Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem82 Structured version   Visualization version   GIF version

Theorem fourierdlem82 46217
Description: Integral by substitution, adding a constant to the function's argument, for a function on an open interval with finite limits ad boundary points. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem82.1 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))))
fourierdlem82.2 (𝜑𝐴 ∈ ℝ)
fourierdlem82.3 (𝜑𝐵 ∈ ℝ)
fourierdlem82.4 (𝜑𝐴 < 𝐵)
fourierdlem82.5 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
fourierdlem82.6 (𝜑 → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
fourierdlem82.7 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
fourierdlem82.8 (𝜑𝑅 ∈ (𝐹 lim 𝐴))
fourierdlem82.9 (𝜑𝑋 ∈ ℝ)
Assertion
Ref Expression
fourierdlem82 (𝜑 → ∫(𝐴[,]𝐵)(𝐹𝑡) d𝑡 = ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡)
Distinct variable groups:   𝑡,𝐴,𝑥   𝑡,𝐵,𝑥   𝑥,𝐹   𝑡,𝐺   𝑥,𝐿   𝑥,𝑅   𝑡,𝑋,𝑥   𝜑,𝑡,𝑥
Allowed substitution hints:   𝑅(𝑡)   𝐹(𝑡)   𝐺(𝑥)   𝐿(𝑡)

Proof of Theorem fourierdlem82
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem82.2 . . . . 5 (𝜑𝐴 ∈ ℝ)
2 fourierdlem82.3 . . . . 5 (𝜑𝐵 ∈ ℝ)
3 fourierdlem82.9 . . . . 5 (𝜑𝑋 ∈ ℝ)
4 fourierdlem82.4 . . . . . 6 (𝜑𝐴 < 𝐵)
51, 2, 4ltled 11383 . . . . 5 (𝜑𝐴𝐵)
61, 2, 3, 5lesub1dd 11853 . . . 4 (𝜑 → (𝐴𝑋) ≤ (𝐵𝑋))
76ditgpos 25809 . . 3 (𝜑 → ⨜[(𝐴𝑋) → (𝐵𝑋)](𝐺‘(𝑋 + 𝑡)) d𝑡 = ∫((𝐴𝑋)(,)(𝐵𝑋))(𝐺‘(𝑋 + 𝑡)) d𝑡)
8 fourierdlem82.1 . . . . . . 7 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))))
9 iftrue 4506 . . . . . . . . . . . 12 (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = 𝑅)
109adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = 𝑅)
11 iftrue 4506 . . . . . . . . . . . 12 (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝑅)
1211adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝑅)
1310, 12eqtr4d 2773 . . . . . . . . . 10 ((𝜑𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
1413adantlr 715 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
15 iffalse 4509 . . . . . . . . . . . . 13 𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))
16 iftrue 4506 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)) = 𝐿)
1715, 16sylan9eq 2790 . . . . . . . . . . . 12 ((¬ 𝑥 = 𝐴𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = 𝐿)
1817adantll 714 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = 𝐿)
19 iffalse 4509 . . . . . . . . . . . . 13 𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
20 iftrue 4506 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = 𝐿)
2119, 20sylan9eq 2790 . . . . . . . . . . . 12 ((¬ 𝑥 = 𝐴𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝐿)
2221adantll 714 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝐿)
2318, 22eqtr4d 2773 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
24 iffalse 4509 . . . . . . . . . . . 12 𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)) = ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))
2524adantl 481 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)) = ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))
2615ad2antlr 727 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))
27 iffalse 4509 . . . . . . . . . . . . 13 𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = (𝐹𝑥))
2827adantl 481 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = (𝐹𝑥))
2919ad2antlr 727 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
301rexrd 11285 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ*)
3130ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴 ∈ ℝ*)
322rexrd 11285 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ*)
3332ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ*)
341adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
352adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
36 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
37 eliccre 45534 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
3834, 35, 36, 37syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
3938ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ℝ)
401ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 ∈ ℝ)
4138adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ ℝ)
42 elicc2 13428 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4334, 35, 42syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4436, 43mpbid 232 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
4544simp2d 1143 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝑥)
4645adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴𝑥)
47 neqne 2940 . . . . . . . . . . . . . . . . 17 𝑥 = 𝐴𝑥𝐴)
4847adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝑥𝐴)
4940, 41, 46, 48leneltd 11389 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 < 𝑥)
5049adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴 < 𝑥)
5138adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ℝ)
522ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ)
5344simp3d 1144 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
5453adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥𝐵)
55 nesym 2988 . . . . . . . . . . . . . . . . . 18 (𝐵𝑥 ↔ ¬ 𝑥 = 𝐵)
5655biimpri 228 . . . . . . . . . . . . . . . . 17 𝑥 = 𝐵𝐵𝑥)
5756adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝐵𝑥)
5851, 52, 54, 57leneltd 11389 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐵)
5958adantlr 715 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐵)
6031, 33, 39, 50, 59eliood 45527 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴(,)𝐵))
61 fvres 6895 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴(,)𝐵) → ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐹𝑥))
6260, 61syl 17 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐹𝑥))
6328, 29, 623eqtr4d 2780 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))
6425, 26, 633eqtr4d 2780 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
6523, 64pm2.61dan 812 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
6614, 65pm2.61dan 812 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
6766mpteq2dva 5214 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))))
688, 67eqtrid 2782 . . . . . 6 (𝜑𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))))
6968adantr 480 . . . . 5 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))))
70 eqeq1 2739 . . . . . . 7 (𝑥 = (𝑋 + 𝑡) → (𝑥 = 𝐴 ↔ (𝑋 + 𝑡) = 𝐴))
71 eqeq1 2739 . . . . . . . 8 (𝑥 = (𝑋 + 𝑡) → (𝑥 = 𝐵 ↔ (𝑋 + 𝑡) = 𝐵))
72 fveq2 6876 . . . . . . . 8 (𝑥 = (𝑋 + 𝑡) → (𝐹𝑥) = (𝐹‘(𝑋 + 𝑡)))
7371, 72ifbieq2d 4527 . . . . . . 7 (𝑥 = (𝑋 + 𝑡) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = if((𝑋 + 𝑡) = 𝐵, 𝐿, (𝐹‘(𝑋 + 𝑡))))
7470, 73ifbieq2d 4527 . . . . . 6 (𝑥 = (𝑋 + 𝑡) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if((𝑋 + 𝑡) = 𝐴, 𝑅, if((𝑋 + 𝑡) = 𝐵, 𝐿, (𝐹‘(𝑋 + 𝑡)))))
751adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝐴 ∈ ℝ)
76 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋)))
771, 3resubcld 11665 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴𝑋) ∈ ℝ)
7877rexrd 11285 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝑋) ∈ ℝ*)
7978adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝐴𝑋) ∈ ℝ*)
802, 3resubcld 11665 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵𝑋) ∈ ℝ)
8180rexrd 11285 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵𝑋) ∈ ℝ*)
8281adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝐵𝑋) ∈ ℝ*)
83 elioo2 13403 . . . . . . . . . . . . . 14 (((𝐴𝑋) ∈ ℝ* ∧ (𝐵𝑋) ∈ ℝ*) → (𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋)) ↔ (𝑡 ∈ ℝ ∧ (𝐴𝑋) < 𝑡𝑡 < (𝐵𝑋))))
8479, 82, 83syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋)) ↔ (𝑡 ∈ ℝ ∧ (𝐴𝑋) < 𝑡𝑡 < (𝐵𝑋))))
8576, 84mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑡 ∈ ℝ ∧ (𝐴𝑋) < 𝑡𝑡 < (𝐵𝑋)))
8685simp2d 1143 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝐴𝑋) < 𝑡)
873adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝑋 ∈ ℝ)
8885simp1d 1142 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝑡 ∈ ℝ)
8975, 87, 88ltsubadd2d 11835 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → ((𝐴𝑋) < 𝑡𝐴 < (𝑋 + 𝑡)))
9086, 89mpbid 232 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝐴 < (𝑋 + 𝑡))
9175, 90gtned 11370 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑋 + 𝑡) ≠ 𝐴)
9291neneqd 2937 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → ¬ (𝑋 + 𝑡) = 𝐴)
9392iffalsed 4511 . . . . . . 7 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → if((𝑋 + 𝑡) = 𝐴, 𝑅, if((𝑋 + 𝑡) = 𝐵, 𝐿, (𝐹‘(𝑋 + 𝑡)))) = if((𝑋 + 𝑡) = 𝐵, 𝐿, (𝐹‘(𝑋 + 𝑡))))
9487, 88readdcld 11264 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑋 + 𝑡) ∈ ℝ)
9585simp3d 1144 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝑡 < (𝐵𝑋))
962adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝐵 ∈ ℝ)
9787, 88, 96ltaddsub2d 11838 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → ((𝑋 + 𝑡) < 𝐵𝑡 < (𝐵𝑋)))
9895, 97mpbird 257 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑋 + 𝑡) < 𝐵)
9994, 98ltned 11371 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑋 + 𝑡) ≠ 𝐵)
10099neneqd 2937 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → ¬ (𝑋 + 𝑡) = 𝐵)
101100iffalsed 4511 . . . . . . 7 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → if((𝑋 + 𝑡) = 𝐵, 𝐿, (𝐹‘(𝑋 + 𝑡))) = (𝐹‘(𝑋 + 𝑡)))
10293, 101eqtrd 2770 . . . . . 6 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → if((𝑋 + 𝑡) = 𝐴, 𝑅, if((𝑋 + 𝑡) = 𝐵, 𝐿, (𝐹‘(𝑋 + 𝑡)))) = (𝐹‘(𝑋 + 𝑡)))
10374, 102sylan9eqr 2792 . . . . 5 (((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) ∧ 𝑥 = (𝑋 + 𝑡)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = (𝐹‘(𝑋 + 𝑡)))
10475, 94, 90ltled 11383 . . . . . 6 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → 𝐴 ≤ (𝑋 + 𝑡))
10594, 96, 98ltled 11383 . . . . . 6 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑋 + 𝑡) ≤ 𝐵)
10675, 96, 94, 104, 105eliccd 45533 . . . . 5 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑋 + 𝑡) ∈ (𝐴[,]𝐵))
107 fourierdlem82.5 . . . . . . . 8 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
108107ffund 6710 . . . . . . 7 (𝜑 → Fun 𝐹)
109108adantr 480 . . . . . 6 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → Fun 𝐹)
110107fdmd 6716 . . . . . . . . 9 (𝜑 → dom 𝐹 = (𝐴[,]𝐵))
111110eqcomd 2741 . . . . . . . 8 (𝜑 → (𝐴[,]𝐵) = dom 𝐹)
112111adantr 480 . . . . . . 7 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝐴[,]𝐵) = dom 𝐹)
113106, 112eleqtrd 2836 . . . . . 6 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝑋 + 𝑡) ∈ dom 𝐹)
114 fvelrn 7066 . . . . . 6 ((Fun 𝐹 ∧ (𝑋 + 𝑡) ∈ dom 𝐹) → (𝐹‘(𝑋 + 𝑡)) ∈ ran 𝐹)
115109, 113, 114syl2anc 584 . . . . 5 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝐹‘(𝑋 + 𝑡)) ∈ ran 𝐹)
11669, 103, 106, 115fvmptd 6993 . . . 4 ((𝜑𝑡 ∈ ((𝐴𝑋)(,)(𝐵𝑋))) → (𝐺‘(𝑋 + 𝑡)) = (𝐹‘(𝑋 + 𝑡)))
117116itgeq2dv 25735 . . 3 (𝜑 → ∫((𝐴𝑋)(,)(𝐵𝑋))(𝐺‘(𝑋 + 𝑡)) d𝑡 = ∫((𝐴𝑋)(,)(𝐵𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡)
118107frnd 6714 . . . . . 6 (𝜑 → ran 𝐹 ⊆ ℂ)
119118adantr 480 . . . . 5 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → ran 𝐹 ⊆ ℂ)
120108adantr 480 . . . . . 6 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → Fun 𝐹)
1211adantr 480 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝐴 ∈ ℝ)
1222adantr 480 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝐵 ∈ ℝ)
1233adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑋 ∈ ℝ)
12477adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐴𝑋) ∈ ℝ)
12580adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐵𝑋) ∈ ℝ)
126 simpr 484 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋)))
127 eliccre 45534 . . . . . . . . . 10 (((𝐴𝑋) ∈ ℝ ∧ (𝐵𝑋) ∈ ℝ ∧ 𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑡 ∈ ℝ)
128124, 125, 126, 127syl3anc 1373 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑡 ∈ ℝ)
129123, 128readdcld 11264 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑋 + 𝑡) ∈ ℝ)
130 elicc2 13428 . . . . . . . . . . . 12 (((𝐴𝑋) ∈ ℝ ∧ (𝐵𝑋) ∈ ℝ) → (𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↔ (𝑡 ∈ ℝ ∧ (𝐴𝑋) ≤ 𝑡𝑡 ≤ (𝐵𝑋))))
131124, 125, 130syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↔ (𝑡 ∈ ℝ ∧ (𝐴𝑋) ≤ 𝑡𝑡 ≤ (𝐵𝑋))))
132126, 131mpbid 232 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑡 ∈ ℝ ∧ (𝐴𝑋) ≤ 𝑡𝑡 ≤ (𝐵𝑋)))
133132simp2d 1143 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐴𝑋) ≤ 𝑡)
134121, 123, 128lesubadd2d 11836 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → ((𝐴𝑋) ≤ 𝑡𝐴 ≤ (𝑋 + 𝑡)))
135133, 134mpbid 232 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝐴 ≤ (𝑋 + 𝑡))
136132simp3d 1144 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑡 ≤ (𝐵𝑋))
137123, 128, 122leaddsub2d 11839 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → ((𝑋 + 𝑡) ≤ 𝐵𝑡 ≤ (𝐵𝑋)))
138136, 137mpbird 257 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑋 + 𝑡) ≤ 𝐵)
139121, 122, 129, 135, 138eliccd 45533 . . . . . . 7 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑋 + 𝑡) ∈ (𝐴[,]𝐵))
140111adantr 480 . . . . . . 7 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐴[,]𝐵) = dom 𝐹)
141139, 140eleqtrd 2836 . . . . . 6 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑋 + 𝑡) ∈ dom 𝐹)
142120, 141, 114syl2anc 584 . . . . 5 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐹‘(𝑋 + 𝑡)) ∈ ran 𝐹)
143119, 142sseldd 3959 . . . 4 ((𝜑𝑡 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐹‘(𝑋 + 𝑡)) ∈ ℂ)
14477, 80, 143itgioo 25769 . . 3 (𝜑 → ∫((𝐴𝑋)(,)(𝐵𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡 = ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡)
1457, 117, 1443eqtrrd 2775 . 2 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡 = ⨜[(𝐴𝑋) → (𝐵𝑋)](𝐺‘(𝑋 + 𝑡)) d𝑡)
146 nfv 1914 . . . 4 𝑥𝜑
147 fourierdlem82.6 . . . 4 (𝜑 → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
148 fourierdlem82.7 . . . . 5 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
1491, 2, 4, 107limcicciooub 45666 . . . . 5 (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵) = (𝐹 lim 𝐵))
150148, 149eleqtrrd 2837 . . . 4 (𝜑𝐿 ∈ ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵))
151 fourierdlem82.8 . . . . 5 (𝜑𝑅 ∈ (𝐹 lim 𝐴))
1521, 2, 4, 107limciccioolb 45650 . . . . 5 (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴) = (𝐹 lim 𝐴))
153151, 152eleqtrrd 2837 . . . 4 (𝜑𝑅 ∈ ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴))
154146, 8, 1, 2, 147, 150, 153cncfiooicc 45923 . . 3 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
1551, 2, 5, 3, 154itgsbtaddcnst 46011 . 2 (𝜑 → ⨜[(𝐴𝑋) → (𝐵𝑋)](𝐺‘(𝑋 + 𝑡)) d𝑡 = ⨜[𝐴𝐵](𝐺𝑠) d𝑠)
1565ditgpos 25809 . . 3 (𝜑 → ⨜[𝐴𝐵](𝐺𝑠) d𝑠 = ∫(𝐴(,)𝐵)(𝐺𝑠) d𝑠)
157 fveq2 6876 . . . . 5 (𝑠 = 𝑡 → (𝐺𝑠) = (𝐺𝑡))
158157cbvitgv 25730 . . . 4 ∫(𝐴(,)𝐵)(𝐺𝑠) d𝑠 = ∫(𝐴(,)𝐵)(𝐺𝑡) d𝑡
1598a1i 11 . . . . . 6 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))))
1601ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝐴 ∈ ℝ)
161 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑡 ∈ (𝐴(,)𝐵))
16230ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝐴 ∈ ℝ*)
16332ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝐵 ∈ ℝ*)
164 elioo2 13403 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑡 ∈ (𝐴(,)𝐵) ↔ (𝑡 ∈ ℝ ∧ 𝐴 < 𝑡𝑡 < 𝐵)))
165162, 163, 164syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → (𝑡 ∈ (𝐴(,)𝐵) ↔ (𝑡 ∈ ℝ ∧ 𝐴 < 𝑡𝑡 < 𝐵)))
166161, 165mpbid 232 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → (𝑡 ∈ ℝ ∧ 𝐴 < 𝑡𝑡 < 𝐵))
167166simp2d 1143 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝐴 < 𝑡)
168 simpr 484 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑥 = 𝑡)
169167, 168breqtrrd 5147 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝐴 < 𝑥)
170160, 169gtned 11370 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑥𝐴)
171170neneqd 2937 . . . . . . . 8 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → ¬ 𝑥 = 𝐴)
172171iffalsed 4511 . . . . . . 7 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))
173166simp1d 1142 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑡 ∈ ℝ)
174168, 173eqeltrd 2834 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑥 ∈ ℝ)
175166simp3d 1144 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑡 < 𝐵)
176168, 175eqbrtrd 5141 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑥 < 𝐵)
177174, 176ltned 11371 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑥𝐵)
178177neneqd 2937 . . . . . . . 8 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → ¬ 𝑥 = 𝐵)
179178iffalsed 4511 . . . . . . 7 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)) = ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))
180168, 161eqeltrd 2834 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → 𝑥 ∈ (𝐴(,)𝐵))
181180, 61syl 17 . . . . . . . 8 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐹𝑥))
182 fveq2 6876 . . . . . . . . 9 (𝑥 = 𝑡 → (𝐹𝑥) = (𝐹𝑡))
183182adantl 481 . . . . . . . 8 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → (𝐹𝑥) = (𝐹𝑡))
184181, 183eqtrd 2770 . . . . . . 7 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐹𝑡))
185172, 179, 1843eqtrd 2774 . . . . . 6 (((𝜑𝑡 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑡) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = (𝐹𝑡))
186 ioossicc 13450 . . . . . . 7 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
187 simpr 484 . . . . . . 7 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ (𝐴(,)𝐵))
188186, 187sselid 3956 . . . . . 6 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ (𝐴[,]𝐵))
189108adantr 480 . . . . . . 7 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → Fun 𝐹)
190111adantr 480 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐴[,]𝐵) = dom 𝐹)
191188, 190eleqtrd 2836 . . . . . . 7 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ dom 𝐹)
192 fvelrn 7066 . . . . . . 7 ((Fun 𝐹𝑡 ∈ dom 𝐹) → (𝐹𝑡) ∈ ran 𝐹)
193189, 191, 192syl2anc 584 . . . . . 6 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐹𝑡) ∈ ran 𝐹)
194159, 185, 188, 193fvmptd 6993 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐺𝑡) = (𝐹𝑡))
195194itgeq2dv 25735 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)(𝐺𝑡) d𝑡 = ∫(𝐴(,)𝐵)(𝐹𝑡) d𝑡)
196158, 195eqtrid 2782 . . 3 (𝜑 → ∫(𝐴(,)𝐵)(𝐺𝑠) d𝑠 = ∫(𝐴(,)𝐵)(𝐹𝑡) d𝑡)
197107ffvelcdmda 7074 . . . 4 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝐹𝑡) ∈ ℂ)
1981, 2, 197itgioo 25769 . . 3 (𝜑 → ∫(𝐴(,)𝐵)(𝐹𝑡) d𝑡 = ∫(𝐴[,]𝐵)(𝐹𝑡) d𝑡)
199156, 196, 1983eqtrd 2774 . 2 (𝜑 → ⨜[𝐴𝐵](𝐺𝑠) d𝑠 = ∫(𝐴[,]𝐵)(𝐹𝑡) d𝑡)
200145, 155, 1993eqtrrd 2775 1 (𝜑 → ∫(𝐴[,]𝐵)(𝐹𝑡) d𝑡 = ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wss 3926  ifcif 4500   class class class wbr 5119  cmpt 5201  dom cdm 5654  ran crn 5655  cres 5656  Fun wfun 6525  wf 6527  cfv 6531  (class class class)co 7405  cc 11127  cr 11128   + caddc 11132  *cxr 11268   < clt 11269  cle 11270  cmin 11466  (,)cioo 13362  [,]cicc 13365  cnccncf 24820  citg 25571  cdit 25799   lim climc 25815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cc 10449  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-symdif 4228  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-acn 9956  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-cmp 23325  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-ovol 25417  df-vol 25418  df-mbf 25572  df-itg1 25573  df-itg2 25574  df-ibl 25575  df-itg 25576  df-0p 25623  df-ditg 25800  df-limc 25819  df-dv 25820
This theorem is referenced by:  fourierdlem93  46228
  Copyright terms: Public domain W3C validator