MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgswap Structured version   Visualization version   GIF version

Theorem ditgswap 25023
Description: Reverse a directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypotheses
Ref Expression
ditgcl.x (𝜑𝑋 ∈ ℝ)
ditgcl.y (𝜑𝑌 ∈ ℝ)
ditgcl.a (𝜑𝐴 ∈ (𝑋[,]𝑌))
ditgcl.b (𝜑𝐵 ∈ (𝑋[,]𝑌))
ditgcl.c ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐶𝑉)
ditgcl.i (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1)
Assertion
Ref Expression
ditgswap (𝜑 → ⨜[𝐵𝐴]𝐶 d𝑥 = -⨜[𝐴𝐵]𝐶 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝑥,𝑉   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem ditgswap
StepHypRef Expression
1 ditgcl.a . . . 4 (𝜑𝐴 ∈ (𝑋[,]𝑌))
2 ditgcl.x . . . . 5 (𝜑𝑋 ∈ ℝ)
3 ditgcl.y . . . . 5 (𝜑𝑌 ∈ ℝ)
4 elicc2 13144 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
52, 3, 4syl2anc 584 . . . 4 (𝜑 → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
61, 5mpbid 231 . . 3 (𝜑 → (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌))
76simp1d 1141 . 2 (𝜑𝐴 ∈ ℝ)
8 ditgcl.b . . . 4 (𝜑𝐵 ∈ (𝑋[,]𝑌))
9 elicc2 13144 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
102, 3, 9syl2anc 584 . . . 4 (𝜑 → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
118, 10mpbid 231 . . 3 (𝜑 → (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌))
1211simp1d 1141 . 2 (𝜑𝐵 ∈ ℝ)
13 simpr 485 . . . 4 ((𝜑𝐴𝐵) → 𝐴𝐵)
147adantr 481 . . . 4 ((𝜑𝐴𝐵) → 𝐴 ∈ ℝ)
1512adantr 481 . . . 4 ((𝜑𝐴𝐵) → 𝐵 ∈ ℝ)
1613, 14, 15ditgneg 25021 . . 3 ((𝜑𝐴𝐵) → ⨜[𝐵𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥)
1713ditgpos 25020 . . . 4 ((𝜑𝐴𝐵) → ⨜[𝐴𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥)
1817negeqd 11215 . . 3 ((𝜑𝐴𝐵) → -⨜[𝐴𝐵]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥)
1916, 18eqtr4d 2781 . 2 ((𝜑𝐴𝐵) → ⨜[𝐵𝐴]𝐶 d𝑥 = -⨜[𝐴𝐵]𝐶 d𝑥)
202rexrd 11025 . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ*)
2111simp2d 1142 . . . . . . . . . 10 (𝜑𝑋𝐵)
22 iooss1 13114 . . . . . . . . . 10 ((𝑋 ∈ ℝ*𝑋𝐵) → (𝐵(,)𝐴) ⊆ (𝑋(,)𝐴))
2320, 21, 22syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐵(,)𝐴) ⊆ (𝑋(,)𝐴))
243rexrd 11025 . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ*)
256simp3d 1143 . . . . . . . . . 10 (𝜑𝐴𝑌)
26 iooss2 13115 . . . . . . . . . 10 ((𝑌 ∈ ℝ*𝐴𝑌) → (𝑋(,)𝐴) ⊆ (𝑋(,)𝑌))
2724, 25, 26syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑋(,)𝐴) ⊆ (𝑋(,)𝑌))
2823, 27sstrd 3931 . . . . . . . 8 (𝜑 → (𝐵(,)𝐴) ⊆ (𝑋(,)𝑌))
2928sselda 3921 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐴)) → 𝑥 ∈ (𝑋(,)𝑌))
30 ditgcl.i . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1)
31 iblmbf 24932 . . . . . . . . 9 ((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ MblFn)
3230, 31syl 17 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ MblFn)
33 ditgcl.c . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐶𝑉)
3432, 33mbfmptcl 24800 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ ℂ)
3529, 34syldan 591 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,)𝐴)) → 𝐶 ∈ ℂ)
36 ioombl 24729 . . . . . . . 8 (𝐵(,)𝐴) ∈ dom vol
3736a1i 11 . . . . . . 7 (𝜑 → (𝐵(,)𝐴) ∈ dom vol)
3828, 37, 33, 30iblss 24969 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐵(,)𝐴) ↦ 𝐶) ∈ 𝐿1)
3935, 38itgcl 24948 . . . . 5 (𝜑 → ∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ)
4039adantr 481 . . . 4 ((𝜑𝐵𝐴) → ∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ)
4140negnegd 11323 . . 3 ((𝜑𝐵𝐴) → --∫(𝐵(,)𝐴)𝐶 d𝑥 = ∫(𝐵(,)𝐴)𝐶 d𝑥)
42 simpr 485 . . . . 5 ((𝜑𝐵𝐴) → 𝐵𝐴)
4312adantr 481 . . . . 5 ((𝜑𝐵𝐴) → 𝐵 ∈ ℝ)
447adantr 481 . . . . 5 ((𝜑𝐵𝐴) → 𝐴 ∈ ℝ)
4542, 43, 44ditgneg 25021 . . . 4 ((𝜑𝐵𝐴) → ⨜[𝐴𝐵]𝐶 d𝑥 = -∫(𝐵(,)𝐴)𝐶 d𝑥)
4645negeqd 11215 . . 3 ((𝜑𝐵𝐴) → -⨜[𝐴𝐵]𝐶 d𝑥 = --∫(𝐵(,)𝐴)𝐶 d𝑥)
4742ditgpos 25020 . . 3 ((𝜑𝐵𝐴) → ⨜[𝐵𝐴]𝐶 d𝑥 = ∫(𝐵(,)𝐴)𝐶 d𝑥)
4841, 46, 473eqtr4rd 2789 . 2 ((𝜑𝐵𝐴) → ⨜[𝐵𝐴]𝐶 d𝑥 = -⨜[𝐴𝐵]𝐶 d𝑥)
497, 12, 19, 48lecasei 11081 1 (𝜑 → ⨜[𝐵𝐴]𝐶 d𝑥 = -⨜[𝐴𝐵]𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wss 3887   class class class wbr 5074  cmpt 5157  dom cdm 5589  (class class class)co 7275  cc 10869  cr 10870  *cxr 11008  cle 11010  -cneg 11206  (,)cioo 13079  [,]cicc 13082  volcvol 24627  MblFncmbf 24778  𝐿1cibl 24781  citg 24782  cdit 25010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xadd 12849  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-xmet 20590  df-met 20591  df-ovol 24628  df-vol 24629  df-mbf 24783  df-itg1 24784  df-itg2 24785  df-ibl 24786  df-itg 24787  df-0p 24834  df-ditg 25011
This theorem is referenced by:  ditgsplit  25025  ftc2ditg  25210
  Copyright terms: Public domain W3C validator