![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ditgswap | Structured version Visualization version GIF version |
Description: Reverse a directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.) |
Ref | Expression |
---|---|
ditgcl.x | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
ditgcl.y | ⊢ (𝜑 → 𝑌 ∈ ℝ) |
ditgcl.a | ⊢ (𝜑 → 𝐴 ∈ (𝑋[,]𝑌)) |
ditgcl.b | ⊢ (𝜑 → 𝐵 ∈ (𝑋[,]𝑌)) |
ditgcl.c | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ 𝑉) |
ditgcl.i | ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1) |
Ref | Expression |
---|---|
ditgswap | ⊢ (𝜑 → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -⨜[𝐴 → 𝐵]𝐶 d𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ditgcl.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝑋[,]𝑌)) | |
2 | ditgcl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
3 | ditgcl.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ℝ) | |
4 | elicc2 13472 | . . . . 5 ⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌))) | |
5 | 2, 3, 4 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌))) |
6 | 1, 5 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌)) |
7 | 6 | simp1d 1142 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
8 | ditgcl.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (𝑋[,]𝑌)) | |
9 | elicc2 13472 | . . . . 5 ⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌))) | |
10 | 2, 3, 9 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌))) |
11 | 8, 10 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌)) |
12 | 11 | simp1d 1142 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
13 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
14 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ) |
15 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ) |
16 | 13, 14, 15 | ditgneg 25912 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥) |
17 | 13 | ditgpos 25911 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ⨜[𝐴 → 𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥) |
18 | 17 | negeqd 11530 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → -⨜[𝐴 → 𝐵]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥) |
19 | 16, 18 | eqtr4d 2783 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -⨜[𝐴 → 𝐵]𝐶 d𝑥) |
20 | 2 | rexrd 11340 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ ℝ*) |
21 | 11 | simp2d 1143 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ≤ 𝐵) |
22 | iooss1 13442 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ ℝ* ∧ 𝑋 ≤ 𝐵) → (𝐵(,)𝐴) ⊆ (𝑋(,)𝐴)) | |
23 | 20, 21, 22 | syl2anc 583 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵(,)𝐴) ⊆ (𝑋(,)𝐴)) |
24 | 3 | rexrd 11340 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑌 ∈ ℝ*) |
25 | 6 | simp3d 1144 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ≤ 𝑌) |
26 | iooss2 13443 | . . . . . . . . . 10 ⊢ ((𝑌 ∈ ℝ* ∧ 𝐴 ≤ 𝑌) → (𝑋(,)𝐴) ⊆ (𝑋(,)𝑌)) | |
27 | 24, 25, 26 | syl2anc 583 | . . . . . . . . 9 ⊢ (𝜑 → (𝑋(,)𝐴) ⊆ (𝑋(,)𝑌)) |
28 | 23, 27 | sstrd 4019 | . . . . . . . 8 ⊢ (𝜑 → (𝐵(,)𝐴) ⊆ (𝑋(,)𝑌)) |
29 | 28 | sselda 4008 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵(,)𝐴)) → 𝑥 ∈ (𝑋(,)𝑌)) |
30 | ditgcl.i | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1) | |
31 | iblmbf 25822 | . . . . . . . . 9 ⊢ ((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ MblFn) | |
32 | 30, 31 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ MblFn) |
33 | ditgcl.c | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ 𝑉) | |
34 | 32, 33 | mbfmptcl 25690 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ ℂ) |
35 | 29, 34 | syldan 590 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵(,)𝐴)) → 𝐶 ∈ ℂ) |
36 | ioombl 25619 | . . . . . . . 8 ⊢ (𝐵(,)𝐴) ∈ dom vol | |
37 | 36 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐵(,)𝐴) ∈ dom vol) |
38 | 28, 37, 33, 30 | iblss 25860 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝐵(,)𝐴) ↦ 𝐶) ∈ 𝐿1) |
39 | 35, 38 | itgcl 25839 | . . . . 5 ⊢ (𝜑 → ∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ) |
40 | 39 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ) |
41 | 40 | negnegd 11638 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → --∫(𝐵(,)𝐴)𝐶 d𝑥 = ∫(𝐵(,)𝐴)𝐶 d𝑥) |
42 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐵 ≤ 𝐴) | |
43 | 12 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐵 ∈ ℝ) |
44 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐴 ∈ ℝ) |
45 | 42, 43, 44 | ditgneg 25912 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ⨜[𝐴 → 𝐵]𝐶 d𝑥 = -∫(𝐵(,)𝐴)𝐶 d𝑥) |
46 | 45 | negeqd 11530 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → -⨜[𝐴 → 𝐵]𝐶 d𝑥 = --∫(𝐵(,)𝐴)𝐶 d𝑥) |
47 | 42 | ditgpos 25911 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = ∫(𝐵(,)𝐴)𝐶 d𝑥) |
48 | 41, 46, 47 | 3eqtr4rd 2791 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -⨜[𝐴 → 𝐵]𝐶 d𝑥) |
49 | 7, 12, 19, 48 | lecasei 11396 | 1 ⊢ (𝜑 → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -⨜[𝐴 → 𝐵]𝐶 d𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5700 (class class class)co 7448 ℂcc 11182 ℝcr 11183 ℝ*cxr 11323 ≤ cle 11325 -cneg 11521 (,)cioo 13407 [,]cicc 13410 volcvol 25517 MblFncmbf 25668 𝐿1cibl 25671 ∫citg 25672 ⨜cdit 25901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-disj 5134 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-ofr 7715 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-xadd 13176 df-ioo 13411 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-rlim 15535 df-sum 15735 df-xmet 21380 df-met 21381 df-ovol 25518 df-vol 25519 df-mbf 25673 df-itg1 25674 df-itg2 25675 df-ibl 25676 df-itg 25677 df-0p 25724 df-ditg 25902 |
This theorem is referenced by: ditgsplit 25916 ftc2ditg 26107 |
Copyright terms: Public domain | W3C validator |