Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ditgcl | Structured version Visualization version GIF version |
Description: Closure of a directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.) |
Ref | Expression |
---|---|
ditgcl.x | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
ditgcl.y | ⊢ (𝜑 → 𝑌 ∈ ℝ) |
ditgcl.a | ⊢ (𝜑 → 𝐴 ∈ (𝑋[,]𝑌)) |
ditgcl.b | ⊢ (𝜑 → 𝐵 ∈ (𝑋[,]𝑌)) |
ditgcl.c | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ 𝑉) |
ditgcl.i | ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1) |
Ref | Expression |
---|---|
ditgcl | ⊢ (𝜑 → ⨜[𝐴 → 𝐵]𝐶 d𝑥 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ditgcl.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝑋[,]𝑌)) | |
2 | ditgcl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
3 | ditgcl.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ℝ) | |
4 | elicc2 13217 | . . . . 5 ⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌))) | |
5 | 2, 3, 4 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌))) |
6 | 1, 5 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌)) |
7 | 6 | simp1d 1141 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
8 | ditgcl.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (𝑋[,]𝑌)) | |
9 | elicc2 13217 | . . . . 5 ⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌))) | |
10 | 2, 3, 9 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌))) |
11 | 8, 10 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌)) |
12 | 11 | simp1d 1141 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
13 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
14 | 13 | ditgpos 25092 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ⨜[𝐴 → 𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥) |
15 | 2 | rexrd 11098 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ ℝ*) |
16 | 6 | simp2d 1142 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ≤ 𝐴) |
17 | iooss1 13187 | . . . . . . . . 9 ⊢ ((𝑋 ∈ ℝ* ∧ 𝑋 ≤ 𝐴) → (𝐴(,)𝐵) ⊆ (𝑋(,)𝐵)) | |
18 | 15, 16, 17 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝑋(,)𝐵)) |
19 | 3 | rexrd 11098 | . . . . . . . . 9 ⊢ (𝜑 → 𝑌 ∈ ℝ*) |
20 | 11 | simp3d 1143 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ≤ 𝑌) |
21 | iooss2 13188 | . . . . . . . . 9 ⊢ ((𝑌 ∈ ℝ* ∧ 𝐵 ≤ 𝑌) → (𝑋(,)𝐵) ⊆ (𝑋(,)𝑌)) | |
22 | 19, 20, 21 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝑋(,)𝐵) ⊆ (𝑋(,)𝑌)) |
23 | 18, 22 | sstrd 3941 | . . . . . . 7 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝑋(,)𝑌)) |
24 | 23 | sselda 3931 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝑋(,)𝑌)) |
25 | ditgcl.c | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ 𝑉) | |
26 | 24, 25 | syldan 591 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ 𝑉) |
27 | ioombl 24801 | . . . . . . 7 ⊢ (𝐴(,)𝐵) ∈ dom vol | |
28 | 27 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (𝐴(,)𝐵) ∈ dom vol) |
29 | ditgcl.i | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1) | |
30 | 23, 28, 25, 29 | iblss 25041 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐶) ∈ 𝐿1) |
31 | 26, 30 | itgcl 25020 | . . . 4 ⊢ (𝜑 → ∫(𝐴(,)𝐵)𝐶 d𝑥 ∈ ℂ) |
32 | 31 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ∫(𝐴(,)𝐵)𝐶 d𝑥 ∈ ℂ) |
33 | 14, 32 | eqeltrd 2838 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ⨜[𝐴 → 𝐵]𝐶 d𝑥 ∈ ℂ) |
34 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐵 ≤ 𝐴) | |
35 | 12 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐵 ∈ ℝ) |
36 | 7 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐴 ∈ ℝ) |
37 | 34, 35, 36 | ditgneg 25093 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ⨜[𝐴 → 𝐵]𝐶 d𝑥 = -∫(𝐵(,)𝐴)𝐶 d𝑥) |
38 | 11 | simp2d 1142 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ≤ 𝐵) |
39 | iooss1 13187 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ ℝ* ∧ 𝑋 ≤ 𝐵) → (𝐵(,)𝐴) ⊆ (𝑋(,)𝐴)) | |
40 | 15, 38, 39 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵(,)𝐴) ⊆ (𝑋(,)𝐴)) |
41 | 6 | simp3d 1143 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ≤ 𝑌) |
42 | iooss2 13188 | . . . . . . . . . 10 ⊢ ((𝑌 ∈ ℝ* ∧ 𝐴 ≤ 𝑌) → (𝑋(,)𝐴) ⊆ (𝑋(,)𝑌)) | |
43 | 19, 41, 42 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝑋(,)𝐴) ⊆ (𝑋(,)𝑌)) |
44 | 40, 43 | sstrd 3941 | . . . . . . . 8 ⊢ (𝜑 → (𝐵(,)𝐴) ⊆ (𝑋(,)𝑌)) |
45 | 44 | sselda 3931 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵(,)𝐴)) → 𝑥 ∈ (𝑋(,)𝑌)) |
46 | 45, 25 | syldan 591 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵(,)𝐴)) → 𝐶 ∈ 𝑉) |
47 | ioombl 24801 | . . . . . . . 8 ⊢ (𝐵(,)𝐴) ∈ dom vol | |
48 | 47 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐵(,)𝐴) ∈ dom vol) |
49 | 44, 48, 25, 29 | iblss 25041 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝐵(,)𝐴) ↦ 𝐶) ∈ 𝐿1) |
50 | 46, 49 | itgcl 25020 | . . . . 5 ⊢ (𝜑 → ∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ) |
51 | 50 | negcld 11392 | . . . 4 ⊢ (𝜑 → -∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ) |
52 | 51 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → -∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ) |
53 | 37, 52 | eqeltrd 2838 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ⨜[𝐴 → 𝐵]𝐶 d𝑥 ∈ ℂ) |
54 | 7, 12, 33, 53 | lecasei 11154 | 1 ⊢ (𝜑 → ⨜[𝐴 → 𝐵]𝐶 d𝑥 ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2105 ⊆ wss 3897 class class class wbr 5087 ↦ cmpt 5170 dom cdm 5607 (class class class)co 7315 ℂcc 10942 ℝcr 10943 ℝ*cxr 11081 ≤ cle 11083 -cneg 11279 (,)cioo 13152 [,]cicc 13155 volcvol 24699 𝐿1cibl 24853 ∫citg 24854 ⨜cdit 25082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-inf2 9470 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 ax-pre-sup 11022 ax-addf 11023 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-disj 5053 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-se 5563 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-isom 6474 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-of 7573 df-ofr 7574 df-om 7758 df-1st 7876 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-1o 8344 df-2o 8345 df-er 8546 df-map 8665 df-pm 8666 df-en 8782 df-dom 8783 df-sdom 8784 df-fin 8785 df-sup 9271 df-inf 9272 df-oi 9339 df-dju 9730 df-card 9768 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-div 11706 df-nn 12047 df-2 12109 df-3 12110 df-4 12111 df-n0 12307 df-z 12393 df-uz 12656 df-q 12762 df-rp 12804 df-xadd 12922 df-ioo 13156 df-ico 13158 df-icc 13159 df-fz 13313 df-fzo 13456 df-fl 13585 df-mod 13663 df-seq 13795 df-exp 13856 df-hash 14118 df-cj 14882 df-re 14883 df-im 14884 df-sqrt 15018 df-abs 15019 df-clim 15269 df-rlim 15270 df-sum 15470 df-xmet 20662 df-met 20663 df-ovol 24700 df-vol 24701 df-mbf 24855 df-itg1 24856 df-itg2 24857 df-ibl 24858 df-itg 24859 df-0p 24906 df-ditg 25083 |
This theorem is referenced by: ditgsplit 25097 itgsubstlem 25284 |
Copyright terms: Public domain | W3C validator |