332ditgpos 25304 . 2 (𝜑 → ⨜[𝐴𝐵](𝐹𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐹𝑥) d𝑥)
3432ditgpos 25304 . 2 (𝜑 → ⨜[𝐴𝐵](𝐺𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐺𝑥) d𝑥)
3531, 33, 343eqtr4d 2782 1 (𝜑 → ⨜[𝐴𝐵](𝐹𝑥) d𝑥 = ⨜[𝐴𝐵](𝐺𝑥) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  ifcif 4523   class class class wbr 5142  cmpt 5225  wf 6529  cfv 6533  (class class class)co 7394  cr 11093  *cxr 11231   < clt 11232  cle 11233  (,)cioo 13308  [,]cicc 13311  citg 25066  cdit 25294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-cnex 11150  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7840  df-1st 7959  df-2nd 7960  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-rdg 8394  df-er 8688  df-en 8925  df-dom 8926  df-sdom 8927  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-nn 12197  df-n0 12457  df-z 12543  df-uz 12807  df-ioo 13312  df-icc 13315  df-fz 13469  df-seq 13951  df-sum 15617  df-itg 25071  df-ditg 25295
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator