MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc2ditglem Structured version   Visualization version   GIF version

Theorem ftc2ditglem 26009
Description: Lemma for ftc2ditg 26010. (Contributed by Mario Carneiro, 3-Sep-2014.)
Hypotheses
Ref Expression
ftc2ditg.x (𝜑𝑋 ∈ ℝ)
ftc2ditg.y (𝜑𝑌 ∈ ℝ)
ftc2ditg.a (𝜑𝐴 ∈ (𝑋[,]𝑌))
ftc2ditg.b (𝜑𝐵 ∈ (𝑋[,]𝑌))
ftc2ditg.c (𝜑 → (ℝ D 𝐹) ∈ ((𝑋(,)𝑌)–cn→ℂ))
ftc2ditg.i (𝜑 → (ℝ D 𝐹) ∈ 𝐿1)
ftc2ditg.f (𝜑𝐹 ∈ ((𝑋[,]𝑌)–cn→ℂ))
Assertion
Ref Expression
ftc2ditglem ((𝜑𝐴𝐵) → ⨜[𝐴𝐵]((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝑡,𝐹   𝜑,𝑡   𝑡,𝑋   𝑡,𝑌

Proof of Theorem ftc2ditglem
StepHypRef Expression
1 simpr 484 . . 3 ((𝜑𝐴𝐵) → 𝐴𝐵)
21ditgpos 25814 . 2 ((𝜑𝐴𝐵) → ⨜[𝐴𝐵]((ℝ D 𝐹)‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
3 ftc2ditg.x . . . . . . 7 (𝜑𝑋 ∈ ℝ)
4 ftc2ditg.y . . . . . . 7 (𝜑𝑌 ∈ ℝ)
5 iccssre 13451 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋[,]𝑌) ⊆ ℝ)
63, 4, 5syl2anc 584 . . . . . 6 (𝜑 → (𝑋[,]𝑌) ⊆ ℝ)
7 ftc2ditg.a . . . . . 6 (𝜑𝐴 ∈ (𝑋[,]𝑌))
86, 7sseldd 3964 . . . . 5 (𝜑𝐴 ∈ ℝ)
98adantr 480 . . . 4 ((𝜑𝐴𝐵) → 𝐴 ∈ ℝ)
10 ftc2ditg.b . . . . . 6 (𝜑𝐵 ∈ (𝑋[,]𝑌))
116, 10sseldd 3964 . . . . 5 (𝜑𝐵 ∈ ℝ)
1211adantr 480 . . . 4 ((𝜑𝐴𝐵) → 𝐵 ∈ ℝ)
13 ax-resscn 11191 . . . . . . . 8 ℝ ⊆ ℂ
1413a1i 11 . . . . . . 7 ((𝜑𝐴𝐵) → ℝ ⊆ ℂ)
15 ftc2ditg.f . . . . . . . . 9 (𝜑𝐹 ∈ ((𝑋[,]𝑌)–cn→ℂ))
16 cncff 24842 . . . . . . . . 9 (𝐹 ∈ ((𝑋[,]𝑌)–cn→ℂ) → 𝐹:(𝑋[,]𝑌)⟶ℂ)
1715, 16syl 17 . . . . . . . 8 (𝜑𝐹:(𝑋[,]𝑌)⟶ℂ)
1817adantr 480 . . . . . . 7 ((𝜑𝐴𝐵) → 𝐹:(𝑋[,]𝑌)⟶ℂ)
196adantr 480 . . . . . . 7 ((𝜑𝐴𝐵) → (𝑋[,]𝑌) ⊆ ℝ)
20 iccssre 13451 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
218, 11, 20syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
2221adantr 480 . . . . . . 7 ((𝜑𝐴𝐵) → (𝐴[,]𝐵) ⊆ ℝ)
23 eqid 2736 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
24 tgioo4 24749 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
2523, 24dvres 25869 . . . . . . 7 (((ℝ ⊆ ℂ ∧ 𝐹:(𝑋[,]𝑌)⟶ℂ) ∧ ((𝑋[,]𝑌) ⊆ ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
2614, 18, 19, 22, 25syl22anc 838 . . . . . 6 ((𝜑𝐴𝐵) → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
27 iccntr 24766 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
288, 11, 27syl2anc 584 . . . . . . . 8 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
2928adantr 480 . . . . . . 7 ((𝜑𝐴𝐵) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
3029reseq2d 5971 . . . . . 6 ((𝜑𝐴𝐵) → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)))
3126, 30eqtrd 2771 . . . . 5 ((𝜑𝐴𝐵) → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)))
323rexrd 11290 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ*)
33 elicc2 13433 . . . . . . . . . . . 12 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
343, 4, 33syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
357, 34mpbid 232 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌))
3635simp2d 1143 . . . . . . . . 9 (𝜑𝑋𝐴)
37 iooss1 13402 . . . . . . . . 9 ((𝑋 ∈ ℝ*𝑋𝐴) → (𝐴(,)𝐵) ⊆ (𝑋(,)𝐵))
3832, 36, 37syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴(,)𝐵) ⊆ (𝑋(,)𝐵))
394rexrd 11290 . . . . . . . . 9 (𝜑𝑌 ∈ ℝ*)
40 elicc2 13433 . . . . . . . . . . . 12 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
413, 4, 40syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
4210, 41mpbid 232 . . . . . . . . . 10 (𝜑 → (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌))
4342simp3d 1144 . . . . . . . . 9 (𝜑𝐵𝑌)
44 iooss2 13403 . . . . . . . . 9 ((𝑌 ∈ ℝ*𝐵𝑌) → (𝑋(,)𝐵) ⊆ (𝑋(,)𝑌))
4539, 43, 44syl2anc 584 . . . . . . . 8 (𝜑 → (𝑋(,)𝐵) ⊆ (𝑋(,)𝑌))
4638, 45sstrd 3974 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ (𝑋(,)𝑌))
4746adantr 480 . . . . . 6 ((𝜑𝐴𝐵) → (𝐴(,)𝐵) ⊆ (𝑋(,)𝑌))
48 ftc2ditg.c . . . . . . 7 (𝜑 → (ℝ D 𝐹) ∈ ((𝑋(,)𝑌)–cn→ℂ))
4948adantr 480 . . . . . 6 ((𝜑𝐴𝐵) → (ℝ D 𝐹) ∈ ((𝑋(,)𝑌)–cn→ℂ))
50 rescncf 24846 . . . . . 6 ((𝐴(,)𝐵) ⊆ (𝑋(,)𝑌) → ((ℝ D 𝐹) ∈ ((𝑋(,)𝑌)–cn→ℂ) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ)))
5147, 49, 50sylc 65 . . . . 5 ((𝜑𝐴𝐵) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
5231, 51eqeltrd 2835 . . . 4 ((𝜑𝐴𝐵) → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
53 cncff 24842 . . . . . . . . . . 11 ((ℝ D 𝐹) ∈ ((𝑋(,)𝑌)–cn→ℂ) → (ℝ D 𝐹):(𝑋(,)𝑌)⟶ℂ)
5448, 53syl 17 . . . . . . . . . 10 (𝜑 → (ℝ D 𝐹):(𝑋(,)𝑌)⟶ℂ)
5554feqmptd 6952 . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) = (𝑡 ∈ (𝑋(,)𝑌) ↦ ((ℝ D 𝐹)‘𝑡)))
5655adantr 480 . . . . . . . 8 ((𝜑𝐴𝐵) → (ℝ D 𝐹) = (𝑡 ∈ (𝑋(,)𝑌) ↦ ((ℝ D 𝐹)‘𝑡)))
5756reseq1d 5970 . . . . . . 7 ((𝜑𝐴𝐵) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = ((𝑡 ∈ (𝑋(,)𝑌) ↦ ((ℝ D 𝐹)‘𝑡)) ↾ (𝐴(,)𝐵)))
5847resmptd 6032 . . . . . . 7 ((𝜑𝐴𝐵) → ((𝑡 ∈ (𝑋(,)𝑌) ↦ ((ℝ D 𝐹)‘𝑡)) ↾ (𝐴(,)𝐵)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)))
5957, 58eqtrd 2771 . . . . . 6 ((𝜑𝐴𝐵) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)))
6031, 59eqtrd 2771 . . . . 5 ((𝜑𝐴𝐵) → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)))
61 ioombl 25523 . . . . . . 7 (𝐴(,)𝐵) ∈ dom vol
6261a1i 11 . . . . . 6 ((𝜑𝐴𝐵) → (𝐴(,)𝐵) ∈ dom vol)
63 fvexd 6896 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑡 ∈ (𝑋(,)𝑌)) → ((ℝ D 𝐹)‘𝑡) ∈ V)
64 ftc2ditg.i . . . . . . . 8 (𝜑 → (ℝ D 𝐹) ∈ 𝐿1)
6564adantr 480 . . . . . . 7 ((𝜑𝐴𝐵) → (ℝ D 𝐹) ∈ 𝐿1)
6656, 65eqeltrrd 2836 . . . . . 6 ((𝜑𝐴𝐵) → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ 𝐿1)
6747, 62, 63, 66iblss 25763 . . . . 5 ((𝜑𝐴𝐵) → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ 𝐿1)
6860, 67eqeltrd 2835 . . . 4 ((𝜑𝐴𝐵) → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) ∈ 𝐿1)
69 iccss2 13439 . . . . . . 7 ((𝐴 ∈ (𝑋[,]𝑌) ∧ 𝐵 ∈ (𝑋[,]𝑌)) → (𝐴[,]𝐵) ⊆ (𝑋[,]𝑌))
707, 10, 69syl2anc 584 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ (𝑋[,]𝑌))
71 rescncf 24846 . . . . . 6 ((𝐴[,]𝐵) ⊆ (𝑋[,]𝑌) → (𝐹 ∈ ((𝑋[,]𝑌)–cn→ℂ) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
7270, 15, 71sylc 65 . . . . 5 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
7372adantr 480 . . . 4 ((𝜑𝐴𝐵) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
749, 12, 1, 52, 68, 73ftc2 26008 . . 3 ((𝜑𝐴𝐵) → ∫(𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) d𝑡 = (((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴)))
7531fveq1d 6883 . . . . 5 ((𝜑𝐴𝐵) → ((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑡))
76 fvres 6900 . . . . 5 (𝑡 ∈ (𝐴(,)𝐵) → (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
7775, 76sylan9eq 2791 . . . 4 (((𝜑𝐴𝐵) ∧ 𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
7877itgeq2dv 25740 . . 3 ((𝜑𝐴𝐵) → ∫(𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
799rexrd 11290 . . . 4 ((𝜑𝐴𝐵) → 𝐴 ∈ ℝ*)
8012rexrd 11290 . . . 4 ((𝜑𝐴𝐵) → 𝐵 ∈ ℝ*)
81 ubicc2 13487 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
82 lbicc2 13486 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
83 fvres 6900 . . . . . 6 (𝐵 ∈ (𝐴[,]𝐵) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) = (𝐹𝐵))
84 fvres 6900 . . . . . 6 (𝐴 ∈ (𝐴[,]𝐵) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴) = (𝐹𝐴))
8583, 84oveqan12d 7429 . . . . 5 ((𝐵 ∈ (𝐴[,]𝐵) ∧ 𝐴 ∈ (𝐴[,]𝐵)) → (((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴)) = ((𝐹𝐵) − (𝐹𝐴)))
8681, 82, 85syl2anc 584 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴)) = ((𝐹𝐵) − (𝐹𝐴)))
8779, 80, 1, 86syl3anc 1373 . . 3 ((𝜑𝐴𝐵) → (((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴)) = ((𝐹𝐵) − (𝐹𝐴)))
8874, 78, 873eqtr3d 2779 . 2 ((𝜑𝐴𝐵) → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
892, 88eqtrd 2771 1 ((𝜑𝐴𝐵) → ⨜[𝐴𝐵]((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3464  wss 3931   class class class wbr 5124  cmpt 5206  dom cdm 5659  ran crn 5660  cres 5661  wf 6532  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  *cxr 11273  cle 11275  cmin 11471  (,)cioo 13367  [,]cicc 13370  TopOpenctopn 17440  topGenctg 17456  fldccnfld 21320  intcnt 22960  cnccncf 24825  volcvol 25421  𝐿1cibl 25575  citg 25576  cdit 25804   D cdv 25821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cc 10454  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-symdif 4233  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-disj 5092  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-ofr 7677  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-omul 8490  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-dju 9920  df-card 9958  df-acn 9961  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-rlim 15510  df-sum 15708  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-cmp 23330  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-ovol 25422  df-vol 25423  df-mbf 25577  df-itg1 25578  df-itg2 25579  df-ibl 25580  df-itg 25581  df-0p 25628  df-ditg 25805  df-limc 25824  df-dv 25825
This theorem is referenced by:  ftc2ditg  26010
  Copyright terms: Public domain W3C validator