MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc2ditglem Structured version   Visualization version   GIF version

Theorem ftc2ditglem 24559
Description: Lemma for ftc2ditg 24560. (Contributed by Mario Carneiro, 3-Sep-2014.)
Hypotheses
Ref Expression
ftc2ditg.x (𝜑𝑋 ∈ ℝ)
ftc2ditg.y (𝜑𝑌 ∈ ℝ)
ftc2ditg.a (𝜑𝐴 ∈ (𝑋[,]𝑌))
ftc2ditg.b (𝜑𝐵 ∈ (𝑋[,]𝑌))
ftc2ditg.c (𝜑 → (ℝ D 𝐹) ∈ ((𝑋(,)𝑌)–cn→ℂ))
ftc2ditg.i (𝜑 → (ℝ D 𝐹) ∈ 𝐿1)
ftc2ditg.f (𝜑𝐹 ∈ ((𝑋[,]𝑌)–cn→ℂ))
Assertion
Ref Expression
ftc2ditglem ((𝜑𝐴𝐵) → ⨜[𝐴𝐵]((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝑡,𝐹   𝜑,𝑡   𝑡,𝑋   𝑡,𝑌

Proof of Theorem ftc2ditglem
StepHypRef Expression
1 simpr 485 . . 3 ((𝜑𝐴𝐵) → 𝐴𝐵)
21ditgpos 24371 . 2 ((𝜑𝐴𝐵) → ⨜[𝐴𝐵]((ℝ D 𝐹)‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
3 ftc2ditg.x . . . . . . 7 (𝜑𝑋 ∈ ℝ)
4 ftc2ditg.y . . . . . . 7 (𝜑𝑌 ∈ ℝ)
5 iccssre 12811 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋[,]𝑌) ⊆ ℝ)
63, 4, 5syl2anc 584 . . . . . 6 (𝜑 → (𝑋[,]𝑌) ⊆ ℝ)
7 ftc2ditg.a . . . . . 6 (𝜑𝐴 ∈ (𝑋[,]𝑌))
86, 7sseldd 3971 . . . . 5 (𝜑𝐴 ∈ ℝ)
98adantr 481 . . . 4 ((𝜑𝐴𝐵) → 𝐴 ∈ ℝ)
10 ftc2ditg.b . . . . . 6 (𝜑𝐵 ∈ (𝑋[,]𝑌))
116, 10sseldd 3971 . . . . 5 (𝜑𝐵 ∈ ℝ)
1211adantr 481 . . . 4 ((𝜑𝐴𝐵) → 𝐵 ∈ ℝ)
13 ax-resscn 10586 . . . . . . . 8 ℝ ⊆ ℂ
1413a1i 11 . . . . . . 7 ((𝜑𝐴𝐵) → ℝ ⊆ ℂ)
15 ftc2ditg.f . . . . . . . . 9 (𝜑𝐹 ∈ ((𝑋[,]𝑌)–cn→ℂ))
16 cncff 23418 . . . . . . . . 9 (𝐹 ∈ ((𝑋[,]𝑌)–cn→ℂ) → 𝐹:(𝑋[,]𝑌)⟶ℂ)
1715, 16syl 17 . . . . . . . 8 (𝜑𝐹:(𝑋[,]𝑌)⟶ℂ)
1817adantr 481 . . . . . . 7 ((𝜑𝐴𝐵) → 𝐹:(𝑋[,]𝑌)⟶ℂ)
196adantr 481 . . . . . . 7 ((𝜑𝐴𝐵) → (𝑋[,]𝑌) ⊆ ℝ)
20 iccssre 12811 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
218, 11, 20syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
2221adantr 481 . . . . . . 7 ((𝜑𝐴𝐵) → (𝐴[,]𝐵) ⊆ ℝ)
23 eqid 2825 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2423tgioo2 23328 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
2523, 24dvres 24426 . . . . . . 7 (((ℝ ⊆ ℂ ∧ 𝐹:(𝑋[,]𝑌)⟶ℂ) ∧ ((𝑋[,]𝑌) ⊆ ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
2614, 18, 19, 22, 25syl22anc 836 . . . . . 6 ((𝜑𝐴𝐵) → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
27 iccntr 23346 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
288, 11, 27syl2anc 584 . . . . . . . 8 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
2928adantr 481 . . . . . . 7 ((𝜑𝐴𝐵) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
3029reseq2d 5851 . . . . . 6 ((𝜑𝐴𝐵) → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)))
3126, 30eqtrd 2860 . . . . 5 ((𝜑𝐴𝐵) → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)))
323rexrd 10683 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ*)
33 elicc2 12794 . . . . . . . . . . . 12 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
343, 4, 33syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
357, 34mpbid 233 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌))
3635simp2d 1137 . . . . . . . . 9 (𝜑𝑋𝐴)
37 iooss1 12766 . . . . . . . . 9 ((𝑋 ∈ ℝ*𝑋𝐴) → (𝐴(,)𝐵) ⊆ (𝑋(,)𝐵))
3832, 36, 37syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴(,)𝐵) ⊆ (𝑋(,)𝐵))
394rexrd 10683 . . . . . . . . 9 (𝜑𝑌 ∈ ℝ*)
40 elicc2 12794 . . . . . . . . . . . 12 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
413, 4, 40syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
4210, 41mpbid 233 . . . . . . . . . 10 (𝜑 → (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌))
4342simp3d 1138 . . . . . . . . 9 (𝜑𝐵𝑌)
44 iooss2 12767 . . . . . . . . 9 ((𝑌 ∈ ℝ*𝐵𝑌) → (𝑋(,)𝐵) ⊆ (𝑋(,)𝑌))
4539, 43, 44syl2anc 584 . . . . . . . 8 (𝜑 → (𝑋(,)𝐵) ⊆ (𝑋(,)𝑌))
4638, 45sstrd 3980 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ (𝑋(,)𝑌))
4746adantr 481 . . . . . 6 ((𝜑𝐴𝐵) → (𝐴(,)𝐵) ⊆ (𝑋(,)𝑌))
48 ftc2ditg.c . . . . . . 7 (𝜑 → (ℝ D 𝐹) ∈ ((𝑋(,)𝑌)–cn→ℂ))
4948adantr 481 . . . . . 6 ((𝜑𝐴𝐵) → (ℝ D 𝐹) ∈ ((𝑋(,)𝑌)–cn→ℂ))
50 rescncf 23422 . . . . . 6 ((𝐴(,)𝐵) ⊆ (𝑋(,)𝑌) → ((ℝ D 𝐹) ∈ ((𝑋(,)𝑌)–cn→ℂ) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ)))
5147, 49, 50sylc 65 . . . . 5 ((𝜑𝐴𝐵) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
5231, 51eqeltrd 2917 . . . 4 ((𝜑𝐴𝐵) → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
53 cncff 23418 . . . . . . . . . . 11 ((ℝ D 𝐹) ∈ ((𝑋(,)𝑌)–cn→ℂ) → (ℝ D 𝐹):(𝑋(,)𝑌)⟶ℂ)
5448, 53syl 17 . . . . . . . . . 10 (𝜑 → (ℝ D 𝐹):(𝑋(,)𝑌)⟶ℂ)
5554feqmptd 6729 . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) = (𝑡 ∈ (𝑋(,)𝑌) ↦ ((ℝ D 𝐹)‘𝑡)))
5655adantr 481 . . . . . . . 8 ((𝜑𝐴𝐵) → (ℝ D 𝐹) = (𝑡 ∈ (𝑋(,)𝑌) ↦ ((ℝ D 𝐹)‘𝑡)))
5756reseq1d 5850 . . . . . . 7 ((𝜑𝐴𝐵) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = ((𝑡 ∈ (𝑋(,)𝑌) ↦ ((ℝ D 𝐹)‘𝑡)) ↾ (𝐴(,)𝐵)))
5847resmptd 5906 . . . . . . 7 ((𝜑𝐴𝐵) → ((𝑡 ∈ (𝑋(,)𝑌) ↦ ((ℝ D 𝐹)‘𝑡)) ↾ (𝐴(,)𝐵)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)))
5957, 58eqtrd 2860 . . . . . 6 ((𝜑𝐴𝐵) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)))
6031, 59eqtrd 2860 . . . . 5 ((𝜑𝐴𝐵) → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)))
61 ioombl 24083 . . . . . . 7 (𝐴(,)𝐵) ∈ dom vol
6261a1i 11 . . . . . 6 ((𝜑𝐴𝐵) → (𝐴(,)𝐵) ∈ dom vol)
63 fvexd 6681 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑡 ∈ (𝑋(,)𝑌)) → ((ℝ D 𝐹)‘𝑡) ∈ V)
64 ftc2ditg.i . . . . . . . 8 (𝜑 → (ℝ D 𝐹) ∈ 𝐿1)
6564adantr 481 . . . . . . 7 ((𝜑𝐴𝐵) → (ℝ D 𝐹) ∈ 𝐿1)
6656, 65eqeltrrd 2918 . . . . . 6 ((𝜑𝐴𝐵) → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ 𝐿1)
6747, 62, 63, 66iblss 24322 . . . . 5 ((𝜑𝐴𝐵) → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ 𝐿1)
6860, 67eqeltrd 2917 . . . 4 ((𝜑𝐴𝐵) → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) ∈ 𝐿1)
69 iccss2 12800 . . . . . . 7 ((𝐴 ∈ (𝑋[,]𝑌) ∧ 𝐵 ∈ (𝑋[,]𝑌)) → (𝐴[,]𝐵) ⊆ (𝑋[,]𝑌))
707, 10, 69syl2anc 584 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ (𝑋[,]𝑌))
71 rescncf 23422 . . . . . 6 ((𝐴[,]𝐵) ⊆ (𝑋[,]𝑌) → (𝐹 ∈ ((𝑋[,]𝑌)–cn→ℂ) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
7270, 15, 71sylc 65 . . . . 5 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
7372adantr 481 . . . 4 ((𝜑𝐴𝐵) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
749, 12, 1, 52, 68, 73ftc2 24558 . . 3 ((𝜑𝐴𝐵) → ∫(𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) d𝑡 = (((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴)))
7531fveq1d 6668 . . . . 5 ((𝜑𝐴𝐵) → ((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑡))
76 fvres 6685 . . . . 5 (𝑡 ∈ (𝐴(,)𝐵) → (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
7775, 76sylan9eq 2880 . . . 4 (((𝜑𝐴𝐵) ∧ 𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
7877itgeq2dv 24299 . . 3 ((𝜑𝐴𝐵) → ∫(𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
799rexrd 10683 . . . 4 ((𝜑𝐴𝐵) → 𝐴 ∈ ℝ*)
8012rexrd 10683 . . . 4 ((𝜑𝐴𝐵) → 𝐵 ∈ ℝ*)
81 ubicc2 12846 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
82 lbicc2 12845 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
83 fvres 6685 . . . . . 6 (𝐵 ∈ (𝐴[,]𝐵) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) = (𝐹𝐵))
84 fvres 6685 . . . . . 6 (𝐴 ∈ (𝐴[,]𝐵) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴) = (𝐹𝐴))
8583, 84oveqan12d 7170 . . . . 5 ((𝐵 ∈ (𝐴[,]𝐵) ∧ 𝐴 ∈ (𝐴[,]𝐵)) → (((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴)) = ((𝐹𝐵) − (𝐹𝐴)))
8681, 82, 85syl2anc 584 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴)) = ((𝐹𝐵) − (𝐹𝐴)))
8779, 80, 1, 86syl3anc 1365 . . 3 ((𝜑𝐴𝐵) → (((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴)) = ((𝐹𝐵) − (𝐹𝐴)))
8874, 78, 873eqtr3d 2868 . 2 ((𝜑𝐴𝐵) → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
892, 88eqtrd 2860 1 ((𝜑𝐴𝐵) → ⨜[𝐴𝐵]((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  Vcvv 3499  wss 3939   class class class wbr 5062  cmpt 5142  dom cdm 5553  ran crn 5554  cres 5555  wf 6347  cfv 6351  (class class class)co 7151  cc 10527  cr 10528  *cxr 10666  cle 10668  cmin 10862  (,)cioo 12731  [,]cicc 12734  TopOpenctopn 16687  topGenctg 16703  fldccnfld 20463  intcnt 21543  cnccncf 23401  volcvol 23981  𝐿1cibl 24135  citg 24136  cdit 24361   D cdv 24378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cc 9849  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-symdif 4222  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-disj 5028  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-ofr 7403  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-omul 8101  df-er 8282  df-map 8401  df-pm 8402  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-dju 9322  df-card 9360  df-acn 9363  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12383  df-xneg 12500  df-xadd 12501  df-xmul 12502  df-ioo 12735  df-ioc 12736  df-ico 12737  df-icc 12738  df-fz 12886  df-fzo 13027  df-fl 13155  df-mod 13231  df-seq 13363  df-exp 13423  df-hash 13684  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-rlim 14839  df-sum 15036  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-submnd 17947  df-mulg 18157  df-cntz 18379  df-cmn 18830  df-psmet 20455  df-xmet 20456  df-met 20457  df-bl 20458  df-mopn 20459  df-fbas 20460  df-fg 20461  df-cnfld 20464  df-top 21420  df-topon 21437  df-topsp 21459  df-bases 21472  df-cld 21545  df-ntr 21546  df-cls 21547  df-nei 21624  df-lp 21662  df-perf 21663  df-cn 21753  df-cnp 21754  df-haus 21841  df-cmp 21913  df-tx 22088  df-hmeo 22281  df-fil 22372  df-fm 22464  df-flim 22465  df-flf 22466  df-xms 22847  df-ms 22848  df-tms 22849  df-cncf 23403  df-ovol 23982  df-vol 23983  df-mbf 24137  df-itg1 24138  df-itg2 24139  df-ibl 24140  df-itg 24141  df-0p 24188  df-ditg 24362  df-limc 24381  df-dv 24382
This theorem is referenced by:  ftc2ditg  24560
  Copyright terms: Public domain W3C validator