MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgcl Structured version   Visualization version   GIF version

Theorem ditgcl 25031
Description: Closure of a directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypotheses
Ref Expression
ditgcl.x (𝜑𝑋 ∈ ℝ)
ditgcl.y (𝜑𝑌 ∈ ℝ)
ditgcl.a (𝜑𝐴 ∈ (𝑋[,]𝑌))
ditgcl.b (𝜑𝐵 ∈ (𝑋[,]𝑌))
ditgcl.c ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐶𝑉)
ditgcl.i (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1)
Assertion
Ref Expression
ditgcl (𝜑 → ⨜[𝐴𝐵]𝐶 d𝑥 ∈ ℂ)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝑥,𝑉   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem ditgcl
StepHypRef Expression
1 ditgcl.a . . . 4 (𝜑𝐴 ∈ (𝑋[,]𝑌))
2 ditgcl.x . . . . 5 (𝜑𝑋 ∈ ℝ)
3 ditgcl.y . . . . 5 (𝜑𝑌 ∈ ℝ)
4 elicc2 13153 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
52, 3, 4syl2anc 584 . . . 4 (𝜑 → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
61, 5mpbid 231 . . 3 (𝜑 → (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌))
76simp1d 1141 . 2 (𝜑𝐴 ∈ ℝ)
8 ditgcl.b . . . 4 (𝜑𝐵 ∈ (𝑋[,]𝑌))
9 elicc2 13153 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
102, 3, 9syl2anc 584 . . . 4 (𝜑 → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
118, 10mpbid 231 . . 3 (𝜑 → (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌))
1211simp1d 1141 . 2 (𝜑𝐵 ∈ ℝ)
13 simpr 485 . . . 4 ((𝜑𝐴𝐵) → 𝐴𝐵)
1413ditgpos 25029 . . 3 ((𝜑𝐴𝐵) → ⨜[𝐴𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥)
152rexrd 11034 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ*)
166simp2d 1142 . . . . . . . . 9 (𝜑𝑋𝐴)
17 iooss1 13123 . . . . . . . . 9 ((𝑋 ∈ ℝ*𝑋𝐴) → (𝐴(,)𝐵) ⊆ (𝑋(,)𝐵))
1815, 16, 17syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴(,)𝐵) ⊆ (𝑋(,)𝐵))
193rexrd 11034 . . . . . . . . 9 (𝜑𝑌 ∈ ℝ*)
2011simp3d 1143 . . . . . . . . 9 (𝜑𝐵𝑌)
21 iooss2 13124 . . . . . . . . 9 ((𝑌 ∈ ℝ*𝐵𝑌) → (𝑋(,)𝐵) ⊆ (𝑋(,)𝑌))
2219, 20, 21syl2anc 584 . . . . . . . 8 (𝜑 → (𝑋(,)𝐵) ⊆ (𝑋(,)𝑌))
2318, 22sstrd 3932 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ (𝑋(,)𝑌))
2423sselda 3922 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝑋(,)𝑌))
25 ditgcl.c . . . . . 6 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐶𝑉)
2624, 25syldan 591 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐶𝑉)
27 ioombl 24738 . . . . . . 7 (𝐴(,)𝐵) ∈ dom vol
2827a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
29 ditgcl.i . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1)
3023, 28, 25, 29iblss 24978 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐶) ∈ 𝐿1)
3126, 30itgcl 24957 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)𝐶 d𝑥 ∈ ℂ)
3231adantr 481 . . 3 ((𝜑𝐴𝐵) → ∫(𝐴(,)𝐵)𝐶 d𝑥 ∈ ℂ)
3314, 32eqeltrd 2840 . 2 ((𝜑𝐴𝐵) → ⨜[𝐴𝐵]𝐶 d𝑥 ∈ ℂ)
34 simpr 485 . . . 4 ((𝜑𝐵𝐴) → 𝐵𝐴)
3512adantr 481 . . . 4 ((𝜑𝐵𝐴) → 𝐵 ∈ ℝ)
367adantr 481 . . . 4 ((𝜑𝐵𝐴) → 𝐴 ∈ ℝ)
3734, 35, 36ditgneg 25030 . . 3 ((𝜑𝐵𝐴) → ⨜[𝐴𝐵]𝐶 d𝑥 = -∫(𝐵(,)𝐴)𝐶 d𝑥)
3811simp2d 1142 . . . . . . . . . 10 (𝜑𝑋𝐵)
39 iooss1 13123 . . . . . . . . . 10 ((𝑋 ∈ ℝ*𝑋𝐵) → (𝐵(,)𝐴) ⊆ (𝑋(,)𝐴))
4015, 38, 39syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐵(,)𝐴) ⊆ (𝑋(,)𝐴))
416simp3d 1143 . . . . . . . . . 10 (𝜑𝐴𝑌)
42 iooss2 13124 . . . . . . . . . 10 ((𝑌 ∈ ℝ*𝐴𝑌) → (𝑋(,)𝐴) ⊆ (𝑋(,)𝑌))
4319, 41, 42syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑋(,)𝐴) ⊆ (𝑋(,)𝑌))
4440, 43sstrd 3932 . . . . . . . 8 (𝜑 → (𝐵(,)𝐴) ⊆ (𝑋(,)𝑌))
4544sselda 3922 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐴)) → 𝑥 ∈ (𝑋(,)𝑌))
4645, 25syldan 591 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,)𝐴)) → 𝐶𝑉)
47 ioombl 24738 . . . . . . . 8 (𝐵(,)𝐴) ∈ dom vol
4847a1i 11 . . . . . . 7 (𝜑 → (𝐵(,)𝐴) ∈ dom vol)
4944, 48, 25, 29iblss 24978 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐵(,)𝐴) ↦ 𝐶) ∈ 𝐿1)
5046, 49itgcl 24957 . . . . 5 (𝜑 → ∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ)
5150negcld 11328 . . . 4 (𝜑 → -∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ)
5251adantr 481 . . 3 ((𝜑𝐵𝐴) → -∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ)
5337, 52eqeltrd 2840 . 2 ((𝜑𝐵𝐴) → ⨜[𝐴𝐵]𝐶 d𝑥 ∈ ℂ)
547, 12, 33, 53lecasei 11090 1 (𝜑 → ⨜[𝐴𝐵]𝐶 d𝑥 ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wcel 2107  wss 3888   class class class wbr 5075  cmpt 5158  dom cdm 5590  (class class class)co 7284  cc 10878  cr 10879  *cxr 11017  cle 11019  -cneg 11215  (,)cioo 13088  [,]cicc 13091  volcvol 24636  𝐿1cibl 24790  citg 24791  cdit 25019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958  ax-addf 10959
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-disj 5041  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-ofr 7543  df-om 7722  df-1st 7840  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-2o 8307  df-er 8507  df-map 8626  df-pm 8627  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-sup 9210  df-inf 9211  df-oi 9278  df-dju 9668  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-n0 12243  df-z 12329  df-uz 12592  df-q 12698  df-rp 12740  df-xadd 12858  df-ioo 13092  df-ico 13094  df-icc 13095  df-fz 13249  df-fzo 13392  df-fl 13521  df-mod 13599  df-seq 13731  df-exp 13792  df-hash 14054  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-clim 15206  df-rlim 15207  df-sum 15407  df-xmet 20599  df-met 20600  df-ovol 24637  df-vol 24638  df-mbf 24792  df-itg1 24793  df-itg2 24794  df-ibl 24795  df-itg 24796  df-0p 24843  df-ditg 25020
This theorem is referenced by:  ditgsplit  25034  itgsubstlem  25221
  Copyright terms: Public domain W3C validator