Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem82 Structured version   Visualization version   GIF version

Theorem fourierdlem82 46159
Description: Integral by substitution, adding a constant to the function's argument, for a function on an open interval with finite limits ad boundary points. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem82.1 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))))
fourierdlem82.2 (𝜑𝐴 ∈ ℝ)
fourierdlem82.3 (𝜑𝐵 ∈ ℝ)
fourierdlem82.4 (𝜑𝐴 < 𝐵)
fourierdlem82.5 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
fourierdlem82.6 (𝜑 → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
fourierdlem82.7 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
fourierdlem82.8 (𝜑𝑅 ∈ (𝐹 lim 𝐴))
fourierdlem82.9 (𝜑𝑋 ∈ ℝ)
Assertion
Ref Expression
fourierdlem82 (𝜑 → ∫(𝐴[,]𝐵)(𝐹𝑡) d𝑡 = ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡)
Distinct variable groups:   𝑡,𝐴,𝑥   𝑡,𝐵,𝑥   𝑥,𝐹   𝑡,𝐺   𝑥,𝐿   𝑥,𝑅   𝑡,𝑋,𝑥   𝜑,𝑡,𝑥
Allowed substitution hints:   𝑅(𝑡)   𝐹(𝑡)   𝐺(𝑥)   𝐿(𝑡)

Proof of Theorem fourierdlem82
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem82.2 . . . . 5 (𝜑𝐴 ∈ ℝ)
2 fourierdlem82.3 . . . . 5 (𝜑𝐵 ∈ ℝ)
3 fourierdlem82.9 . . . . 5 (𝜑𝑋 ∈ ℝ)
4 fourierdlem82.4 . . . . . 6 (𝜑𝐴 < 𝐵)
51, 2, 4ltled 11298 . . . . 5 (𝜑𝐴𝐵)
61, 2, 3, 5lesub1dd 11770 . . . 4 (𝜑 → (𝐴𝑋) ≤ (𝐵𝑋))
76ditgpos 25733 . . 3 (𝜑 → ⨜[(𝐴𝑋) → (𝐵𝑋)](𝐺‘(𝑋 + 𝑡)) d𝑡 = ∫((𝐴𝑋)(,)(𝐵𝑋))(𝐺‘(𝑋 + 𝑡)) d𝑡)
8 fourierdlem82.1 . . . . . . 7 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))))
9 iftrue 4490 . . . . . . . . . . . 12 (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = 𝑅)
109adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = 𝑅)
11 iftrue 4490 . . . . . . . . . . . 12 (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝑅)
1211adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝑅)
1310, 12eqtr4d 2767 . . . . . . . . . 10 ((𝜑𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
1413adantlr 715 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
15 iffalse 4493 . . . . . . . . . . . . 13 𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))
16 iftrue 4490 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)) = 𝐿)
1715, 16sylan9eq 2784 . . . . . . . . . . . 12 ((¬ 𝑥 = 𝐴𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = 𝐿)
1817adantll 714 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = 𝐿)
19 iffalse 4493 . . . . . . . . . . . . 13 𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
20 iftrue 4490 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = 𝐿)
2119, 20sylan9eq 2784 . . . . . . . . . . . 12 ((¬ 𝑥 = 𝐴𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝐿)
2221adantll 714 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝐿)
2318, 22eqtr4d 2767 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
24 iffalse 4493 . . . . . . . . . . . 12 𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)) = ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))
2524adantl 481 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)) = ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))
2615ad2antlr 727 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))
27 iffalse 4493 . . . . . . . . . . . . 13 𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = (𝐹𝑥))
2827adantl 481 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = (𝐹𝑥))
2919ad2antlr 727 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
301rexrd 11200 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ*)
3130ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴 ∈ ℝ*)
322rexrd 11200 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ*)
3332ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ*)
341adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
352adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
36 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
37 eliccre 45476 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
3834, 35, 36, 37syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
3938ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ℝ)
401ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 ∈ ℝ)
4138adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ ℝ)
42 elicc2 13348 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4334, 35, 42syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4436, 43mpbid 232 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
4544simp2d 1143 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝑥)
4645adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴𝑥)
47 neqne 2933 . . . . . . . . . . . . . . . . 17 𝑥 = 𝐴𝑥𝐴)
4847adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝑥𝐴)
4940, 41, 46, 48leneltd 11304 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 < 𝑥)
5049adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴 < 𝑥)
5138adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ℝ)
522ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ)
5344simp3d 1144 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
5453adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥𝐵)
55 nesym 2981 . . . . . . . . . . . . . . . . . 18 (𝐵𝑥 ↔ ¬ 𝑥 = 𝐵)
5655biimpri 228 . . . . . . . . . . . . . . . . 17 𝑥 = 𝐵𝐵𝑥)
5756adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝐵𝑥)
5851, 52, 54, 57leneltd 11304 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐵)
5958adantlr 715 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐵)
6031, 33, 39, 50, 59eliood 45469 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴(,)𝐵))
61 fvres 6859 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴(,)𝐵) → ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐹𝑥))
6260, 61syl 17 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐹𝑥))
6328, 29, 623eqtr4d 2774 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))
6425, 26, 633eqtr4d 2774 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
6523, 64pm2.61dan 812 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
6614, 65pm2.61dan 812 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
6766mpteq2dva 5195 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))))
688, 67eqtrid 2776 . . . . . 6 (𝜑𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))))
6968adantr 480 . . . . 5 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))))
70 eqeq1 2733 . . . . . . 7 (𝑥 = (𝑋 + 𝑡) → (𝑥 = 𝐴 ↔ (𝑋 + 𝑡) = 𝐴))
71 eqeq1 2733 . . . . . . . 8 (𝑥 = (𝑋 + 𝑡) → (𝑥 = 𝐵 ↔ (𝑋 + 𝑡) = 𝐵))
72 fveq2 6840 . . . . . . . 8 (𝑥 = (𝑋 + 𝑡) → (𝐹𝑥) = (𝐹‘(𝑋 + 𝑡)))
7371, 72ifbieq2d 4511 . . . . . . 7 (𝑥 = (𝑋 + 𝑡) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = if((𝑋 + 𝑡) = 𝐵, 𝐿, (𝐹‘(𝑋 + 𝑡))))
7470, 73ifbieq2d 4511 . . . . . 6 (𝑥 = (𝑋 + 𝑡) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if((𝑋 + 𝑡) = 𝐴, 𝑅, if((𝑋 + 𝑡) = 𝐵, 𝐿, (𝐹‘(𝑋 + 𝑡)))))
751adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝐴 ∈ ℝ)
76 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋)))
771, 3resubcld 11582 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴𝑋) ∈ ℝ)
7877rexrd 11200 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝑋) ∈ ℝ*)
7978adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝐴𝑋) ∈ ℝ*)
802, 3resubcld 11582 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵𝑋) ∈ ℝ)
8180rexrd 11200 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵𝑋) ∈ ℝ*)
8281adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝐵𝑋) ∈ ℝ*)
83 elioo2 13323 . . . . . . . . . . . . . 14 (((𝐴𝑋) ∈ ℝ* ∧ (𝐵𝑋) ∈ ℝ*) → (𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋)) ↔ (𝑡 ∈ ℝ ∧ (𝐴𝑋) < 𝑡𝑡 < (𝐵𝑋))))
8479, 82, 83syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋)) ↔ (𝑡 ∈ ℝ ∧ (𝐴𝑋) < 𝑡𝑡 < (𝐵𝑋))))
8576, 84mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑡 ∈ ℝ ∧ (𝐴𝑋) < 𝑡𝑡 < (𝐵𝑋)))
8685simp2d 1143 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝐴𝑋) < 𝑡)
873adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝑋 ∈ ℝ)
8885simp1d 1142 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝑡 ∈ ℝ)
8975, 87, 88ltsubadd2d 11752 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → ((𝐴𝑋) < 𝑡𝐴 < (𝑋 + 𝑡)))
9086, 89mpbid 232 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝐴 < (𝑋 + 𝑡))
9175, 90gtned 11285 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑋 + 𝑡) ≠ 𝐴)
9291neneqd 2930 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → ¬ (𝑋 + 𝑡) = 𝐴)
9392iffalsed 4495 . . . . . . 7 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → if((𝑋 + 𝑡) = 𝐴, 𝑅, if((𝑋 + 𝑡) = 𝐵, 𝐿, (𝐹‘(𝑋 + 𝑡)))) = if((𝑋 + 𝑡) = 𝐵, 𝐿, (𝐹‘(𝑋 + 𝑡))))
9487, 88readdcld 11179 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑋 + 𝑡) ∈ ℝ)
9585simp3d 1144 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝑡 < (𝐵𝑋))
962adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝐵 ∈ ℝ)
9787, 88, 96ltaddsub2d 11755 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → ((𝑋 + 𝑡) < 𝐵𝑡 < (𝐵𝑋)))
9895, 97mpbird 257 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑋 + 𝑡) < 𝐵)
9994, 98ltned 11286 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑋 + 𝑡) ≠ 𝐵)
10099neneqd 2930 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → ¬ (𝑋 + 𝑡) = 𝐵)
101100iffalsed 4495 . . . . . . 7 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → if((𝑋 + 𝑡) = 𝐵, 𝐿, (𝐹‘(𝑋 + 𝑡))) = (𝐹‘(𝑋 + 𝑡)))
10293, 101eqtrd 2764 . . . . . 6 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → if((𝑋 + 𝑡) = 𝐴, 𝑅, if((𝑋 + 𝑡) = 𝐵, 𝐿, (𝐹‘(𝑋 + 𝑡)))) = (𝐹‘(𝑋 + 𝑡)))
10374, 102sylan9eqr 2786 . . . . 5 (((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) ∧ 𝑥 = (𝑋 + 𝑡)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = (𝐹‘(𝑋 + 𝑡)))
10475, 94, 90ltled 11298 . . . . . 6 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝐴 ≤ (𝑋 + 𝑡))
10594, 96, 98ltled 11298 . . . . . 6 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑋 + 𝑡) ≤ 𝐵)
10675, 96, 94, 104, 105eliccd 45475 . . . . 5 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑋 + 𝑡) ∈ (𝐴[,]𝐵))
107 fourierdlem82.5 . . . . . . . 8 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
108107ffund 6674 . . . . . . 7 (𝜑 → Fun 𝐹)
109108adantr 480 . . . . . 6 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → Fun 𝐹)
110107fdmd 6680 . . . . . . . . 9 (𝜑 → dom 𝐹 = (𝐴[,]𝐵))
111110eqcomd 2735 . . . . . . . 8 (𝜑 → (𝐴[,]𝐵) = dom 𝐹)
112111adantr 480 . . . . . . 7 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝐴[,]𝐵) = dom 𝐹)
113106, 112eleqtrd 2830 . . . . . 6 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑋 + 𝑡) ∈ dom 𝐹)
114 fvelrn 7030 . . . . . 6 ((Fun 𝐹 ∧ (𝑋 + 𝑡) ∈ dom 𝐹) → (𝐹‘(𝑋 + 𝑡)) ∈ ran 𝐹)
115109, 113, 114syl2anc 584 . . . . 5 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝐹‘(𝑋 + 𝑡)) ∈ ran 𝐹)
11669, 103, 106, 115fvmptd 6957 . . . 4 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝐺‘(𝑋 + 𝑡)) = (𝐹‘(𝑋 + 𝑡)))
117116itgeq2dv 25659 . . 3 (𝜑 → ∫((𝐴𝑋)(,)(𝐵𝑋))(𝐺‘(𝑋 + 𝑡)) d𝑡 = ∫((𝐴𝑋)(,)(𝐵𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡)
118107frnd 6678 . . . . . 6 (𝜑 → ran 𝐹 ⊆ ℂ)
119118adantr 480 . . . . 5 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → ran 𝐹 ⊆ ℂ)
120108adantr 480 . . . . . 6 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → Fun 𝐹)
1211adantr 480 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝐴 ∈ ℝ)
1222adantr 480 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝐵 ∈ ℝ)
1233adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑋 ∈ ℝ)
12477adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐴𝑋) ∈ ℝ)
12580adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐵𝑋) ∈ ℝ)
126 simpr 484 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋)))
127 eliccre 45476 . . . . . . . . . 10 (((𝐴𝑋) ∈ ℝ ∧ (𝐵𝑋) ∈ ℝ ∧ 𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑡 ∈ ℝ)
128124, 125, 126, 127syl3anc 1373 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑡 ∈ ℝ)
129123, 128readdcld 11179 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑋 + 𝑡) ∈ ℝ)
130 elicc2 13348 . . . . . . . . . . . 12 (((𝐴𝑋) ∈ ℝ ∧ (𝐵𝑋) ∈ ℝ) → (𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↔ (𝑡 ∈ ℝ ∧ (𝐴𝑋) ≤ 𝑡𝑡 ≤ (𝐵𝑋))))
131124, 125, 130syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↔ (𝑡 ∈ ℝ ∧ (𝐴𝑋) ≤ 𝑡𝑡 ≤ (𝐵𝑋))))
132126, 131mpbid 232 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑡 ∈ ℝ ∧ (𝐴𝑋) ≤ 𝑡𝑡 ≤ (𝐵𝑋)))
133132simp2d 1143 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐴𝑋) ≤ 𝑡)
134121, 123, 128lesubadd2d 11753 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → ((𝐴𝑋) ≤ 𝑡𝐴 ≤ (𝑋 + 𝑡)))
135133, 134mpbid 232 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝐴 ≤ (𝑋 + 𝑡))
136132simp3d 1144 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑡 ≤ (𝐵𝑋))
137123, 128, 122leaddsub2d 11756 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → ((𝑋 + 𝑡) ≤ 𝐵𝑡 ≤ (𝐵𝑋)))
138136, 137mpbird 257 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑋 + 𝑡) ≤ 𝐵)
139121, 122, 129, 135, 138eliccd 45475 . . . . . . 7 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑋 + 𝑡) ∈ (𝐴[,]𝐵))
140111adantr 480 . . . . . . 7 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐴[,]𝐵) = dom 𝐹)
141139, 140eleqtrd 2830 . . . . . 6 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑋 + 𝑡) ∈ dom 𝐹)
142120, 141, 114syl2anc 584 . . . . 5 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐹‘(𝑋 + 𝑡)) ∈ ran 𝐹)
143119, 142sseldd 3944 . . . 4 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐹‘(𝑋 + 𝑡)) ∈ ℂ)
14477, 80, 143itgioo 25693 . . 3 (𝜑 → ∫((𝐴𝑋)(,)(𝐵𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡 = ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡)
1457, 117, 1443eqtrrd 2769 . 2 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡 = ⨜[(𝐴𝑋) → (𝐵𝑋)](𝐺‘(𝑋 + 𝑡)) d𝑡)
146 nfv 1914 . . . 4 𝑥𝜑
147 fourierdlem82.6 . . . 4 (𝜑 → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
148 fourierdlem82.7 . . . . 5 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
1491, 2, 4, 107limcicciooub 45608 . . . . 5 (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵) = (𝐹 lim 𝐵))
150148, 149eleqtrrd 2831 . . . 4 (𝜑𝐿 ∈ ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵))
151 fourierdlem82.8 . . . . 5 (𝜑𝑅 ∈ (𝐹 lim 𝐴))
1521, 2, 4, 107limciccioolb 45592 . . . . 5 (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴) = (𝐹 lim 𝐴))
153151, 152eleqtrrd 2831 . . . 4 (𝜑𝑅 ∈ ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴))
154146, 8, 1, 2, 147, 150, 153cncfiooicc 45865 . . 3 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
1551, 2, 5, 3, 154itgsbtaddcnst 45953 . 2 (𝜑 → ⨜[(𝐴𝑋) → (𝐵𝑋)](𝐺‘(𝑋 + 𝑡)) d𝑡 = ⨜[𝐴𝐵](𝐺𝑠) d𝑠)
1565ditgpos 25733 . . 3 (𝜑 → ⨜[𝐴𝐵](𝐺𝑠) d𝑠 = ∫(𝐴(,)𝐵)(𝐺𝑠) d𝑠)
157 fveq2 6840 . . . . 5 (𝑠 = 𝑡 → (𝐺𝑠) = (𝐺𝑡))
158157cbvitgv 25654 . . . 4 ∫(𝐴(,)𝐵)(𝐺𝑠) d𝑠 = ∫(𝐴(,)𝐵)(𝐺𝑡) d𝑡
1598a1i 11 . . . . . 6 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))))
1601ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝐴 ∈ ℝ)
161 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑡 ∈ (𝐴(,)𝐵))
16230ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝐴 ∈ ℝ*)
16332ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝐵 ∈ ℝ*)
164 elioo2 13323 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑡 ∈ (𝐴(,)𝐵) ↔ (𝑡 ∈ ℝ ∧ 𝐴 < 𝑡𝑡 < 𝐵)))
165162, 163, 164syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → (𝑡 ∈ (𝐴(,)𝐵) ↔ (𝑡 ∈ ℝ ∧ 𝐴 < 𝑡𝑡 < 𝐵)))
166161, 165mpbid 232 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → (𝑡 ∈ ℝ ∧ 𝐴 < 𝑡𝑡 < 𝐵))
167166simp2d 1143 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝐴 < 𝑡)
168 simpr 484 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑥 = 𝑡)
169167, 168breqtrrd 5130 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝐴 < 𝑥)
170160, 169gtned 11285 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑥𝐴)
171170neneqd 2930 . . . . . . . 8 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → ¬ 𝑥 = 𝐴)
172171iffalsed 4495 . . . . . . 7 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))
173166simp1d 1142 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑡 ∈ ℝ)
174168, 173eqeltrd 2828 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑥 ∈ ℝ)
175166simp3d 1144 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑡 < 𝐵)
176168, 175eqbrtrd 5124 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑥 < 𝐵)
177174, 176ltned 11286 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑥𝐵)
178177neneqd 2930 . . . . . . . 8 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → ¬ 𝑥 = 𝐵)
179178iffalsed 4495 . . . . . . 7 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)) = ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))
180168, 161eqeltrd 2828 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑥 ∈ (𝐴(,)𝐵))
181180, 61syl 17 . . . . . . . 8 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐹𝑥))
182 fveq2 6840 . . . . . . . . 9 (𝑥 = 𝑡 → (𝐹𝑥) = (𝐹𝑡))
183182adantl 481 . . . . . . . 8 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → (𝐹𝑥) = (𝐹𝑡))
184181, 183eqtrd 2764 . . . . . . 7 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐹𝑡))
185172, 179, 1843eqtrd 2768 . . . . . 6 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = (𝐹𝑡))
186 ioossicc 13370 . . . . . . 7 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
187 simpr 484 . . . . . . 7 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ (𝐴(,)𝐵))
188186, 187sselid 3941 . . . . . 6 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ (𝐴[,]𝐵))
189108adantr 480 . . . . . . 7 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → Fun 𝐹)
190111adantr 480 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐴[,]𝐵) = dom 𝐹)
191188, 190eleqtrd 2830 . . . . . . 7 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ dom 𝐹)
192 fvelrn 7030 . . . . . . 7 ((Fun 𝐹𝑡 ∈ dom 𝐹) → (𝐹𝑡) ∈ ran 𝐹)
193189, 191, 192syl2anc 584 . . . . . 6 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐹𝑡) ∈ ran 𝐹)
194159, 185, 188, 193fvmptd 6957 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐺𝑡) = (𝐹𝑡))
195194itgeq2dv 25659 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)(𝐺𝑡) d𝑡 = ∫(𝐴(,)𝐵)(𝐹𝑡) d𝑡)
196158, 195eqtrid 2776 . . 3 (𝜑 → ∫(𝐴(,)𝐵)(𝐺𝑠) d𝑠 = ∫(𝐴(,)𝐵)(𝐹𝑡) d𝑡)
197107ffvelcdmda 7038 . . . 4 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝐹𝑡) ∈ ℂ)
1981, 2, 197itgioo 25693 . . 3 (𝜑 → ∫(𝐴(,)𝐵)(𝐹𝑡) d𝑡 = ∫(𝐴[,]𝐵)(𝐹𝑡) d𝑡)
199156, 196, 1983eqtrd 2768 . 2 (𝜑 → ⨜[𝐴𝐵](𝐺𝑠) d𝑠 = ∫(𝐴[,]𝐵)(𝐹𝑡) d𝑡)
200145, 155, 1993eqtrrd 2769 1 (𝜑 → ∫(𝐴[,]𝐵)(𝐹𝑡) d𝑡 = ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wss 3911  ifcif 4484   class class class wbr 5102  cmpt 5183  dom cdm 5631  ran crn 5632  cres 5633  Fun wfun 6493  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  cr 11043   + caddc 11047  *cxr 11183   < clt 11184  cle 11185  cmin 11381  (,)cioo 13282  [,]cicc 13285  cnccncf 24745  citg 25495  cdit 25723   lim climc 25739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cc 10364  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-symdif 4212  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-cmp 23250  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-ovol 25341  df-vol 25342  df-mbf 25496  df-itg1 25497  df-itg2 25498  df-ibl 25499  df-itg 25500  df-0p 25547  df-ditg 25724  df-limc 25743  df-dv 25744
This theorem is referenced by:  fourierdlem93  46170
  Copyright terms: Public domain W3C validator