Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ditgswap | Structured version Visualization version GIF version |
Description: Reverse a directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.) |
Ref | Expression |
---|---|
ditgcl.x | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
ditgcl.y | ⊢ (𝜑 → 𝑌 ∈ ℝ) |
ditgcl.a | ⊢ (𝜑 → 𝐴 ∈ (𝑋[,]𝑌)) |
ditgcl.b | ⊢ (𝜑 → 𝐵 ∈ (𝑋[,]𝑌)) |
ditgcl.c | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ 𝑉) |
ditgcl.i | ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1) |
Ref | Expression |
---|---|
ditgswap | ⊢ (𝜑 → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -⨜[𝐴 → 𝐵]𝐶 d𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ditgcl.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝑋[,]𝑌)) | |
2 | ditgcl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
3 | ditgcl.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ℝ) | |
4 | elicc2 13073 | . . . . 5 ⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌))) | |
5 | 2, 3, 4 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌))) |
6 | 1, 5 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌)) |
7 | 6 | simp1d 1140 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
8 | ditgcl.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (𝑋[,]𝑌)) | |
9 | elicc2 13073 | . . . . 5 ⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌))) | |
10 | 2, 3, 9 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌))) |
11 | 8, 10 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌)) |
12 | 11 | simp1d 1140 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
13 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
14 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ) |
15 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ) |
16 | 13, 14, 15 | ditgneg 24926 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥) |
17 | 13 | ditgpos 24925 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ⨜[𝐴 → 𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥) |
18 | 17 | negeqd 11145 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → -⨜[𝐴 → 𝐵]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥) |
19 | 16, 18 | eqtr4d 2781 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -⨜[𝐴 → 𝐵]𝐶 d𝑥) |
20 | 2 | rexrd 10956 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ ℝ*) |
21 | 11 | simp2d 1141 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ≤ 𝐵) |
22 | iooss1 13043 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ ℝ* ∧ 𝑋 ≤ 𝐵) → (𝐵(,)𝐴) ⊆ (𝑋(,)𝐴)) | |
23 | 20, 21, 22 | syl2anc 583 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵(,)𝐴) ⊆ (𝑋(,)𝐴)) |
24 | 3 | rexrd 10956 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑌 ∈ ℝ*) |
25 | 6 | simp3d 1142 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ≤ 𝑌) |
26 | iooss2 13044 | . . . . . . . . . 10 ⊢ ((𝑌 ∈ ℝ* ∧ 𝐴 ≤ 𝑌) → (𝑋(,)𝐴) ⊆ (𝑋(,)𝑌)) | |
27 | 24, 25, 26 | syl2anc 583 | . . . . . . . . 9 ⊢ (𝜑 → (𝑋(,)𝐴) ⊆ (𝑋(,)𝑌)) |
28 | 23, 27 | sstrd 3927 | . . . . . . . 8 ⊢ (𝜑 → (𝐵(,)𝐴) ⊆ (𝑋(,)𝑌)) |
29 | 28 | sselda 3917 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵(,)𝐴)) → 𝑥 ∈ (𝑋(,)𝑌)) |
30 | ditgcl.i | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1) | |
31 | iblmbf 24837 | . . . . . . . . 9 ⊢ ((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ MblFn) | |
32 | 30, 31 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ MblFn) |
33 | ditgcl.c | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ 𝑉) | |
34 | 32, 33 | mbfmptcl 24705 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ ℂ) |
35 | 29, 34 | syldan 590 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵(,)𝐴)) → 𝐶 ∈ ℂ) |
36 | ioombl 24634 | . . . . . . . 8 ⊢ (𝐵(,)𝐴) ∈ dom vol | |
37 | 36 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐵(,)𝐴) ∈ dom vol) |
38 | 28, 37, 33, 30 | iblss 24874 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝐵(,)𝐴) ↦ 𝐶) ∈ 𝐿1) |
39 | 35, 38 | itgcl 24853 | . . . . 5 ⊢ (𝜑 → ∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ) |
40 | 39 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ) |
41 | 40 | negnegd 11253 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → --∫(𝐵(,)𝐴)𝐶 d𝑥 = ∫(𝐵(,)𝐴)𝐶 d𝑥) |
42 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐵 ≤ 𝐴) | |
43 | 12 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐵 ∈ ℝ) |
44 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐴 ∈ ℝ) |
45 | 42, 43, 44 | ditgneg 24926 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ⨜[𝐴 → 𝐵]𝐶 d𝑥 = -∫(𝐵(,)𝐴)𝐶 d𝑥) |
46 | 45 | negeqd 11145 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → -⨜[𝐴 → 𝐵]𝐶 d𝑥 = --∫(𝐵(,)𝐴)𝐶 d𝑥) |
47 | 42 | ditgpos 24925 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = ∫(𝐵(,)𝐴)𝐶 d𝑥) |
48 | 41, 46, 47 | 3eqtr4rd 2789 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -⨜[𝐴 → 𝐵]𝐶 d𝑥) |
49 | 7, 12, 19, 48 | lecasei 11011 | 1 ⊢ (𝜑 → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -⨜[𝐴 → 𝐵]𝐶 d𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 class class class wbr 5070 ↦ cmpt 5153 dom cdm 5580 (class class class)co 7255 ℂcc 10800 ℝcr 10801 ℝ*cxr 10939 ≤ cle 10941 -cneg 11136 (,)cioo 13008 [,]cicc 13011 volcvol 24532 MblFncmbf 24683 𝐿1cibl 24686 ∫citg 24687 ⨜cdit 24915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-disj 5036 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-ofr 7512 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-xadd 12778 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-sum 15326 df-xmet 20503 df-met 20504 df-ovol 24533 df-vol 24534 df-mbf 24688 df-itg1 24689 df-itg2 24690 df-ibl 24691 df-itg 24692 df-0p 24739 df-ditg 24916 |
This theorem is referenced by: ditgsplit 24930 ftc2ditg 25115 |
Copyright terms: Public domain | W3C validator |