MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgcl Structured version   Visualization version   GIF version

Theorem ditgcl 24461
Description: Closure of a directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypotheses
Ref Expression
ditgcl.x (𝜑𝑋 ∈ ℝ)
ditgcl.y (𝜑𝑌 ∈ ℝ)
ditgcl.a (𝜑𝐴 ∈ (𝑋[,]𝑌))
ditgcl.b (𝜑𝐵 ∈ (𝑋[,]𝑌))
ditgcl.c ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐶𝑉)
ditgcl.i (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1)
Assertion
Ref Expression
ditgcl (𝜑 → ⨜[𝐴𝐵]𝐶 d𝑥 ∈ ℂ)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝑥,𝑉   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem ditgcl
StepHypRef Expression
1 ditgcl.a . . . 4 (𝜑𝐴 ∈ (𝑋[,]𝑌))
2 ditgcl.x . . . . 5 (𝜑𝑋 ∈ ℝ)
3 ditgcl.y . . . . 5 (𝜑𝑌 ∈ ℝ)
4 elicc2 12790 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
52, 3, 4syl2anc 587 . . . 4 (𝜑 → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
61, 5mpbid 235 . . 3 (𝜑 → (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌))
76simp1d 1139 . 2 (𝜑𝐴 ∈ ℝ)
8 ditgcl.b . . . 4 (𝜑𝐵 ∈ (𝑋[,]𝑌))
9 elicc2 12790 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
102, 3, 9syl2anc 587 . . . 4 (𝜑 → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
118, 10mpbid 235 . . 3 (𝜑 → (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌))
1211simp1d 1139 . 2 (𝜑𝐵 ∈ ℝ)
13 simpr 488 . . . 4 ((𝜑𝐴𝐵) → 𝐴𝐵)
1413ditgpos 24459 . . 3 ((𝜑𝐴𝐵) → ⨜[𝐴𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥)
152rexrd 10680 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ*)
166simp2d 1140 . . . . . . . . 9 (𝜑𝑋𝐴)
17 iooss1 12761 . . . . . . . . 9 ((𝑋 ∈ ℝ*𝑋𝐴) → (𝐴(,)𝐵) ⊆ (𝑋(,)𝐵))
1815, 16, 17syl2anc 587 . . . . . . . 8 (𝜑 → (𝐴(,)𝐵) ⊆ (𝑋(,)𝐵))
193rexrd 10680 . . . . . . . . 9 (𝜑𝑌 ∈ ℝ*)
2011simp3d 1141 . . . . . . . . 9 (𝜑𝐵𝑌)
21 iooss2 12762 . . . . . . . . 9 ((𝑌 ∈ ℝ*𝐵𝑌) → (𝑋(,)𝐵) ⊆ (𝑋(,)𝑌))
2219, 20, 21syl2anc 587 . . . . . . . 8 (𝜑 → (𝑋(,)𝐵) ⊆ (𝑋(,)𝑌))
2318, 22sstrd 3925 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ (𝑋(,)𝑌))
2423sselda 3915 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝑋(,)𝑌))
25 ditgcl.c . . . . . 6 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐶𝑉)
2624, 25syldan 594 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐶𝑉)
27 ioombl 24169 . . . . . . 7 (𝐴(,)𝐵) ∈ dom vol
2827a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
29 ditgcl.i . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1)
3023, 28, 25, 29iblss 24408 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐶) ∈ 𝐿1)
3126, 30itgcl 24387 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)𝐶 d𝑥 ∈ ℂ)
3231adantr 484 . . 3 ((𝜑𝐴𝐵) → ∫(𝐴(,)𝐵)𝐶 d𝑥 ∈ ℂ)
3314, 32eqeltrd 2890 . 2 ((𝜑𝐴𝐵) → ⨜[𝐴𝐵]𝐶 d𝑥 ∈ ℂ)
34 simpr 488 . . . 4 ((𝜑𝐵𝐴) → 𝐵𝐴)
3512adantr 484 . . . 4 ((𝜑𝐵𝐴) → 𝐵 ∈ ℝ)
367adantr 484 . . . 4 ((𝜑𝐵𝐴) → 𝐴 ∈ ℝ)
3734, 35, 36ditgneg 24460 . . 3 ((𝜑𝐵𝐴) → ⨜[𝐴𝐵]𝐶 d𝑥 = -∫(𝐵(,)𝐴)𝐶 d𝑥)
3811simp2d 1140 . . . . . . . . . 10 (𝜑𝑋𝐵)
39 iooss1 12761 . . . . . . . . . 10 ((𝑋 ∈ ℝ*𝑋𝐵) → (𝐵(,)𝐴) ⊆ (𝑋(,)𝐴))
4015, 38, 39syl2anc 587 . . . . . . . . 9 (𝜑 → (𝐵(,)𝐴) ⊆ (𝑋(,)𝐴))
416simp3d 1141 . . . . . . . . . 10 (𝜑𝐴𝑌)
42 iooss2 12762 . . . . . . . . . 10 ((𝑌 ∈ ℝ*𝐴𝑌) → (𝑋(,)𝐴) ⊆ (𝑋(,)𝑌))
4319, 41, 42syl2anc 587 . . . . . . . . 9 (𝜑 → (𝑋(,)𝐴) ⊆ (𝑋(,)𝑌))
4440, 43sstrd 3925 . . . . . . . 8 (𝜑 → (𝐵(,)𝐴) ⊆ (𝑋(,)𝑌))
4544sselda 3915 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐴)) → 𝑥 ∈ (𝑋(,)𝑌))
4645, 25syldan 594 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,)𝐴)) → 𝐶𝑉)
47 ioombl 24169 . . . . . . . 8 (𝐵(,)𝐴) ∈ dom vol
4847a1i 11 . . . . . . 7 (𝜑 → (𝐵(,)𝐴) ∈ dom vol)
4944, 48, 25, 29iblss 24408 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐵(,)𝐴) ↦ 𝐶) ∈ 𝐿1)
5046, 49itgcl 24387 . . . . 5 (𝜑 → ∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ)
5150negcld 10973 . . . 4 (𝜑 → -∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ)
5251adantr 484 . . 3 ((𝜑𝐵𝐴) → -∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ)
5337, 52eqeltrd 2890 . 2 ((𝜑𝐵𝐴) → ⨜[𝐴𝐵]𝐶 d𝑥 ∈ ℂ)
547, 12, 33, 53lecasei 10735 1 (𝜑 → ⨜[𝐴𝐵]𝐶 d𝑥 ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084  wcel 2111  wss 3881   class class class wbr 5030  cmpt 5110  dom cdm 5519  (class class class)co 7135  cc 10524  cr 10525  *cxr 10663  cle 10665  -cneg 10860  (,)cioo 12726  [,]cicc 12729  volcvol 24067  𝐿1cibl 24221  citg 24222  cdit 24449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xadd 12496  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-xmet 20084  df-met 20085  df-ovol 24068  df-vol 24069  df-mbf 24223  df-itg1 24224  df-itg2 24225  df-ibl 24226  df-itg 24227  df-0p 24274  df-ditg 24450
This theorem is referenced by:  ditgsplit  24464  itgsubstlem  24651
  Copyright terms: Public domain W3C validator