MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgswap Structured version   Visualization version   GIF version

Theorem ditgswap 25106
Description: Reverse a directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypotheses
Ref Expression
ditgcl.x (𝜑𝑋 ∈ ℝ)
ditgcl.y (𝜑𝑌 ∈ ℝ)
ditgcl.a (𝜑𝐴 ∈ (𝑋[,]𝑌))
ditgcl.b (𝜑𝐵 ∈ (𝑋[,]𝑌))
ditgcl.c ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐶𝑉)
ditgcl.i (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1)
Assertion
Ref Expression
ditgswap (𝜑 → ⨜[𝐵𝐴]𝐶 d𝑥 = -⨜[𝐴𝐵]𝐶 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝑥,𝑉   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem ditgswap
StepHypRef Expression
1 ditgcl.a . . . 4 (𝜑𝐴 ∈ (𝑋[,]𝑌))
2 ditgcl.x . . . . 5 (𝜑𝑋 ∈ ℝ)
3 ditgcl.y . . . . 5 (𝜑𝑌 ∈ ℝ)
4 elicc2 13224 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
52, 3, 4syl2anc 584 . . . 4 (𝜑 → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
61, 5mpbid 231 . . 3 (𝜑 → (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌))
76simp1d 1141 . 2 (𝜑𝐴 ∈ ℝ)
8 ditgcl.b . . . 4 (𝜑𝐵 ∈ (𝑋[,]𝑌))
9 elicc2 13224 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
102, 3, 9syl2anc 584 . . . 4 (𝜑 → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
118, 10mpbid 231 . . 3 (𝜑 → (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌))
1211simp1d 1141 . 2 (𝜑𝐵 ∈ ℝ)
13 simpr 485 . . . 4 ((𝜑𝐴𝐵) → 𝐴𝐵)
147adantr 481 . . . 4 ((𝜑𝐴𝐵) → 𝐴 ∈ ℝ)
1512adantr 481 . . . 4 ((𝜑𝐴𝐵) → 𝐵 ∈ ℝ)
1613, 14, 15ditgneg 25104 . . 3 ((𝜑𝐴𝐵) → ⨜[𝐵𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥)
1713ditgpos 25103 . . . 4 ((𝜑𝐴𝐵) → ⨜[𝐴𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥)
1817negeqd 11295 . . 3 ((𝜑𝐴𝐵) → -⨜[𝐴𝐵]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥)
1916, 18eqtr4d 2780 . 2 ((𝜑𝐴𝐵) → ⨜[𝐵𝐴]𝐶 d𝑥 = -⨜[𝐴𝐵]𝐶 d𝑥)
202rexrd 11105 . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ*)
2111simp2d 1142 . . . . . . . . . 10 (𝜑𝑋𝐵)
22 iooss1 13194 . . . . . . . . . 10 ((𝑋 ∈ ℝ*𝑋𝐵) → (𝐵(,)𝐴) ⊆ (𝑋(,)𝐴))
2320, 21, 22syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐵(,)𝐴) ⊆ (𝑋(,)𝐴))
243rexrd 11105 . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ*)
256simp3d 1143 . . . . . . . . . 10 (𝜑𝐴𝑌)
26 iooss2 13195 . . . . . . . . . 10 ((𝑌 ∈ ℝ*𝐴𝑌) → (𝑋(,)𝐴) ⊆ (𝑋(,)𝑌))
2724, 25, 26syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑋(,)𝐴) ⊆ (𝑋(,)𝑌))
2823, 27sstrd 3941 . . . . . . . 8 (𝜑 → (𝐵(,)𝐴) ⊆ (𝑋(,)𝑌))
2928sselda 3931 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐴)) → 𝑥 ∈ (𝑋(,)𝑌))
30 ditgcl.i . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1)
31 iblmbf 25015 . . . . . . . . 9 ((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ MblFn)
3230, 31syl 17 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ MblFn)
33 ditgcl.c . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐶𝑉)
3432, 33mbfmptcl 24883 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ ℂ)
3529, 34syldan 591 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,)𝐴)) → 𝐶 ∈ ℂ)
36 ioombl 24812 . . . . . . . 8 (𝐵(,)𝐴) ∈ dom vol
3736a1i 11 . . . . . . 7 (𝜑 → (𝐵(,)𝐴) ∈ dom vol)
3828, 37, 33, 30iblss 25052 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐵(,)𝐴) ↦ 𝐶) ∈ 𝐿1)
3935, 38itgcl 25031 . . . . 5 (𝜑 → ∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ)
4039adantr 481 . . . 4 ((𝜑𝐵𝐴) → ∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ)
4140negnegd 11403 . . 3 ((𝜑𝐵𝐴) → --∫(𝐵(,)𝐴)𝐶 d𝑥 = ∫(𝐵(,)𝐴)𝐶 d𝑥)
42 simpr 485 . . . . 5 ((𝜑𝐵𝐴) → 𝐵𝐴)
4312adantr 481 . . . . 5 ((𝜑𝐵𝐴) → 𝐵 ∈ ℝ)
447adantr 481 . . . . 5 ((𝜑𝐵𝐴) → 𝐴 ∈ ℝ)
4542, 43, 44ditgneg 25104 . . . 4 ((𝜑𝐵𝐴) → ⨜[𝐴𝐵]𝐶 d𝑥 = -∫(𝐵(,)𝐴)𝐶 d𝑥)
4645negeqd 11295 . . 3 ((𝜑𝐵𝐴) → -⨜[𝐴𝐵]𝐶 d𝑥 = --∫(𝐵(,)𝐴)𝐶 d𝑥)
4742ditgpos 25103 . . 3 ((𝜑𝐵𝐴) → ⨜[𝐵𝐴]𝐶 d𝑥 = ∫(𝐵(,)𝐴)𝐶 d𝑥)
4841, 46, 473eqtr4rd 2788 . 2 ((𝜑𝐵𝐴) → ⨜[𝐵𝐴]𝐶 d𝑥 = -⨜[𝐴𝐵]𝐶 d𝑥)
497, 12, 19, 48lecasei 11161 1 (𝜑 → ⨜[𝐵𝐴]𝐶 d𝑥 = -⨜[𝐴𝐵]𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wss 3897   class class class wbr 5087  cmpt 5170  dom cdm 5608  (class class class)co 7317  cc 10949  cr 10950  *cxr 11088  cle 11090  -cneg 11286  (,)cioo 13159  [,]cicc 13162  volcvol 24710  MblFncmbf 24861  𝐿1cibl 24864  citg 24865  cdit 25093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-inf2 9477  ax-cnex 11007  ax-resscn 11008  ax-1cn 11009  ax-icn 11010  ax-addcl 11011  ax-addrcl 11012  ax-mulcl 11013  ax-mulrcl 11014  ax-mulcom 11015  ax-addass 11016  ax-mulass 11017  ax-distr 11018  ax-i2m1 11019  ax-1ne0 11020  ax-1rid 11021  ax-rnegex 11022  ax-rrecex 11023  ax-cnre 11024  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027  ax-pre-mulgt0 11028  ax-pre-sup 11029  ax-addf 11030
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-int 4893  df-iun 4939  df-disj 5053  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-se 5564  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-pred 6225  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-isom 6475  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-of 7575  df-ofr 7576  df-om 7760  df-1st 7878  df-2nd 7879  df-frecs 8146  df-wrecs 8177  df-recs 8251  df-rdg 8290  df-1o 8346  df-2o 8347  df-er 8548  df-map 8667  df-pm 8668  df-en 8784  df-dom 8785  df-sdom 8786  df-fin 8787  df-sup 9278  df-inf 9279  df-oi 9346  df-dju 9737  df-card 9775  df-pnf 11091  df-mnf 11092  df-xr 11093  df-ltxr 11094  df-le 11095  df-sub 11287  df-neg 11288  df-div 11713  df-nn 12054  df-2 12116  df-3 12117  df-4 12118  df-n0 12314  df-z 12400  df-uz 12663  df-q 12769  df-rp 12811  df-xadd 12929  df-ioo 13163  df-ico 13165  df-icc 13166  df-fz 13320  df-fzo 13463  df-fl 13592  df-mod 13670  df-seq 13802  df-exp 13863  df-hash 14125  df-cj 14889  df-re 14890  df-im 14891  df-sqrt 15025  df-abs 15026  df-clim 15276  df-rlim 15277  df-sum 15477  df-xmet 20673  df-met 20674  df-ovol 24711  df-vol 24712  df-mbf 24866  df-itg1 24867  df-itg2 24868  df-ibl 24869  df-itg 24870  df-0p 24917  df-ditg 25094
This theorem is referenced by:  ditgsplit  25108  ftc2ditg  25293
  Copyright terms: Public domain W3C validator