Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ditgeqiooicc Structured version   Visualization version   GIF version

Theorem ditgeqiooicc 41621
Description: A function 𝐹 on an open interval, has the same directed integral as its extension 𝐺 on the closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ditgeqiooicc.1 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
ditgeqiooicc.2 (𝜑𝐴 ∈ ℝ)
ditgeqiooicc.3 (𝜑𝐵 ∈ ℝ)
ditgeqiooicc.4 (𝜑𝐴𝐵)
ditgeqiooicc.5 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
Assertion
Ref Expression
ditgeqiooicc (𝜑 → ⨜[𝐴𝐵](𝐹𝑥) d𝑥 = ⨜[𝐴𝐵](𝐺𝑥) d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝑅(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐿(𝑥)

Proof of Theorem ditgeqiooicc
StepHypRef Expression
1 ioossicc 12631 . . . . . . 7 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
21sseli 3850 . . . . . 6 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
32adantl 474 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
4 ditgeqiooicc.2 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
54adantr 473 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
6 simpr 477 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
75rexrd 10482 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
8 ditgeqiooicc.3 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ)
98adantr 473 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
109rexrd 10482 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
11 elioo2 12588 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < 𝐵)))
127, 10, 11syl2anc 576 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < 𝐵)))
136, 12mpbid 224 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < 𝐵))
1413simp2d 1123 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑥)
155, 14gtned 10567 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥𝐴)
1615neneqd 2966 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐴)
1716iffalsed 4355 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
1813simp1d 1122 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ)
1913simp3d 1124 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 < 𝐵)
2018, 19ltned 10568 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥𝐵)
2120neneqd 2966 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐵)
2221iffalsed 4355 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = (𝐹𝑥))
2317, 22eqtrd 2808 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = (𝐹𝑥))
24 ditgeqiooicc.5 . . . . . . 7 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
2524ffvelrnda 6670 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℝ)
2623, 25eqeltrd 2860 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℝ)
27 ditgeqiooicc.1 . . . . . 6 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
2827fvmpt2 6599 . . . . 5 ((𝑥 ∈ (𝐴[,]𝐵) ∧ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℝ) → (𝐺𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
293, 26, 28syl2anc 576 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐺𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
3029, 17, 223eqtrrd 2813 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) = (𝐺𝑥))
3130itgeq2dv 24075 . 2 (𝜑 → ∫(𝐴(,)𝐵)(𝐹𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐺𝑥) d𝑥)
32 ditgeqiooicc.4 . . 3 (𝜑𝐴𝐵)
3332ditgpos 24147 . 2 (𝜑 → ⨜[𝐴𝐵](𝐹𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐹𝑥) d𝑥)
3432ditgpos 24147 . 2 (𝜑 → ⨜[𝐴𝐵](𝐺𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐺𝑥) d𝑥)
3531, 33, 343eqtr4d 2818 1 (𝜑 → ⨜[𝐴𝐵](𝐹𝑥) d𝑥 = ⨜[𝐴𝐵](𝐺𝑥) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2048  ifcif 4344   class class class wbr 4923  cmpt 5002  wf 6178  cfv 6182  (class class class)co 6970  cr 10326  *cxr 10465   < clt 10466  cle 10467  (,)cioo 12547  [,]cicc 12550  citg 23912  cdit 24137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-er 8081  df-en 8299  df-dom 8300  df-sdom 8301  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-nn 11432  df-n0 11701  df-z 11787  df-uz 12052  df-ioo 12551  df-icc 12554  df-fz 12702  df-seq 13178  df-sum 14894  df-itg 23917  df-ditg 24138
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator