MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgswap Structured version   Visualization version   GIF version

Theorem ditgswap 25239
Description: Reverse a directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypotheses
Ref Expression
ditgcl.x (𝜑𝑋 ∈ ℝ)
ditgcl.y (𝜑𝑌 ∈ ℝ)
ditgcl.a (𝜑𝐴 ∈ (𝑋[,]𝑌))
ditgcl.b (𝜑𝐵 ∈ (𝑋[,]𝑌))
ditgcl.c ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐶𝑉)
ditgcl.i (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1)
Assertion
Ref Expression
ditgswap (𝜑 → ⨜[𝐵𝐴]𝐶 d𝑥 = -⨜[𝐴𝐵]𝐶 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝑥,𝑉   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem ditgswap
StepHypRef Expression
1 ditgcl.a . . . 4 (𝜑𝐴 ∈ (𝑋[,]𝑌))
2 ditgcl.x . . . . 5 (𝜑𝑋 ∈ ℝ)
3 ditgcl.y . . . . 5 (𝜑𝑌 ∈ ℝ)
4 elicc2 13336 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
52, 3, 4syl2anc 585 . . . 4 (𝜑 → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
61, 5mpbid 231 . . 3 (𝜑 → (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌))
76simp1d 1143 . 2 (𝜑𝐴 ∈ ℝ)
8 ditgcl.b . . . 4 (𝜑𝐵 ∈ (𝑋[,]𝑌))
9 elicc2 13336 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
102, 3, 9syl2anc 585 . . . 4 (𝜑 → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
118, 10mpbid 231 . . 3 (𝜑 → (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌))
1211simp1d 1143 . 2 (𝜑𝐵 ∈ ℝ)
13 simpr 486 . . . 4 ((𝜑𝐴𝐵) → 𝐴𝐵)
147adantr 482 . . . 4 ((𝜑𝐴𝐵) → 𝐴 ∈ ℝ)
1512adantr 482 . . . 4 ((𝜑𝐴𝐵) → 𝐵 ∈ ℝ)
1613, 14, 15ditgneg 25237 . . 3 ((𝜑𝐴𝐵) → ⨜[𝐵𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥)
1713ditgpos 25236 . . . 4 ((𝜑𝐴𝐵) → ⨜[𝐴𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥)
1817negeqd 11402 . . 3 ((𝜑𝐴𝐵) → -⨜[𝐴𝐵]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥)
1916, 18eqtr4d 2780 . 2 ((𝜑𝐴𝐵) → ⨜[𝐵𝐴]𝐶 d𝑥 = -⨜[𝐴𝐵]𝐶 d𝑥)
202rexrd 11212 . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ*)
2111simp2d 1144 . . . . . . . . . 10 (𝜑𝑋𝐵)
22 iooss1 13306 . . . . . . . . . 10 ((𝑋 ∈ ℝ*𝑋𝐵) → (𝐵(,)𝐴) ⊆ (𝑋(,)𝐴))
2320, 21, 22syl2anc 585 . . . . . . . . 9 (𝜑 → (𝐵(,)𝐴) ⊆ (𝑋(,)𝐴))
243rexrd 11212 . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ*)
256simp3d 1145 . . . . . . . . . 10 (𝜑𝐴𝑌)
26 iooss2 13307 . . . . . . . . . 10 ((𝑌 ∈ ℝ*𝐴𝑌) → (𝑋(,)𝐴) ⊆ (𝑋(,)𝑌))
2724, 25, 26syl2anc 585 . . . . . . . . 9 (𝜑 → (𝑋(,)𝐴) ⊆ (𝑋(,)𝑌))
2823, 27sstrd 3959 . . . . . . . 8 (𝜑 → (𝐵(,)𝐴) ⊆ (𝑋(,)𝑌))
2928sselda 3949 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐴)) → 𝑥 ∈ (𝑋(,)𝑌))
30 ditgcl.i . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1)
31 iblmbf 25148 . . . . . . . . 9 ((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ MblFn)
3230, 31syl 17 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ MblFn)
33 ditgcl.c . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐶𝑉)
3432, 33mbfmptcl 25016 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ ℂ)
3529, 34syldan 592 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,)𝐴)) → 𝐶 ∈ ℂ)
36 ioombl 24945 . . . . . . . 8 (𝐵(,)𝐴) ∈ dom vol
3736a1i 11 . . . . . . 7 (𝜑 → (𝐵(,)𝐴) ∈ dom vol)
3828, 37, 33, 30iblss 25185 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐵(,)𝐴) ↦ 𝐶) ∈ 𝐿1)
3935, 38itgcl 25164 . . . . 5 (𝜑 → ∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ)
4039adantr 482 . . . 4 ((𝜑𝐵𝐴) → ∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ)
4140negnegd 11510 . . 3 ((𝜑𝐵𝐴) → --∫(𝐵(,)𝐴)𝐶 d𝑥 = ∫(𝐵(,)𝐴)𝐶 d𝑥)
42 simpr 486 . . . . 5 ((𝜑𝐵𝐴) → 𝐵𝐴)
4312adantr 482 . . . . 5 ((𝜑𝐵𝐴) → 𝐵 ∈ ℝ)
447adantr 482 . . . . 5 ((𝜑𝐵𝐴) → 𝐴 ∈ ℝ)
4542, 43, 44ditgneg 25237 . . . 4 ((𝜑𝐵𝐴) → ⨜[𝐴𝐵]𝐶 d𝑥 = -∫(𝐵(,)𝐴)𝐶 d𝑥)
4645negeqd 11402 . . 3 ((𝜑𝐵𝐴) → -⨜[𝐴𝐵]𝐶 d𝑥 = --∫(𝐵(,)𝐴)𝐶 d𝑥)
4742ditgpos 25236 . . 3 ((𝜑𝐵𝐴) → ⨜[𝐵𝐴]𝐶 d𝑥 = ∫(𝐵(,)𝐴)𝐶 d𝑥)
4841, 46, 473eqtr4rd 2788 . 2 ((𝜑𝐵𝐴) → ⨜[𝐵𝐴]𝐶 d𝑥 = -⨜[𝐴𝐵]𝐶 d𝑥)
497, 12, 19, 48lecasei 11268 1 (𝜑 → ⨜[𝐵𝐴]𝐶 d𝑥 = -⨜[𝐴𝐵]𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wss 3915   class class class wbr 5110  cmpt 5193  dom cdm 5638  (class class class)co 7362  cc 11056  cr 11057  *cxr 11195  cle 11197  -cneg 11393  (,)cioo 13271  [,]cicc 13274  volcvol 24843  MblFncmbf 24994  𝐿1cibl 24997  citg 24998  cdit 25226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136  ax-addf 11137
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-disj 5076  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-ofr 7623  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-er 8655  df-map 8774  df-pm 8775  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9385  df-inf 9386  df-oi 9453  df-dju 9844  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-4 12225  df-n0 12421  df-z 12507  df-uz 12771  df-q 12881  df-rp 12923  df-xadd 13041  df-ioo 13275  df-ico 13277  df-icc 13278  df-fz 13432  df-fzo 13575  df-fl 13704  df-mod 13782  df-seq 13914  df-exp 13975  df-hash 14238  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-clim 15377  df-rlim 15378  df-sum 15578  df-xmet 20805  df-met 20806  df-ovol 24844  df-vol 24845  df-mbf 24999  df-itg1 25000  df-itg2 25001  df-ibl 25002  df-itg 25003  df-0p 25050  df-ditg 25227
This theorem is referenced by:  ditgsplit  25241  ftc2ditg  25426
  Copyright terms: Public domain W3C validator