Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem82 Structured version   Visualization version   GIF version

Theorem fourierdlem82 41346
Description: Integral by substitution, adding a constant to the function's argument, for a function on an open interval with finite limits ad boundary points. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem82.1 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))))
fourierdlem82.2 (𝜑𝐴 ∈ ℝ)
fourierdlem82.3 (𝜑𝐵 ∈ ℝ)
fourierdlem82.4 (𝜑𝐴 < 𝐵)
fourierdlem82.5 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
fourierdlem82.6 (𝜑 → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
fourierdlem82.7 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
fourierdlem82.8 (𝜑𝑅 ∈ (𝐹 lim 𝐴))
fourierdlem82.9 (𝜑𝑋 ∈ ℝ)
Assertion
Ref Expression
fourierdlem82 (𝜑 → ∫(𝐴[,]𝐵)(𝐹𝑡) d𝑡 = ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡)
Distinct variable groups:   𝑡,𝐴,𝑥   𝑡,𝐵,𝑥   𝑥,𝐹   𝑡,𝐺   𝑥,𝐿   𝑥,𝑅   𝑡,𝑋,𝑥   𝜑,𝑡,𝑥
Allowed substitution hints:   𝑅(𝑡)   𝐹(𝑡)   𝐺(𝑥)   𝐿(𝑡)

Proof of Theorem fourierdlem82
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem82.2 . . . . 5 (𝜑𝐴 ∈ ℝ)
2 fourierdlem82.3 . . . . 5 (𝜑𝐵 ∈ ℝ)
3 fourierdlem82.9 . . . . 5 (𝜑𝑋 ∈ ℝ)
4 fourierdlem82.4 . . . . . 6 (𝜑𝐴 < 𝐵)
51, 2, 4ltled 10526 . . . . 5 (𝜑𝐴𝐵)
61, 2, 3, 5lesub1dd 10994 . . . 4 (𝜑 → (𝐴𝑋) ≤ (𝐵𝑋))
76ditgpos 24068 . . 3 (𝜑 → ⨜[(𝐴𝑋) → (𝐵𝑋)](𝐺‘(𝑋 + 𝑡)) d𝑡 = ∫((𝐴𝑋)(,)(𝐵𝑋))(𝐺‘(𝑋 + 𝑡)) d𝑡)
8 fourierdlem82.1 . . . . . . 7 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))))
9 iftrue 4313 . . . . . . . . . . . 12 (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = 𝑅)
109adantl 475 . . . . . . . . . . 11 ((𝜑𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = 𝑅)
11 iftrue 4313 . . . . . . . . . . . 12 (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝑅)
1211adantl 475 . . . . . . . . . . 11 ((𝜑𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝑅)
1310, 12eqtr4d 2817 . . . . . . . . . 10 ((𝜑𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
1413adantlr 705 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
15 iffalse 4316 . . . . . . . . . . . . 13 𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))
16 iftrue 4313 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)) = 𝐿)
1715, 16sylan9eq 2834 . . . . . . . . . . . 12 ((¬ 𝑥 = 𝐴𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = 𝐿)
1817adantll 704 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = 𝐿)
19 iffalse 4316 . . . . . . . . . . . . 13 𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
20 iftrue 4313 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = 𝐿)
2119, 20sylan9eq 2834 . . . . . . . . . . . 12 ((¬ 𝑥 = 𝐴𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝐿)
2221adantll 704 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝐿)
2318, 22eqtr4d 2817 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
24 iffalse 4316 . . . . . . . . . . . 12 𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)) = ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))
2524adantl 475 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)) = ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))
2615ad2antlr 717 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))
27 iffalse 4316 . . . . . . . . . . . . 13 𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = (𝐹𝑥))
2827adantl 475 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = (𝐹𝑥))
2919ad2antlr 717 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
301rexrd 10428 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ*)
3130ad3antrrr 720 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴 ∈ ℝ*)
322rexrd 10428 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ*)
3332ad3antrrr 720 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ*)
341adantr 474 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
352adantr 474 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
36 simpr 479 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
37 eliccre 40654 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
3834, 35, 36, 37syl3anc 1439 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
3938ad2antrr 716 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ℝ)
401ad2antrr 716 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 ∈ ℝ)
4138adantr 474 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ ℝ)
42 elicc2 12555 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4334, 35, 42syl2anc 579 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4436, 43mpbid 224 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
4544simp2d 1134 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝑥)
4645adantr 474 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴𝑥)
47 neqne 2977 . . . . . . . . . . . . . . . . 17 𝑥 = 𝐴𝑥𝐴)
4847adantl 475 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝑥𝐴)
4940, 41, 46, 48leneltd 10532 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 < 𝑥)
5049adantr 474 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴 < 𝑥)
5138adantr 474 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ℝ)
522ad2antrr 716 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ)
5344simp3d 1135 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
5453adantr 474 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥𝐵)
55 nesym 3025 . . . . . . . . . . . . . . . . . 18 (𝐵𝑥 ↔ ¬ 𝑥 = 𝐵)
5655biimpri 220 . . . . . . . . . . . . . . . . 17 𝑥 = 𝐵𝐵𝑥)
5756adantl 475 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝐵𝑥)
5851, 52, 54, 57leneltd 10532 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐵)
5958adantlr 705 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐵)
6031, 33, 39, 50, 59eliood 40646 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴(,)𝐵))
61 fvres 6467 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴(,)𝐵) → ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐹𝑥))
6260, 61syl 17 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐹𝑥))
6328, 29, 623eqtr4d 2824 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))
6425, 26, 633eqtr4d 2824 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
6523, 64pm2.61dan 803 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
6614, 65pm2.61dan 803 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
6766mpteq2dva 4981 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))))
688, 67syl5eq 2826 . . . . . 6 (𝜑𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))))
6968adantr 474 . . . . 5 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))))
70 eqeq1 2782 . . . . . . 7 (𝑥 = (𝑋 + 𝑡) → (𝑥 = 𝐴 ↔ (𝑋 + 𝑡) = 𝐴))
71 eqeq1 2782 . . . . . . . 8 (𝑥 = (𝑋 + 𝑡) → (𝑥 = 𝐵 ↔ (𝑋 + 𝑡) = 𝐵))
72 fveq2 6448 . . . . . . . 8 (𝑥 = (𝑋 + 𝑡) → (𝐹𝑥) = (𝐹‘(𝑋 + 𝑡)))
7371, 72ifbieq2d 4332 . . . . . . 7 (𝑥 = (𝑋 + 𝑡) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = if((𝑋 + 𝑡) = 𝐵, 𝐿, (𝐹‘(𝑋 + 𝑡))))
7470, 73ifbieq2d 4332 . . . . . 6 (𝑥 = (𝑋 + 𝑡) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if((𝑋 + 𝑡) = 𝐴, 𝑅, if((𝑋 + 𝑡) = 𝐵, 𝐿, (𝐹‘(𝑋 + 𝑡)))))
751adantr 474 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝐴 ∈ ℝ)
76 simpr 479 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋)))
771, 3resubcld 10806 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴𝑋) ∈ ℝ)
7877rexrd 10428 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝑋) ∈ ℝ*)
7978adantr 474 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝐴𝑋) ∈ ℝ*)
802, 3resubcld 10806 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵𝑋) ∈ ℝ)
8180rexrd 10428 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵𝑋) ∈ ℝ*)
8281adantr 474 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝐵𝑋) ∈ ℝ*)
83 elioo2 12533 . . . . . . . . . . . . . 14 (((𝐴𝑋) ∈ ℝ* ∧ (𝐵𝑋) ∈ ℝ*) → (𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋)) ↔ (𝑡 ∈ ℝ ∧ (𝐴𝑋) < 𝑡𝑡 < (𝐵𝑋))))
8479, 82, 83syl2anc 579 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋)) ↔ (𝑡 ∈ ℝ ∧ (𝐴𝑋) < 𝑡𝑡 < (𝐵𝑋))))
8576, 84mpbid 224 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑡 ∈ ℝ ∧ (𝐴𝑋) < 𝑡𝑡 < (𝐵𝑋)))
8685simp2d 1134 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝐴𝑋) < 𝑡)
873adantr 474 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝑋 ∈ ℝ)
8885simp1d 1133 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝑡 ∈ ℝ)
8975, 87, 88ltsubadd2d 10976 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → ((𝐴𝑋) < 𝑡𝐴 < (𝑋 + 𝑡)))
9086, 89mpbid 224 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝐴 < (𝑋 + 𝑡))
9175, 90gtned 10513 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑋 + 𝑡) ≠ 𝐴)
9291neneqd 2974 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → ¬ (𝑋 + 𝑡) = 𝐴)
9392iffalsed 4318 . . . . . . 7 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → if((𝑋 + 𝑡) = 𝐴, 𝑅, if((𝑋 + 𝑡) = 𝐵, 𝐿, (𝐹‘(𝑋 + 𝑡)))) = if((𝑋 + 𝑡) = 𝐵, 𝐿, (𝐹‘(𝑋 + 𝑡))))
9487, 88readdcld 10408 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑋 + 𝑡) ∈ ℝ)
9585simp3d 1135 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝑡 < (𝐵𝑋))
962adantr 474 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝐵 ∈ ℝ)
9787, 88, 96ltaddsub2d 10979 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → ((𝑋 + 𝑡) < 𝐵𝑡 < (𝐵𝑋)))
9895, 97mpbird 249 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑋 + 𝑡) < 𝐵)
9994, 98ltned 10514 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑋 + 𝑡) ≠ 𝐵)
10099neneqd 2974 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → ¬ (𝑋 + 𝑡) = 𝐵)
101100iffalsed 4318 . . . . . . 7 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → if((𝑋 + 𝑡) = 𝐵, 𝐿, (𝐹‘(𝑋 + 𝑡))) = (𝐹‘(𝑋 + 𝑡)))
10293, 101eqtrd 2814 . . . . . 6 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → if((𝑋 + 𝑡) = 𝐴, 𝑅, if((𝑋 + 𝑡) = 𝐵, 𝐿, (𝐹‘(𝑋 + 𝑡)))) = (𝐹‘(𝑋 + 𝑡)))
10374, 102sylan9eqr 2836 . . . . 5 (((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) ∧ 𝑥 = (𝑋 + 𝑡)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = (𝐹‘(𝑋 + 𝑡)))
10475, 94, 90ltled 10526 . . . . . 6 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝐴 ≤ (𝑋 + 𝑡))
10594, 96, 98ltled 10526 . . . . . 6 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑋 + 𝑡) ≤ 𝐵)
10675, 96, 94, 104, 105eliccd 40652 . . . . 5 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑋 + 𝑡) ∈ (𝐴[,]𝐵))
107 fourierdlem82.5 . . . . . . . 8 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
108107ffund 6297 . . . . . . 7 (𝜑 → Fun 𝐹)
109108adantr 474 . . . . . 6 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → Fun 𝐹)
110107fdmd 6302 . . . . . . . . 9 (𝜑 → dom 𝐹 = (𝐴[,]𝐵))
111110eqcomd 2784 . . . . . . . 8 (𝜑 → (𝐴[,]𝐵) = dom 𝐹)
112111adantr 474 . . . . . . 7 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝐴[,]𝐵) = dom 𝐹)
113106, 112eleqtrd 2861 . . . . . 6 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑋 + 𝑡) ∈ dom 𝐹)
114 fvelrn 6618 . . . . . 6 ((Fun 𝐹 ∧ (𝑋 + 𝑡) ∈ dom 𝐹) → (𝐹‘(𝑋 + 𝑡)) ∈ ran 𝐹)
115109, 113, 114syl2anc 579 . . . . 5 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝐹‘(𝑋 + 𝑡)) ∈ ran 𝐹)
11669, 103, 106, 115fvmptd 6550 . . . 4 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝐺‘(𝑋 + 𝑡)) = (𝐹‘(𝑋 + 𝑡)))
117116itgeq2dv 23996 . . 3 (𝜑 → ∫((𝐴𝑋)(,)(𝐵𝑋))(𝐺‘(𝑋 + 𝑡)) d𝑡 = ∫((𝐴𝑋)(,)(𝐵𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡)
118107frnd 6300 . . . . . 6 (𝜑 → ran 𝐹 ⊆ ℂ)
119118adantr 474 . . . . 5 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → ran 𝐹 ⊆ ℂ)
120108adantr 474 . . . . . 6 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → Fun 𝐹)
1211adantr 474 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝐴 ∈ ℝ)
1222adantr 474 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝐵 ∈ ℝ)
1233adantr 474 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑋 ∈ ℝ)
12477adantr 474 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐴𝑋) ∈ ℝ)
12580adantr 474 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐵𝑋) ∈ ℝ)
126 simpr 479 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋)))
127 eliccre 40654 . . . . . . . . . 10 (((𝐴𝑋) ∈ ℝ ∧ (𝐵𝑋) ∈ ℝ ∧ 𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑡 ∈ ℝ)
128124, 125, 126, 127syl3anc 1439 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑡 ∈ ℝ)
129123, 128readdcld 10408 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑋 + 𝑡) ∈ ℝ)
130 elicc2 12555 . . . . . . . . . . . 12 (((𝐴𝑋) ∈ ℝ ∧ (𝐵𝑋) ∈ ℝ) → (𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↔ (𝑡 ∈ ℝ ∧ (𝐴𝑋) ≤ 𝑡𝑡 ≤ (𝐵𝑋))))
131124, 125, 130syl2anc 579 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↔ (𝑡 ∈ ℝ ∧ (𝐴𝑋) ≤ 𝑡𝑡 ≤ (𝐵𝑋))))
132126, 131mpbid 224 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑡 ∈ ℝ ∧ (𝐴𝑋) ≤ 𝑡𝑡 ≤ (𝐵𝑋)))
133132simp2d 1134 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐴𝑋) ≤ 𝑡)
134121, 123, 128lesubadd2d 10977 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → ((𝐴𝑋) ≤ 𝑡𝐴 ≤ (𝑋 + 𝑡)))
135133, 134mpbid 224 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝐴 ≤ (𝑋 + 𝑡))
136132simp3d 1135 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑡 ≤ (𝐵𝑋))
137123, 128, 122leaddsub2d 10980 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → ((𝑋 + 𝑡) ≤ 𝐵𝑡 ≤ (𝐵𝑋)))
138136, 137mpbird 249 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑋 + 𝑡) ≤ 𝐵)
139121, 122, 129, 135, 138eliccd 40652 . . . . . . 7 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑋 + 𝑡) ∈ (𝐴[,]𝐵))
140111adantr 474 . . . . . . 7 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐴[,]𝐵) = dom 𝐹)
141139, 140eleqtrd 2861 . . . . . 6 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑋 + 𝑡) ∈ dom 𝐹)
142120, 141, 114syl2anc 579 . . . . 5 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐹‘(𝑋 + 𝑡)) ∈ ran 𝐹)
143119, 142sseldd 3822 . . . 4 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐹‘(𝑋 + 𝑡)) ∈ ℂ)
14477, 80, 143itgioo 24030 . . 3 (𝜑 → ∫((𝐴𝑋)(,)(𝐵𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡 = ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡)
1457, 117, 1443eqtrrd 2819 . 2 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡 = ⨜[(𝐴𝑋) → (𝐵𝑋)](𝐺‘(𝑋 + 𝑡)) d𝑡)
146 nfv 1957 . . . 4 𝑥𝜑
147 fourierdlem82.6 . . . 4 (𝜑 → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
148 fourierdlem82.7 . . . . 5 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
1491, 2, 4, 107limcicciooub 40791 . . . . 5 (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵) = (𝐹 lim 𝐵))
150148, 149eleqtrrd 2862 . . . 4 (𝜑𝐿 ∈ ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵))
151 fourierdlem82.8 . . . . 5 (𝜑𝑅 ∈ (𝐹 lim 𝐴))
1521, 2, 4, 107limciccioolb 40775 . . . . 5 (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴) = (𝐹 lim 𝐴))
153151, 152eleqtrrd 2862 . . . 4 (𝜑𝑅 ∈ ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴))
154146, 8, 1, 2, 147, 150, 153cncfiooicc 41049 . . 3 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
1551, 2, 5, 3, 154itgsbtaddcnst 41139 . 2 (𝜑 → ⨜[(𝐴𝑋) → (𝐵𝑋)](𝐺‘(𝑋 + 𝑡)) d𝑡 = ⨜[𝐴𝐵](𝐺𝑠) d𝑠)
1565ditgpos 24068 . . 3 (𝜑 → ⨜[𝐴𝐵](𝐺𝑠) d𝑠 = ∫(𝐴(,)𝐵)(𝐺𝑠) d𝑠)
157 fveq2 6448 . . . . 5 (𝑠 = 𝑡 → (𝐺𝑠) = (𝐺𝑡))
158157cbvitgv 23991 . . . 4 ∫(𝐴(,)𝐵)(𝐺𝑠) d𝑠 = ∫(𝐴(,)𝐵)(𝐺𝑡) d𝑡
1598a1i 11 . . . . . 6 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))))
1601ad2antrr 716 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝐴 ∈ ℝ)
161 simplr 759 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑡 ∈ (𝐴(,)𝐵))
16230ad2antrr 716 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝐴 ∈ ℝ*)
16332ad2antrr 716 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝐵 ∈ ℝ*)
164 elioo2 12533 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑡 ∈ (𝐴(,)𝐵) ↔ (𝑡 ∈ ℝ ∧ 𝐴 < 𝑡𝑡 < 𝐵)))
165162, 163, 164syl2anc 579 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → (𝑡 ∈ (𝐴(,)𝐵) ↔ (𝑡 ∈ ℝ ∧ 𝐴 < 𝑡𝑡 < 𝐵)))
166161, 165mpbid 224 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → (𝑡 ∈ ℝ ∧ 𝐴 < 𝑡𝑡 < 𝐵))
167166simp2d 1134 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝐴 < 𝑡)
168 simpr 479 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑥 = 𝑡)
169167, 168breqtrrd 4916 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝐴 < 𝑥)
170160, 169gtned 10513 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑥𝐴)
171170neneqd 2974 . . . . . . . 8 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → ¬ 𝑥 = 𝐴)
172171iffalsed 4318 . . . . . . 7 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))
173166simp1d 1133 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑡 ∈ ℝ)
174168, 173eqeltrd 2859 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑥 ∈ ℝ)
175166simp3d 1135 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑡 < 𝐵)
176168, 175eqbrtrd 4910 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑥 < 𝐵)
177174, 176ltned 10514 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑥𝐵)
178177neneqd 2974 . . . . . . . 8 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → ¬ 𝑥 = 𝐵)
179178iffalsed 4318 . . . . . . 7 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)) = ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))
180168, 161eqeltrd 2859 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑥 ∈ (𝐴(,)𝐵))
181180, 61syl 17 . . . . . . . 8 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐹𝑥))
182 fveq2 6448 . . . . . . . . 9 (𝑥 = 𝑡 → (𝐹𝑥) = (𝐹𝑡))
183182adantl 475 . . . . . . . 8 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → (𝐹𝑥) = (𝐹𝑡))
184181, 183eqtrd 2814 . . . . . . 7 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐹𝑡))
185172, 179, 1843eqtrd 2818 . . . . . 6 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = (𝐹𝑡))
186 ioossicc 12576 . . . . . . 7 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
187 simpr 479 . . . . . . 7 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ (𝐴(,)𝐵))
188186, 187sseldi 3819 . . . . . 6 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ (𝐴[,]𝐵))
189108adantr 474 . . . . . . 7 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → Fun 𝐹)
190111adantr 474 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐴[,]𝐵) = dom 𝐹)
191188, 190eleqtrd 2861 . . . . . . 7 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ dom 𝐹)
192 fvelrn 6618 . . . . . . 7 ((Fun 𝐹𝑡 ∈ dom 𝐹) → (𝐹𝑡) ∈ ran 𝐹)
193189, 191, 192syl2anc 579 . . . . . 6 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐹𝑡) ∈ ran 𝐹)
194159, 185, 188, 193fvmptd 6550 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐺𝑡) = (𝐹𝑡))
195194itgeq2dv 23996 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)(𝐺𝑡) d𝑡 = ∫(𝐴(,)𝐵)(𝐹𝑡) d𝑡)
196158, 195syl5eq 2826 . . 3 (𝜑 → ∫(𝐴(,)𝐵)(𝐺𝑠) d𝑠 = ∫(𝐴(,)𝐵)(𝐹𝑡) d𝑡)
197107ffvelrnda 6625 . . . 4 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝐹𝑡) ∈ ℂ)
1981, 2, 197itgioo 24030 . . 3 (𝜑 → ∫(𝐴(,)𝐵)(𝐹𝑡) d𝑡 = ∫(𝐴[,]𝐵)(𝐹𝑡) d𝑡)
199156, 196, 1983eqtrd 2818 . 2 (𝜑 → ⨜[𝐴𝐵](𝐺𝑠) d𝑠 = ∫(𝐴[,]𝐵)(𝐹𝑡) d𝑡)
200145, 155, 1993eqtrrd 2819 1 (𝜑 → ∫(𝐴[,]𝐵)(𝐹𝑡) d𝑡 = ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wne 2969  wss 3792  ifcif 4307   class class class wbr 4888  cmpt 4967  dom cdm 5357  ran crn 5358  cres 5359  Fun wfun 6131  wf 6133  cfv 6137  (class class class)co 6924  cc 10272  cr 10273   + caddc 10277  *cxr 10412   < clt 10413  cle 10414  cmin 10608  (,)cioo 12492  [,]cicc 12495  cnccncf 23098  citg 23833  cdit 24058   lim climc 24074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837  ax-cc 9594  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352  ax-addf 10353  ax-mulf 10354
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-symdif 4067  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-iin 4758  df-disj 4857  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-ofr 7177  df-om 7346  df-1st 7447  df-2nd 7448  df-supp 7579  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-2o 7846  df-oadd 7849  df-omul 7850  df-er 8028  df-map 8144  df-pm 8145  df-ixp 8197  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-fsupp 8566  df-fi 8607  df-sup 8638  df-inf 8639  df-oi 8706  df-card 9100  df-acn 9103  df-cda 9327  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11036  df-nn 11380  df-2 11443  df-3 11444  df-4 11445  df-5 11446  df-6 11447  df-7 11448  df-8 11449  df-9 11450  df-n0 11648  df-z 11734  df-dec 11851  df-uz 11998  df-q 12101  df-rp 12143  df-xneg 12262  df-xadd 12263  df-xmul 12264  df-ioo 12496  df-ioc 12497  df-ico 12498  df-icc 12499  df-fz 12649  df-fzo 12790  df-fl 12917  df-mod 12993  df-seq 13125  df-exp 13184  df-hash 13442  df-cj 14252  df-re 14253  df-im 14254  df-sqrt 14388  df-abs 14389  df-limsup 14619  df-clim 14636  df-rlim 14637  df-sum 14834  df-struct 16268  df-ndx 16269  df-slot 16270  df-base 16272  df-sets 16273  df-ress 16274  df-plusg 16362  df-mulr 16363  df-starv 16364  df-sca 16365  df-vsca 16366  df-ip 16367  df-tset 16368  df-ple 16369  df-ds 16371  df-unif 16372  df-hom 16373  df-cco 16374  df-rest 16480  df-topn 16481  df-0g 16499  df-gsum 16500  df-topgen 16501  df-pt 16502  df-prds 16505  df-xrs 16559  df-qtop 16564  df-imas 16565  df-xps 16567  df-mre 16643  df-mrc 16644  df-acs 16646  df-mgm 17639  df-sgrp 17681  df-mnd 17692  df-submnd 17733  df-mulg 17939  df-cntz 18144  df-cmn 18592  df-psmet 20145  df-xmet 20146  df-met 20147  df-bl 20148  df-mopn 20149  df-fbas 20150  df-fg 20151  df-cnfld 20154  df-top 21117  df-topon 21134  df-topsp 21156  df-bases 21169  df-cld 21242  df-ntr 21243  df-cls 21244  df-nei 21321  df-lp 21359  df-perf 21360  df-cn 21450  df-cnp 21451  df-haus 21538  df-cmp 21610  df-tx 21785  df-hmeo 21978  df-fil 22069  df-fm 22161  df-flim 22162  df-flf 22163  df-xms 22544  df-ms 22545  df-tms 22546  df-cncf 23100  df-ovol 23679  df-vol 23680  df-mbf 23834  df-itg1 23835  df-itg2 23836  df-ibl 23837  df-itg 23838  df-0p 23885  df-ditg 24059  df-limc 24078  df-dv 24079
This theorem is referenced by:  fourierdlem93  41357
  Copyright terms: Public domain W3C validator