MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgcl Structured version   Visualization version   GIF version

Theorem ditgcl 25806
Description: Closure of a directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypotheses
Ref Expression
ditgcl.x (𝜑𝑋 ∈ ℝ)
ditgcl.y (𝜑𝑌 ∈ ℝ)
ditgcl.a (𝜑𝐴 ∈ (𝑋[,]𝑌))
ditgcl.b (𝜑𝐵 ∈ (𝑋[,]𝑌))
ditgcl.c ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐶𝑉)
ditgcl.i (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1)
Assertion
Ref Expression
ditgcl (𝜑 → ⨜[𝐴𝐵]𝐶 d𝑥 ∈ ℂ)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝑥,𝑉   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem ditgcl
StepHypRef Expression
1 ditgcl.a . . . 4 (𝜑𝐴 ∈ (𝑋[,]𝑌))
2 ditgcl.x . . . . 5 (𝜑𝑋 ∈ ℝ)
3 ditgcl.y . . . . 5 (𝜑𝑌 ∈ ℝ)
4 elicc2 13318 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
52, 3, 4syl2anc 584 . . . 4 (𝜑 → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
61, 5mpbid 232 . . 3 (𝜑 → (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌))
76simp1d 1142 . 2 (𝜑𝐴 ∈ ℝ)
8 ditgcl.b . . . 4 (𝜑𝐵 ∈ (𝑋[,]𝑌))
9 elicc2 13318 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
102, 3, 9syl2anc 584 . . . 4 (𝜑 → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
118, 10mpbid 232 . . 3 (𝜑 → (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌))
1211simp1d 1142 . 2 (𝜑𝐵 ∈ ℝ)
13 simpr 484 . . . 4 ((𝜑𝐴𝐵) → 𝐴𝐵)
1413ditgpos 25804 . . 3 ((𝜑𝐴𝐵) → ⨜[𝐴𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥)
152rexrd 11173 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ*)
166simp2d 1143 . . . . . . . . 9 (𝜑𝑋𝐴)
17 iooss1 13287 . . . . . . . . 9 ((𝑋 ∈ ℝ*𝑋𝐴) → (𝐴(,)𝐵) ⊆ (𝑋(,)𝐵))
1815, 16, 17syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴(,)𝐵) ⊆ (𝑋(,)𝐵))
193rexrd 11173 . . . . . . . . 9 (𝜑𝑌 ∈ ℝ*)
2011simp3d 1144 . . . . . . . . 9 (𝜑𝐵𝑌)
21 iooss2 13288 . . . . . . . . 9 ((𝑌 ∈ ℝ*𝐵𝑌) → (𝑋(,)𝐵) ⊆ (𝑋(,)𝑌))
2219, 20, 21syl2anc 584 . . . . . . . 8 (𝜑 → (𝑋(,)𝐵) ⊆ (𝑋(,)𝑌))
2318, 22sstrd 3941 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ (𝑋(,)𝑌))
2423sselda 3930 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝑋(,)𝑌))
25 ditgcl.c . . . . . 6 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐶𝑉)
2624, 25syldan 591 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐶𝑉)
27 ioombl 25513 . . . . . . 7 (𝐴(,)𝐵) ∈ dom vol
2827a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
29 ditgcl.i . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1)
3023, 28, 25, 29iblss 25753 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐶) ∈ 𝐿1)
3126, 30itgcl 25732 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)𝐶 d𝑥 ∈ ℂ)
3231adantr 480 . . 3 ((𝜑𝐴𝐵) → ∫(𝐴(,)𝐵)𝐶 d𝑥 ∈ ℂ)
3314, 32eqeltrd 2833 . 2 ((𝜑𝐴𝐵) → ⨜[𝐴𝐵]𝐶 d𝑥 ∈ ℂ)
34 simpr 484 . . . 4 ((𝜑𝐵𝐴) → 𝐵𝐴)
3512adantr 480 . . . 4 ((𝜑𝐵𝐴) → 𝐵 ∈ ℝ)
367adantr 480 . . . 4 ((𝜑𝐵𝐴) → 𝐴 ∈ ℝ)
3734, 35, 36ditgneg 25805 . . 3 ((𝜑𝐵𝐴) → ⨜[𝐴𝐵]𝐶 d𝑥 = -∫(𝐵(,)𝐴)𝐶 d𝑥)
3811simp2d 1143 . . . . . . . . . 10 (𝜑𝑋𝐵)
39 iooss1 13287 . . . . . . . . . 10 ((𝑋 ∈ ℝ*𝑋𝐵) → (𝐵(,)𝐴) ⊆ (𝑋(,)𝐴))
4015, 38, 39syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐵(,)𝐴) ⊆ (𝑋(,)𝐴))
416simp3d 1144 . . . . . . . . . 10 (𝜑𝐴𝑌)
42 iooss2 13288 . . . . . . . . . 10 ((𝑌 ∈ ℝ*𝐴𝑌) → (𝑋(,)𝐴) ⊆ (𝑋(,)𝑌))
4319, 41, 42syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑋(,)𝐴) ⊆ (𝑋(,)𝑌))
4440, 43sstrd 3941 . . . . . . . 8 (𝜑 → (𝐵(,)𝐴) ⊆ (𝑋(,)𝑌))
4544sselda 3930 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐴)) → 𝑥 ∈ (𝑋(,)𝑌))
4645, 25syldan 591 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,)𝐴)) → 𝐶𝑉)
47 ioombl 25513 . . . . . . . 8 (𝐵(,)𝐴) ∈ dom vol
4847a1i 11 . . . . . . 7 (𝜑 → (𝐵(,)𝐴) ∈ dom vol)
4944, 48, 25, 29iblss 25753 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐵(,)𝐴) ↦ 𝐶) ∈ 𝐿1)
5046, 49itgcl 25732 . . . . 5 (𝜑 → ∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ)
5150negcld 11470 . . . 4 (𝜑 → -∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ)
5251adantr 480 . . 3 ((𝜑𝐵𝐴) → -∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ)
5337, 52eqeltrd 2833 . 2 ((𝜑𝐵𝐴) → ⨜[𝐴𝐵]𝐶 d𝑥 ∈ ℂ)
547, 12, 33, 53lecasei 11230 1 (𝜑 → ⨜[𝐴𝐵]𝐶 d𝑥 ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2113  wss 3898   class class class wbr 5095  cmpt 5176  dom cdm 5621  (class class class)co 7355  cc 11015  cr 11016  *cxr 11156  cle 11158  -cneg 11356  (,)cioo 13252  [,]cicc 13255  volcvol 25411  𝐿1cibl 25565  citg 25566  cdit 25794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095  ax-addf 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-ofr 7620  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-pm 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-oi 9407  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-n0 12393  df-z 12480  df-uz 12743  df-q 12853  df-rp 12897  df-xadd 13018  df-ioo 13256  df-ico 13258  df-icc 13259  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-clim 15402  df-rlim 15403  df-sum 15601  df-xmet 21293  df-met 21294  df-ovol 25412  df-vol 25413  df-mbf 25567  df-itg1 25568  df-itg2 25569  df-ibl 25570  df-itg 25571  df-0p 25618  df-ditg 25795
This theorem is referenced by:  ditgsplit  25809  itgsubstlem  26002
  Copyright terms: Public domain W3C validator