MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgswap Structured version   Visualization version   GIF version

Theorem ditgswap 24457
Description: Reverse a directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypotheses
Ref Expression
ditgcl.x (𝜑𝑋 ∈ ℝ)
ditgcl.y (𝜑𝑌 ∈ ℝ)
ditgcl.a (𝜑𝐴 ∈ (𝑋[,]𝑌))
ditgcl.b (𝜑𝐵 ∈ (𝑋[,]𝑌))
ditgcl.c ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐶𝑉)
ditgcl.i (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1)
Assertion
Ref Expression
ditgswap (𝜑 → ⨜[𝐵𝐴]𝐶 d𝑥 = -⨜[𝐴𝐵]𝐶 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝑥,𝑉   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem ditgswap
StepHypRef Expression
1 ditgcl.a . . . 4 (𝜑𝐴 ∈ (𝑋[,]𝑌))
2 ditgcl.x . . . . 5 (𝜑𝑋 ∈ ℝ)
3 ditgcl.y . . . . 5 (𝜑𝑌 ∈ ℝ)
4 elicc2 12802 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
52, 3, 4syl2anc 586 . . . 4 (𝜑 → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
61, 5mpbid 234 . . 3 (𝜑 → (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌))
76simp1d 1138 . 2 (𝜑𝐴 ∈ ℝ)
8 ditgcl.b . . . 4 (𝜑𝐵 ∈ (𝑋[,]𝑌))
9 elicc2 12802 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
102, 3, 9syl2anc 586 . . . 4 (𝜑 → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
118, 10mpbid 234 . . 3 (𝜑 → (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌))
1211simp1d 1138 . 2 (𝜑𝐵 ∈ ℝ)
13 simpr 487 . . . 4 ((𝜑𝐴𝐵) → 𝐴𝐵)
147adantr 483 . . . 4 ((𝜑𝐴𝐵) → 𝐴 ∈ ℝ)
1512adantr 483 . . . 4 ((𝜑𝐴𝐵) → 𝐵 ∈ ℝ)
1613, 14, 15ditgneg 24455 . . 3 ((𝜑𝐴𝐵) → ⨜[𝐵𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥)
1713ditgpos 24454 . . . 4 ((𝜑𝐴𝐵) → ⨜[𝐴𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥)
1817negeqd 10880 . . 3 ((𝜑𝐴𝐵) → -⨜[𝐴𝐵]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥)
1916, 18eqtr4d 2859 . 2 ((𝜑𝐴𝐵) → ⨜[𝐵𝐴]𝐶 d𝑥 = -⨜[𝐴𝐵]𝐶 d𝑥)
202rexrd 10691 . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ*)
2111simp2d 1139 . . . . . . . . . 10 (𝜑𝑋𝐵)
22 iooss1 12774 . . . . . . . . . 10 ((𝑋 ∈ ℝ*𝑋𝐵) → (𝐵(,)𝐴) ⊆ (𝑋(,)𝐴))
2320, 21, 22syl2anc 586 . . . . . . . . 9 (𝜑 → (𝐵(,)𝐴) ⊆ (𝑋(,)𝐴))
243rexrd 10691 . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ*)
256simp3d 1140 . . . . . . . . . 10 (𝜑𝐴𝑌)
26 iooss2 12775 . . . . . . . . . 10 ((𝑌 ∈ ℝ*𝐴𝑌) → (𝑋(,)𝐴) ⊆ (𝑋(,)𝑌))
2724, 25, 26syl2anc 586 . . . . . . . . 9 (𝜑 → (𝑋(,)𝐴) ⊆ (𝑋(,)𝑌))
2823, 27sstrd 3977 . . . . . . . 8 (𝜑 → (𝐵(,)𝐴) ⊆ (𝑋(,)𝑌))
2928sselda 3967 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐴)) → 𝑥 ∈ (𝑋(,)𝑌))
30 ditgcl.i . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1)
31 iblmbf 24368 . . . . . . . . 9 ((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ MblFn)
3230, 31syl 17 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ MblFn)
33 ditgcl.c . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐶𝑉)
3432, 33mbfmptcl 24237 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ ℂ)
3529, 34syldan 593 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,)𝐴)) → 𝐶 ∈ ℂ)
36 ioombl 24166 . . . . . . . 8 (𝐵(,)𝐴) ∈ dom vol
3736a1i 11 . . . . . . 7 (𝜑 → (𝐵(,)𝐴) ∈ dom vol)
3828, 37, 33, 30iblss 24405 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐵(,)𝐴) ↦ 𝐶) ∈ 𝐿1)
3935, 38itgcl 24384 . . . . 5 (𝜑 → ∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ)
4039adantr 483 . . . 4 ((𝜑𝐵𝐴) → ∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ)
4140negnegd 10988 . . 3 ((𝜑𝐵𝐴) → --∫(𝐵(,)𝐴)𝐶 d𝑥 = ∫(𝐵(,)𝐴)𝐶 d𝑥)
42 simpr 487 . . . . 5 ((𝜑𝐵𝐴) → 𝐵𝐴)
4312adantr 483 . . . . 5 ((𝜑𝐵𝐴) → 𝐵 ∈ ℝ)
447adantr 483 . . . . 5 ((𝜑𝐵𝐴) → 𝐴 ∈ ℝ)
4542, 43, 44ditgneg 24455 . . . 4 ((𝜑𝐵𝐴) → ⨜[𝐴𝐵]𝐶 d𝑥 = -∫(𝐵(,)𝐴)𝐶 d𝑥)
4645negeqd 10880 . . 3 ((𝜑𝐵𝐴) → -⨜[𝐴𝐵]𝐶 d𝑥 = --∫(𝐵(,)𝐴)𝐶 d𝑥)
4742ditgpos 24454 . . 3 ((𝜑𝐵𝐴) → ⨜[𝐵𝐴]𝐶 d𝑥 = ∫(𝐵(,)𝐴)𝐶 d𝑥)
4841, 46, 473eqtr4rd 2867 . 2 ((𝜑𝐵𝐴) → ⨜[𝐵𝐴]𝐶 d𝑥 = -⨜[𝐴𝐵]𝐶 d𝑥)
497, 12, 19, 48lecasei 10746 1 (𝜑 → ⨜[𝐵𝐴]𝐶 d𝑥 = -⨜[𝐴𝐵]𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wss 3936   class class class wbr 5066  cmpt 5146  dom cdm 5555  (class class class)co 7156  cc 10535  cr 10536  *cxr 10674  cle 10676  -cneg 10871  (,)cioo 12739  [,]cicc 12742  volcvol 24064  MblFncmbf 24215  𝐿1cibl 24218  citg 24219  cdit 24444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-disj 5032  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-xadd 12509  df-ioo 12743  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-rlim 14846  df-sum 15043  df-xmet 20538  df-met 20539  df-ovol 24065  df-vol 24066  df-mbf 24220  df-itg1 24221  df-itg2 24222  df-ibl 24223  df-itg 24224  df-0p 24271  df-ditg 24445
This theorem is referenced by:  ditgsplit  24459  ftc2ditg  24643
  Copyright terms: Public domain W3C validator