Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem82 Structured version   Visualization version   GIF version

Theorem fourierdlem82 46144
Description: Integral by substitution, adding a constant to the function's argument, for a function on an open interval with finite limits ad boundary points. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem82.1 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))))
fourierdlem82.2 (𝜑𝐴 ∈ ℝ)
fourierdlem82.3 (𝜑𝐵 ∈ ℝ)
fourierdlem82.4 (𝜑𝐴 < 𝐵)
fourierdlem82.5 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
fourierdlem82.6 (𝜑 → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
fourierdlem82.7 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
fourierdlem82.8 (𝜑𝑅 ∈ (𝐹 lim 𝐴))
fourierdlem82.9 (𝜑𝑋 ∈ ℝ)
Assertion
Ref Expression
fourierdlem82 (𝜑 → ∫(𝐴[,]𝐵)(𝐹𝑡) d𝑡 = ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡)
Distinct variable groups:   𝑡,𝐴,𝑥   𝑡,𝐵,𝑥   𝑥,𝐹   𝑡,𝐺   𝑥,𝐿   𝑥,𝑅   𝑡,𝑋,𝑥   𝜑,𝑡,𝑥
Allowed substitution hints:   𝑅(𝑡)   𝐹(𝑡)   𝐺(𝑥)   𝐿(𝑡)

Proof of Theorem fourierdlem82
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem82.2 . . . . 5 (𝜑𝐴 ∈ ℝ)
2 fourierdlem82.3 . . . . 5 (𝜑𝐵 ∈ ℝ)
3 fourierdlem82.9 . . . . 5 (𝜑𝑋 ∈ ℝ)
4 fourierdlem82.4 . . . . . 6 (𝜑𝐴 < 𝐵)
51, 2, 4ltled 11407 . . . . 5 (𝜑𝐴𝐵)
61, 2, 3, 5lesub1dd 11877 . . . 4 (𝜑 → (𝐴𝑋) ≤ (𝐵𝑋))
76ditgpos 25906 . . 3 (𝜑 → ⨜[(𝐴𝑋) → (𝐵𝑋)](𝐺‘(𝑋 + 𝑡)) d𝑡 = ∫((𝐴𝑋)(,)(𝐵𝑋))(𝐺‘(𝑋 + 𝑡)) d𝑡)
8 fourierdlem82.1 . . . . . . 7 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))))
9 iftrue 4537 . . . . . . . . . . . 12 (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = 𝑅)
109adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = 𝑅)
11 iftrue 4537 . . . . . . . . . . . 12 (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝑅)
1211adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝑅)
1310, 12eqtr4d 2778 . . . . . . . . . 10 ((𝜑𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
1413adantlr 715 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
15 iffalse 4540 . . . . . . . . . . . . 13 𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))
16 iftrue 4537 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)) = 𝐿)
1715, 16sylan9eq 2795 . . . . . . . . . . . 12 ((¬ 𝑥 = 𝐴𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = 𝐿)
1817adantll 714 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = 𝐿)
19 iffalse 4540 . . . . . . . . . . . . 13 𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
20 iftrue 4537 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = 𝐿)
2119, 20sylan9eq 2795 . . . . . . . . . . . 12 ((¬ 𝑥 = 𝐴𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝐿)
2221adantll 714 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝐿)
2318, 22eqtr4d 2778 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
24 iffalse 4540 . . . . . . . . . . . 12 𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)) = ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))
2524adantl 481 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)) = ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))
2615ad2antlr 727 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))
27 iffalse 4540 . . . . . . . . . . . . 13 𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = (𝐹𝑥))
2827adantl 481 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = (𝐹𝑥))
2919ad2antlr 727 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
301rexrd 11309 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ*)
3130ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴 ∈ ℝ*)
322rexrd 11309 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ*)
3332ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ*)
341adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
352adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
36 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
37 eliccre 45458 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
3834, 35, 36, 37syl3anc 1370 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
3938ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ℝ)
401ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 ∈ ℝ)
4138adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ ℝ)
42 elicc2 13449 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4334, 35, 42syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4436, 43mpbid 232 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
4544simp2d 1142 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝑥)
4645adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴𝑥)
47 neqne 2946 . . . . . . . . . . . . . . . . 17 𝑥 = 𝐴𝑥𝐴)
4847adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝑥𝐴)
4940, 41, 46, 48leneltd 11413 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 < 𝑥)
5049adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴 < 𝑥)
5138adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ℝ)
522ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ)
5344simp3d 1143 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
5453adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥𝐵)
55 nesym 2995 . . . . . . . . . . . . . . . . . 18 (𝐵𝑥 ↔ ¬ 𝑥 = 𝐵)
5655biimpri 228 . . . . . . . . . . . . . . . . 17 𝑥 = 𝐵𝐵𝑥)
5756adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝐵𝑥)
5851, 52, 54, 57leneltd 11413 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐵)
5958adantlr 715 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐵)
6031, 33, 39, 50, 59eliood 45451 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴(,)𝐵))
61 fvres 6926 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴(,)𝐵) → ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐹𝑥))
6260, 61syl 17 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐹𝑥))
6328, 29, 623eqtr4d 2785 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))
6425, 26, 633eqtr4d 2785 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
6523, 64pm2.61dan 813 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
6614, 65pm2.61dan 813 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
6766mpteq2dva 5248 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))))
688, 67eqtrid 2787 . . . . . 6 (𝜑𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))))
6968adantr 480 . . . . 5 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))))
70 eqeq1 2739 . . . . . . 7 (𝑥 = (𝑋 + 𝑡) → (𝑥 = 𝐴 ↔ (𝑋 + 𝑡) = 𝐴))
71 eqeq1 2739 . . . . . . . 8 (𝑥 = (𝑋 + 𝑡) → (𝑥 = 𝐵 ↔ (𝑋 + 𝑡) = 𝐵))
72 fveq2 6907 . . . . . . . 8 (𝑥 = (𝑋 + 𝑡) → (𝐹𝑥) = (𝐹‘(𝑋 + 𝑡)))
7371, 72ifbieq2d 4557 . . . . . . 7 (𝑥 = (𝑋 + 𝑡) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = if((𝑋 + 𝑡) = 𝐵, 𝐿, (𝐹‘(𝑋 + 𝑡))))
7470, 73ifbieq2d 4557 . . . . . 6 (𝑥 = (𝑋 + 𝑡) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if((𝑋 + 𝑡) = 𝐴, 𝑅, if((𝑋 + 𝑡) = 𝐵, 𝐿, (𝐹‘(𝑋 + 𝑡)))))
751adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝐴 ∈ ℝ)
76 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋)))
771, 3resubcld 11689 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴𝑋) ∈ ℝ)
7877rexrd 11309 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝑋) ∈ ℝ*)
7978adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝐴𝑋) ∈ ℝ*)
802, 3resubcld 11689 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵𝑋) ∈ ℝ)
8180rexrd 11309 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵𝑋) ∈ ℝ*)
8281adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝐵𝑋) ∈ ℝ*)
83 elioo2 13425 . . . . . . . . . . . . . 14 (((𝐴𝑋) ∈ ℝ* ∧ (𝐵𝑋) ∈ ℝ*) → (𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋)) ↔ (𝑡 ∈ ℝ ∧ (𝐴𝑋) < 𝑡𝑡 < (𝐵𝑋))))
8479, 82, 83syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋)) ↔ (𝑡 ∈ ℝ ∧ (𝐴𝑋) < 𝑡𝑡 < (𝐵𝑋))))
8576, 84mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑡 ∈ ℝ ∧ (𝐴𝑋) < 𝑡𝑡 < (𝐵𝑋)))
8685simp2d 1142 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝐴𝑋) < 𝑡)
873adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝑋 ∈ ℝ)
8885simp1d 1141 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝑡 ∈ ℝ)
8975, 87, 88ltsubadd2d 11859 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → ((𝐴𝑋) < 𝑡𝐴 < (𝑋 + 𝑡)))
9086, 89mpbid 232 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝐴 < (𝑋 + 𝑡))
9175, 90gtned 11394 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑋 + 𝑡) ≠ 𝐴)
9291neneqd 2943 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → ¬ (𝑋 + 𝑡) = 𝐴)
9392iffalsed 4542 . . . . . . 7 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → if((𝑋 + 𝑡) = 𝐴, 𝑅, if((𝑋 + 𝑡) = 𝐵, 𝐿, (𝐹‘(𝑋 + 𝑡)))) = if((𝑋 + 𝑡) = 𝐵, 𝐿, (𝐹‘(𝑋 + 𝑡))))
9487, 88readdcld 11288 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑋 + 𝑡) ∈ ℝ)
9585simp3d 1143 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝑡 < (𝐵𝑋))
962adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝐵 ∈ ℝ)
9787, 88, 96ltaddsub2d 11862 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → ((𝑋 + 𝑡) < 𝐵𝑡 < (𝐵𝑋)))
9895, 97mpbird 257 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑋 + 𝑡) < 𝐵)
9994, 98ltned 11395 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑋 + 𝑡) ≠ 𝐵)
10099neneqd 2943 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → ¬ (𝑋 + 𝑡) = 𝐵)
101100iffalsed 4542 . . . . . . 7 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → if((𝑋 + 𝑡) = 𝐵, 𝐿, (𝐹‘(𝑋 + 𝑡))) = (𝐹‘(𝑋 + 𝑡)))
10293, 101eqtrd 2775 . . . . . 6 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → if((𝑋 + 𝑡) = 𝐴, 𝑅, if((𝑋 + 𝑡) = 𝐵, 𝐿, (𝐹‘(𝑋 + 𝑡)))) = (𝐹‘(𝑋 + 𝑡)))
10374, 102sylan9eqr 2797 . . . . 5 (((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) ∧ 𝑥 = (𝑋 + 𝑡)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = (𝐹‘(𝑋 + 𝑡)))
10475, 94, 90ltled 11407 . . . . . 6 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝐴 ≤ (𝑋 + 𝑡))
10594, 96, 98ltled 11407 . . . . . 6 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑋 + 𝑡) ≤ 𝐵)
10675, 96, 94, 104, 105eliccd 45457 . . . . 5 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑋 + 𝑡) ∈ (𝐴[,]𝐵))
107 fourierdlem82.5 . . . . . . . 8 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
108107ffund 6741 . . . . . . 7 (𝜑 → Fun 𝐹)
109108adantr 480 . . . . . 6 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → Fun 𝐹)
110107fdmd 6747 . . . . . . . . 9 (𝜑 → dom 𝐹 = (𝐴[,]𝐵))
111110eqcomd 2741 . . . . . . . 8 (𝜑 → (𝐴[,]𝐵) = dom 𝐹)
112111adantr 480 . . . . . . 7 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝐴[,]𝐵) = dom 𝐹)
113106, 112eleqtrd 2841 . . . . . 6 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑋 + 𝑡) ∈ dom 𝐹)
114 fvelrn 7096 . . . . . 6 ((Fun 𝐹 ∧ (𝑋 + 𝑡) ∈ dom 𝐹) → (𝐹‘(𝑋 + 𝑡)) ∈ ran 𝐹)
115109, 113, 114syl2anc 584 . . . . 5 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝐹‘(𝑋 + 𝑡)) ∈ ran 𝐹)
11669, 103, 106, 115fvmptd 7023 . . . 4 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝐺‘(𝑋 + 𝑡)) = (𝐹‘(𝑋 + 𝑡)))
117116itgeq2dv 25832 . . 3 (𝜑 → ∫((𝐴𝑋)(,)(𝐵𝑋))(𝐺‘(𝑋 + 𝑡)) d𝑡 = ∫((𝐴𝑋)(,)(𝐵𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡)
118107frnd 6745 . . . . . 6 (𝜑 → ran 𝐹 ⊆ ℂ)
119118adantr 480 . . . . 5 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → ran 𝐹 ⊆ ℂ)
120108adantr 480 . . . . . 6 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → Fun 𝐹)
1211adantr 480 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝐴 ∈ ℝ)
1222adantr 480 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝐵 ∈ ℝ)
1233adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑋 ∈ ℝ)
12477adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐴𝑋) ∈ ℝ)
12580adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐵𝑋) ∈ ℝ)
126 simpr 484 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋)))
127 eliccre 45458 . . . . . . . . . 10 (((𝐴𝑋) ∈ ℝ ∧ (𝐵𝑋) ∈ ℝ ∧ 𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑡 ∈ ℝ)
128124, 125, 126, 127syl3anc 1370 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑡 ∈ ℝ)
129123, 128readdcld 11288 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑋 + 𝑡) ∈ ℝ)
130 elicc2 13449 . . . . . . . . . . . 12 (((𝐴𝑋) ∈ ℝ ∧ (𝐵𝑋) ∈ ℝ) → (𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↔ (𝑡 ∈ ℝ ∧ (𝐴𝑋) ≤ 𝑡𝑡 ≤ (𝐵𝑋))))
131124, 125, 130syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↔ (𝑡 ∈ ℝ ∧ (𝐴𝑋) ≤ 𝑡𝑡 ≤ (𝐵𝑋))))
132126, 131mpbid 232 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑡 ∈ ℝ ∧ (𝐴𝑋) ≤ 𝑡𝑡 ≤ (𝐵𝑋)))
133132simp2d 1142 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐴𝑋) ≤ 𝑡)
134121, 123, 128lesubadd2d 11860 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → ((𝐴𝑋) ≤ 𝑡𝐴 ≤ (𝑋 + 𝑡)))
135133, 134mpbid 232 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝐴 ≤ (𝑋 + 𝑡))
136132simp3d 1143 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑡 ≤ (𝐵𝑋))
137123, 128, 122leaddsub2d 11863 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → ((𝑋 + 𝑡) ≤ 𝐵𝑡 ≤ (𝐵𝑋)))
138136, 137mpbird 257 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑋 + 𝑡) ≤ 𝐵)
139121, 122, 129, 135, 138eliccd 45457 . . . . . . 7 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑋 + 𝑡) ∈ (𝐴[,]𝐵))
140111adantr 480 . . . . . . 7 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐴[,]𝐵) = dom 𝐹)
141139, 140eleqtrd 2841 . . . . . 6 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑋 + 𝑡) ∈ dom 𝐹)
142120, 141, 114syl2anc 584 . . . . 5 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐹‘(𝑋 + 𝑡)) ∈ ran 𝐹)
143119, 142sseldd 3996 . . . 4 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐹‘(𝑋 + 𝑡)) ∈ ℂ)
14477, 80, 143itgioo 25866 . . 3 (𝜑 → ∫((𝐴𝑋)(,)(𝐵𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡 = ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡)
1457, 117, 1443eqtrrd 2780 . 2 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡 = ⨜[(𝐴𝑋) → (𝐵𝑋)](𝐺‘(𝑋 + 𝑡)) d𝑡)
146 nfv 1912 . . . 4 𝑥𝜑
147 fourierdlem82.6 . . . 4 (𝜑 → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
148 fourierdlem82.7 . . . . 5 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
1491, 2, 4, 107limcicciooub 45593 . . . . 5 (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵) = (𝐹 lim 𝐵))
150148, 149eleqtrrd 2842 . . . 4 (𝜑𝐿 ∈ ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵))
151 fourierdlem82.8 . . . . 5 (𝜑𝑅 ∈ (𝐹 lim 𝐴))
1521, 2, 4, 107limciccioolb 45577 . . . . 5 (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴) = (𝐹 lim 𝐴))
153151, 152eleqtrrd 2842 . . . 4 (𝜑𝑅 ∈ ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴))
154146, 8, 1, 2, 147, 150, 153cncfiooicc 45850 . . 3 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
1551, 2, 5, 3, 154itgsbtaddcnst 45938 . 2 (𝜑 → ⨜[(𝐴𝑋) → (𝐵𝑋)](𝐺‘(𝑋 + 𝑡)) d𝑡 = ⨜[𝐴𝐵](𝐺𝑠) d𝑠)
1565ditgpos 25906 . . 3 (𝜑 → ⨜[𝐴𝐵](𝐺𝑠) d𝑠 = ∫(𝐴(,)𝐵)(𝐺𝑠) d𝑠)
157 fveq2 6907 . . . . 5 (𝑠 = 𝑡 → (𝐺𝑠) = (𝐺𝑡))
158157cbvitgv 25827 . . . 4 ∫(𝐴(,)𝐵)(𝐺𝑠) d𝑠 = ∫(𝐴(,)𝐵)(𝐺𝑡) d𝑡
1598a1i 11 . . . . . 6 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))))
1601ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝐴 ∈ ℝ)
161 simplr 769 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑡 ∈ (𝐴(,)𝐵))
16230ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝐴 ∈ ℝ*)
16332ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝐵 ∈ ℝ*)
164 elioo2 13425 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑡 ∈ (𝐴(,)𝐵) ↔ (𝑡 ∈ ℝ ∧ 𝐴 < 𝑡𝑡 < 𝐵)))
165162, 163, 164syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → (𝑡 ∈ (𝐴(,)𝐵) ↔ (𝑡 ∈ ℝ ∧ 𝐴 < 𝑡𝑡 < 𝐵)))
166161, 165mpbid 232 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → (𝑡 ∈ ℝ ∧ 𝐴 < 𝑡𝑡 < 𝐵))
167166simp2d 1142 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝐴 < 𝑡)
168 simpr 484 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑥 = 𝑡)
169167, 168breqtrrd 5176 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝐴 < 𝑥)
170160, 169gtned 11394 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑥𝐴)
171170neneqd 2943 . . . . . . . 8 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → ¬ 𝑥 = 𝐴)
172171iffalsed 4542 . . . . . . 7 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))
173166simp1d 1141 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑡 ∈ ℝ)
174168, 173eqeltrd 2839 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑥 ∈ ℝ)
175166simp3d 1143 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑡 < 𝐵)
176168, 175eqbrtrd 5170 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑥 < 𝐵)
177174, 176ltned 11395 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑥𝐵)
178177neneqd 2943 . . . . . . . 8 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → ¬ 𝑥 = 𝐵)
179178iffalsed 4542 . . . . . . 7 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)) = ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))
180168, 161eqeltrd 2839 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑥 ∈ (𝐴(,)𝐵))
181180, 61syl 17 . . . . . . . 8 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐹𝑥))
182 fveq2 6907 . . . . . . . . 9 (𝑥 = 𝑡 → (𝐹𝑥) = (𝐹𝑡))
183182adantl 481 . . . . . . . 8 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → (𝐹𝑥) = (𝐹𝑡))
184181, 183eqtrd 2775 . . . . . . 7 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐹𝑡))
185172, 179, 1843eqtrd 2779 . . . . . 6 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = (𝐹𝑡))
186 ioossicc 13470 . . . . . . 7 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
187 simpr 484 . . . . . . 7 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ (𝐴(,)𝐵))
188186, 187sselid 3993 . . . . . 6 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ (𝐴[,]𝐵))
189108adantr 480 . . . . . . 7 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → Fun 𝐹)
190111adantr 480 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐴[,]𝐵) = dom 𝐹)
191188, 190eleqtrd 2841 . . . . . . 7 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ dom 𝐹)
192 fvelrn 7096 . . . . . . 7 ((Fun 𝐹𝑡 ∈ dom 𝐹) → (𝐹𝑡) ∈ ran 𝐹)
193189, 191, 192syl2anc 584 . . . . . 6 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐹𝑡) ∈ ran 𝐹)
194159, 185, 188, 193fvmptd 7023 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐺𝑡) = (𝐹𝑡))
195194itgeq2dv 25832 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)(𝐺𝑡) d𝑡 = ∫(𝐴(,)𝐵)(𝐹𝑡) d𝑡)
196158, 195eqtrid 2787 . . 3 (𝜑 → ∫(𝐴(,)𝐵)(𝐺𝑠) d𝑠 = ∫(𝐴(,)𝐵)(𝐹𝑡) d𝑡)
197107ffvelcdmda 7104 . . . 4 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝐹𝑡) ∈ ℂ)
1981, 2, 197itgioo 25866 . . 3 (𝜑 → ∫(𝐴(,)𝐵)(𝐹𝑡) d𝑡 = ∫(𝐴[,]𝐵)(𝐹𝑡) d𝑡)
199156, 196, 1983eqtrd 2779 . 2 (𝜑 → ⨜[𝐴𝐵](𝐺𝑠) d𝑠 = ∫(𝐴[,]𝐵)(𝐹𝑡) d𝑡)
200145, 155, 1993eqtrrd 2780 1 (𝜑 → ∫(𝐴[,]𝐵)(𝐹𝑡) d𝑡 = ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wss 3963  ifcif 4531   class class class wbr 5148  cmpt 5231  dom cdm 5689  ran crn 5690  cres 5691  Fun wfun 6557  wf 6559  cfv 6563  (class class class)co 7431  cc 11151  cr 11152   + caddc 11156  *cxr 11292   < clt 11293  cle 11294  cmin 11490  (,)cioo 13384  [,]cicc 13387  cnccncf 24916  citg 25667  cdit 25896   lim climc 25912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cc 10473  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-symdif 4259  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-acn 9980  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-cmp 23411  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-ovol 25513  df-vol 25514  df-mbf 25668  df-itg1 25669  df-itg2 25670  df-ibl 25671  df-itg 25672  df-0p 25719  df-ditg 25897  df-limc 25916  df-dv 25917
This theorem is referenced by:  fourierdlem93  46155
  Copyright terms: Public domain W3C validator