| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ditgcl | Structured version Visualization version GIF version | ||
| Description: Closure of a directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| Ref | Expression |
|---|---|
| ditgcl.x | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
| ditgcl.y | ⊢ (𝜑 → 𝑌 ∈ ℝ) |
| ditgcl.a | ⊢ (𝜑 → 𝐴 ∈ (𝑋[,]𝑌)) |
| ditgcl.b | ⊢ (𝜑 → 𝐵 ∈ (𝑋[,]𝑌)) |
| ditgcl.c | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ 𝑉) |
| ditgcl.i | ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1) |
| Ref | Expression |
|---|---|
| ditgcl | ⊢ (𝜑 → ⨜[𝐴 → 𝐵]𝐶 d𝑥 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ditgcl.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝑋[,]𝑌)) | |
| 2 | ditgcl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
| 3 | ditgcl.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ℝ) | |
| 4 | elicc2 13433 | . . . . 5 ⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌))) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌))) |
| 6 | 1, 5 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌)) |
| 7 | 6 | simp1d 1142 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 8 | ditgcl.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (𝑋[,]𝑌)) | |
| 9 | elicc2 13433 | . . . . 5 ⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌))) | |
| 10 | 2, 3, 9 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌))) |
| 11 | 8, 10 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌)) |
| 12 | 11 | simp1d 1142 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 13 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
| 14 | 13 | ditgpos 25814 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ⨜[𝐴 → 𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥) |
| 15 | 2 | rexrd 11290 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ ℝ*) |
| 16 | 6 | simp2d 1143 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ≤ 𝐴) |
| 17 | iooss1 13402 | . . . . . . . . 9 ⊢ ((𝑋 ∈ ℝ* ∧ 𝑋 ≤ 𝐴) → (𝐴(,)𝐵) ⊆ (𝑋(,)𝐵)) | |
| 18 | 15, 16, 17 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝑋(,)𝐵)) |
| 19 | 3 | rexrd 11290 | . . . . . . . . 9 ⊢ (𝜑 → 𝑌 ∈ ℝ*) |
| 20 | 11 | simp3d 1144 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ≤ 𝑌) |
| 21 | iooss2 13403 | . . . . . . . . 9 ⊢ ((𝑌 ∈ ℝ* ∧ 𝐵 ≤ 𝑌) → (𝑋(,)𝐵) ⊆ (𝑋(,)𝑌)) | |
| 22 | 19, 20, 21 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝑋(,)𝐵) ⊆ (𝑋(,)𝑌)) |
| 23 | 18, 22 | sstrd 3974 | . . . . . . 7 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝑋(,)𝑌)) |
| 24 | 23 | sselda 3963 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝑋(,)𝑌)) |
| 25 | ditgcl.c | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ 𝑉) | |
| 26 | 24, 25 | syldan 591 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ 𝑉) |
| 27 | ioombl 25523 | . . . . . . 7 ⊢ (𝐴(,)𝐵) ∈ dom vol | |
| 28 | 27 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (𝐴(,)𝐵) ∈ dom vol) |
| 29 | ditgcl.i | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1) | |
| 30 | 23, 28, 25, 29 | iblss 25763 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐶) ∈ 𝐿1) |
| 31 | 26, 30 | itgcl 25742 | . . . 4 ⊢ (𝜑 → ∫(𝐴(,)𝐵)𝐶 d𝑥 ∈ ℂ) |
| 32 | 31 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ∫(𝐴(,)𝐵)𝐶 d𝑥 ∈ ℂ) |
| 33 | 14, 32 | eqeltrd 2835 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ⨜[𝐴 → 𝐵]𝐶 d𝑥 ∈ ℂ) |
| 34 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐵 ≤ 𝐴) | |
| 35 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐵 ∈ ℝ) |
| 36 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐴 ∈ ℝ) |
| 37 | 34, 35, 36 | ditgneg 25815 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ⨜[𝐴 → 𝐵]𝐶 d𝑥 = -∫(𝐵(,)𝐴)𝐶 d𝑥) |
| 38 | 11 | simp2d 1143 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ≤ 𝐵) |
| 39 | iooss1 13402 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ ℝ* ∧ 𝑋 ≤ 𝐵) → (𝐵(,)𝐴) ⊆ (𝑋(,)𝐴)) | |
| 40 | 15, 38, 39 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵(,)𝐴) ⊆ (𝑋(,)𝐴)) |
| 41 | 6 | simp3d 1144 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ≤ 𝑌) |
| 42 | iooss2 13403 | . . . . . . . . . 10 ⊢ ((𝑌 ∈ ℝ* ∧ 𝐴 ≤ 𝑌) → (𝑋(,)𝐴) ⊆ (𝑋(,)𝑌)) | |
| 43 | 19, 41, 42 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝑋(,)𝐴) ⊆ (𝑋(,)𝑌)) |
| 44 | 40, 43 | sstrd 3974 | . . . . . . . 8 ⊢ (𝜑 → (𝐵(,)𝐴) ⊆ (𝑋(,)𝑌)) |
| 45 | 44 | sselda 3963 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵(,)𝐴)) → 𝑥 ∈ (𝑋(,)𝑌)) |
| 46 | 45, 25 | syldan 591 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵(,)𝐴)) → 𝐶 ∈ 𝑉) |
| 47 | ioombl 25523 | . . . . . . . 8 ⊢ (𝐵(,)𝐴) ∈ dom vol | |
| 48 | 47 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐵(,)𝐴) ∈ dom vol) |
| 49 | 44, 48, 25, 29 | iblss 25763 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝐵(,)𝐴) ↦ 𝐶) ∈ 𝐿1) |
| 50 | 46, 49 | itgcl 25742 | . . . . 5 ⊢ (𝜑 → ∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ) |
| 51 | 50 | negcld 11586 | . . . 4 ⊢ (𝜑 → -∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ) |
| 52 | 51 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → -∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ) |
| 53 | 37, 52 | eqeltrd 2835 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ⨜[𝐴 → 𝐵]𝐶 d𝑥 ∈ ℂ) |
| 54 | 7, 12, 33, 53 | lecasei 11346 | 1 ⊢ (𝜑 → ⨜[𝐴 → 𝐵]𝐶 d𝑥 ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ⊆ wss 3931 class class class wbr 5124 ↦ cmpt 5206 dom cdm 5659 (class class class)co 7410 ℂcc 11132 ℝcr 11133 ℝ*cxr 11273 ≤ cle 11275 -cneg 11472 (,)cioo 13367 [,]cicc 13370 volcvol 25421 𝐿1cibl 25575 ∫citg 25576 ⨜cdit 25804 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-disj 5092 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-ofr 7677 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-inf 9460 df-oi 9529 df-dju 9920 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-n0 12507 df-z 12594 df-uz 12858 df-q 12970 df-rp 13014 df-xadd 13134 df-ioo 13371 df-ico 13373 df-icc 13374 df-fz 13530 df-fzo 13677 df-fl 13814 df-mod 13892 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 df-rlim 15510 df-sum 15708 df-xmet 21313 df-met 21314 df-ovol 25422 df-vol 25423 df-mbf 25577 df-itg1 25578 df-itg2 25579 df-ibl 25580 df-itg 25581 df-0p 25628 df-ditg 25805 |
| This theorem is referenced by: ditgsplit 25819 itgsubstlem 26012 |
| Copyright terms: Public domain | W3C validator |