| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ditgswap | Structured version Visualization version GIF version | ||
| Description: Reverse a directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| Ref | Expression |
|---|---|
| ditgcl.x | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
| ditgcl.y | ⊢ (𝜑 → 𝑌 ∈ ℝ) |
| ditgcl.a | ⊢ (𝜑 → 𝐴 ∈ (𝑋[,]𝑌)) |
| ditgcl.b | ⊢ (𝜑 → 𝐵 ∈ (𝑋[,]𝑌)) |
| ditgcl.c | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ 𝑉) |
| ditgcl.i | ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1) |
| Ref | Expression |
|---|---|
| ditgswap | ⊢ (𝜑 → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -⨜[𝐴 → 𝐵]𝐶 d𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ditgcl.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝑋[,]𝑌)) | |
| 2 | ditgcl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
| 3 | ditgcl.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ℝ) | |
| 4 | elicc2 13303 | . . . . 5 ⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌))) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌))) |
| 6 | 1, 5 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌)) |
| 7 | 6 | simp1d 1142 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 8 | ditgcl.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (𝑋[,]𝑌)) | |
| 9 | elicc2 13303 | . . . . 5 ⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌))) | |
| 10 | 2, 3, 9 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌))) |
| 11 | 8, 10 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌)) |
| 12 | 11 | simp1d 1142 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 13 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
| 14 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ) |
| 15 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ) |
| 16 | 13, 14, 15 | ditgneg 25778 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥) |
| 17 | 13 | ditgpos 25777 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ⨜[𝐴 → 𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥) |
| 18 | 17 | negeqd 11346 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → -⨜[𝐴 → 𝐵]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥) |
| 19 | 16, 18 | eqtr4d 2768 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -⨜[𝐴 → 𝐵]𝐶 d𝑥) |
| 20 | 2 | rexrd 11154 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ ℝ*) |
| 21 | 11 | simp2d 1143 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ≤ 𝐵) |
| 22 | iooss1 13272 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ ℝ* ∧ 𝑋 ≤ 𝐵) → (𝐵(,)𝐴) ⊆ (𝑋(,)𝐴)) | |
| 23 | 20, 21, 22 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵(,)𝐴) ⊆ (𝑋(,)𝐴)) |
| 24 | 3 | rexrd 11154 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑌 ∈ ℝ*) |
| 25 | 6 | simp3d 1144 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ≤ 𝑌) |
| 26 | iooss2 13273 | . . . . . . . . . 10 ⊢ ((𝑌 ∈ ℝ* ∧ 𝐴 ≤ 𝑌) → (𝑋(,)𝐴) ⊆ (𝑋(,)𝑌)) | |
| 27 | 24, 25, 26 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝑋(,)𝐴) ⊆ (𝑋(,)𝑌)) |
| 28 | 23, 27 | sstrd 3943 | . . . . . . . 8 ⊢ (𝜑 → (𝐵(,)𝐴) ⊆ (𝑋(,)𝑌)) |
| 29 | 28 | sselda 3932 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵(,)𝐴)) → 𝑥 ∈ (𝑋(,)𝑌)) |
| 30 | ditgcl.i | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1) | |
| 31 | iblmbf 25688 | . . . . . . . . 9 ⊢ ((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ MblFn) | |
| 32 | 30, 31 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ MblFn) |
| 33 | ditgcl.c | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ 𝑉) | |
| 34 | 32, 33 | mbfmptcl 25557 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ ℂ) |
| 35 | 29, 34 | syldan 591 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵(,)𝐴)) → 𝐶 ∈ ℂ) |
| 36 | ioombl 25486 | . . . . . . . 8 ⊢ (𝐵(,)𝐴) ∈ dom vol | |
| 37 | 36 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐵(,)𝐴) ∈ dom vol) |
| 38 | 28, 37, 33, 30 | iblss 25726 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝐵(,)𝐴) ↦ 𝐶) ∈ 𝐿1) |
| 39 | 35, 38 | itgcl 25705 | . . . . 5 ⊢ (𝜑 → ∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ) |
| 40 | 39 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ) |
| 41 | 40 | negnegd 11455 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → --∫(𝐵(,)𝐴)𝐶 d𝑥 = ∫(𝐵(,)𝐴)𝐶 d𝑥) |
| 42 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐵 ≤ 𝐴) | |
| 43 | 12 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐵 ∈ ℝ) |
| 44 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐴 ∈ ℝ) |
| 45 | 42, 43, 44 | ditgneg 25778 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ⨜[𝐴 → 𝐵]𝐶 d𝑥 = -∫(𝐵(,)𝐴)𝐶 d𝑥) |
| 46 | 45 | negeqd 11346 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → -⨜[𝐴 → 𝐵]𝐶 d𝑥 = --∫(𝐵(,)𝐴)𝐶 d𝑥) |
| 47 | 42 | ditgpos 25777 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = ∫(𝐵(,)𝐴)𝐶 d𝑥) |
| 48 | 41, 46, 47 | 3eqtr4rd 2776 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -⨜[𝐴 → 𝐵]𝐶 d𝑥) |
| 49 | 7, 12, 19, 48 | lecasei 11211 | 1 ⊢ (𝜑 → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -⨜[𝐴 → 𝐵]𝐶 d𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ⊆ wss 3900 class class class wbr 5089 ↦ cmpt 5170 dom cdm 5614 (class class class)co 7341 ℂcc 10996 ℝcr 10997 ℝ*cxr 11137 ≤ cle 11139 -cneg 11337 (,)cioo 13237 [,]cicc 13240 volcvol 25384 MblFncmbf 25535 𝐿1cibl 25538 ∫citg 25539 ⨜cdit 25767 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 ax-addf 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-disj 5057 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-ofr 7606 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-oi 9391 df-dju 9786 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-n0 12374 df-z 12461 df-uz 12725 df-q 12839 df-rp 12883 df-xadd 13004 df-ioo 13241 df-ico 13243 df-icc 13244 df-fz 13400 df-fzo 13547 df-fl 13688 df-mod 13766 df-seq 13901 df-exp 13961 df-hash 14230 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-clim 15387 df-rlim 15388 df-sum 15586 df-xmet 21277 df-met 21278 df-ovol 25385 df-vol 25386 df-mbf 25540 df-itg1 25541 df-itg2 25542 df-ibl 25543 df-itg 25544 df-0p 25591 df-ditg 25768 |
| This theorem is referenced by: ditgsplit 25782 ftc2ditg 25973 |
| Copyright terms: Public domain | W3C validator |