MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc2ditglem Structured version   Visualization version   GIF version

Theorem ftc2ditglem 24113
Description: Lemma for ftc2ditg 24114. (Contributed by Mario Carneiro, 3-Sep-2014.)
Hypotheses
Ref Expression
ftc2ditg.x (𝜑𝑋 ∈ ℝ)
ftc2ditg.y (𝜑𝑌 ∈ ℝ)
ftc2ditg.a (𝜑𝐴 ∈ (𝑋[,]𝑌))
ftc2ditg.b (𝜑𝐵 ∈ (𝑋[,]𝑌))
ftc2ditg.c (𝜑 → (ℝ D 𝐹) ∈ ((𝑋(,)𝑌)–cn→ℂ))
ftc2ditg.i (𝜑 → (ℝ D 𝐹) ∈ 𝐿1)
ftc2ditg.f (𝜑𝐹 ∈ ((𝑋[,]𝑌)–cn→ℂ))
Assertion
Ref Expression
ftc2ditglem ((𝜑𝐴𝐵) → ⨜[𝐴𝐵]((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝑡,𝐹   𝜑,𝑡   𝑡,𝑋   𝑡,𝑌

Proof of Theorem ftc2ditglem
StepHypRef Expression
1 simpr 477 . . 3 ((𝜑𝐴𝐵) → 𝐴𝐵)
21ditgpos 23925 . 2 ((𝜑𝐴𝐵) → ⨜[𝐴𝐵]((ℝ D 𝐹)‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
3 ftc2ditg.x . . . . . . 7 (𝜑𝑋 ∈ ℝ)
4 ftc2ditg.y . . . . . . 7 (𝜑𝑌 ∈ ℝ)
5 iccssre 12462 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋[,]𝑌) ⊆ ℝ)
63, 4, 5syl2anc 579 . . . . . 6 (𝜑 → (𝑋[,]𝑌) ⊆ ℝ)
7 ftc2ditg.a . . . . . 6 (𝜑𝐴 ∈ (𝑋[,]𝑌))
86, 7sseldd 3764 . . . . 5 (𝜑𝐴 ∈ ℝ)
98adantr 472 . . . 4 ((𝜑𝐴𝐵) → 𝐴 ∈ ℝ)
10 ftc2ditg.b . . . . . 6 (𝜑𝐵 ∈ (𝑋[,]𝑌))
116, 10sseldd 3764 . . . . 5 (𝜑𝐵 ∈ ℝ)
1211adantr 472 . . . 4 ((𝜑𝐴𝐵) → 𝐵 ∈ ℝ)
13 ax-resscn 10250 . . . . . . . 8 ℝ ⊆ ℂ
1413a1i 11 . . . . . . 7 ((𝜑𝐴𝐵) → ℝ ⊆ ℂ)
15 ftc2ditg.f . . . . . . . . 9 (𝜑𝐹 ∈ ((𝑋[,]𝑌)–cn→ℂ))
16 cncff 22989 . . . . . . . . 9 (𝐹 ∈ ((𝑋[,]𝑌)–cn→ℂ) → 𝐹:(𝑋[,]𝑌)⟶ℂ)
1715, 16syl 17 . . . . . . . 8 (𝜑𝐹:(𝑋[,]𝑌)⟶ℂ)
1817adantr 472 . . . . . . 7 ((𝜑𝐴𝐵) → 𝐹:(𝑋[,]𝑌)⟶ℂ)
196adantr 472 . . . . . . 7 ((𝜑𝐴𝐵) → (𝑋[,]𝑌) ⊆ ℝ)
20 iccssre 12462 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
218, 11, 20syl2anc 579 . . . . . . . 8 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
2221adantr 472 . . . . . . 7 ((𝜑𝐴𝐵) → (𝐴[,]𝐵) ⊆ ℝ)
23 eqid 2765 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2423tgioo2 22899 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
2523, 24dvres 23980 . . . . . . 7 (((ℝ ⊆ ℂ ∧ 𝐹:(𝑋[,]𝑌)⟶ℂ) ∧ ((𝑋[,]𝑌) ⊆ ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
2614, 18, 19, 22, 25syl22anc 867 . . . . . 6 ((𝜑𝐴𝐵) → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
27 iccntr 22917 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
288, 11, 27syl2anc 579 . . . . . . . 8 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
2928adantr 472 . . . . . . 7 ((𝜑𝐴𝐵) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
3029reseq2d 5567 . . . . . 6 ((𝜑𝐴𝐵) → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)))
3126, 30eqtrd 2799 . . . . 5 ((𝜑𝐴𝐵) → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)))
323rexrd 10347 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ*)
33 elicc2 12445 . . . . . . . . . . . 12 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
343, 4, 33syl2anc 579 . . . . . . . . . . 11 (𝜑 → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
357, 34mpbid 223 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌))
3635simp2d 1173 . . . . . . . . 9 (𝜑𝑋𝐴)
37 iooss1 12417 . . . . . . . . 9 ((𝑋 ∈ ℝ*𝑋𝐴) → (𝐴(,)𝐵) ⊆ (𝑋(,)𝐵))
3832, 36, 37syl2anc 579 . . . . . . . 8 (𝜑 → (𝐴(,)𝐵) ⊆ (𝑋(,)𝐵))
394rexrd 10347 . . . . . . . . 9 (𝜑𝑌 ∈ ℝ*)
40 elicc2 12445 . . . . . . . . . . . 12 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
413, 4, 40syl2anc 579 . . . . . . . . . . 11 (𝜑 → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
4210, 41mpbid 223 . . . . . . . . . 10 (𝜑 → (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌))
4342simp3d 1174 . . . . . . . . 9 (𝜑𝐵𝑌)
44 iooss2 12418 . . . . . . . . 9 ((𝑌 ∈ ℝ*𝐵𝑌) → (𝑋(,)𝐵) ⊆ (𝑋(,)𝑌))
4539, 43, 44syl2anc 579 . . . . . . . 8 (𝜑 → (𝑋(,)𝐵) ⊆ (𝑋(,)𝑌))
4638, 45sstrd 3773 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ (𝑋(,)𝑌))
4746adantr 472 . . . . . 6 ((𝜑𝐴𝐵) → (𝐴(,)𝐵) ⊆ (𝑋(,)𝑌))
48 ftc2ditg.c . . . . . . 7 (𝜑 → (ℝ D 𝐹) ∈ ((𝑋(,)𝑌)–cn→ℂ))
4948adantr 472 . . . . . 6 ((𝜑𝐴𝐵) → (ℝ D 𝐹) ∈ ((𝑋(,)𝑌)–cn→ℂ))
50 rescncf 22993 . . . . . 6 ((𝐴(,)𝐵) ⊆ (𝑋(,)𝑌) → ((ℝ D 𝐹) ∈ ((𝑋(,)𝑌)–cn→ℂ) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ)))
5147, 49, 50sylc 65 . . . . 5 ((𝜑𝐴𝐵) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
5231, 51eqeltrd 2844 . . . 4 ((𝜑𝐴𝐵) → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
53 cncff 22989 . . . . . . . . . . 11 ((ℝ D 𝐹) ∈ ((𝑋(,)𝑌)–cn→ℂ) → (ℝ D 𝐹):(𝑋(,)𝑌)⟶ℂ)
5448, 53syl 17 . . . . . . . . . 10 (𝜑 → (ℝ D 𝐹):(𝑋(,)𝑌)⟶ℂ)
5554feqmptd 6442 . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) = (𝑡 ∈ (𝑋(,)𝑌) ↦ ((ℝ D 𝐹)‘𝑡)))
5655adantr 472 . . . . . . . 8 ((𝜑𝐴𝐵) → (ℝ D 𝐹) = (𝑡 ∈ (𝑋(,)𝑌) ↦ ((ℝ D 𝐹)‘𝑡)))
5756reseq1d 5566 . . . . . . 7 ((𝜑𝐴𝐵) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = ((𝑡 ∈ (𝑋(,)𝑌) ↦ ((ℝ D 𝐹)‘𝑡)) ↾ (𝐴(,)𝐵)))
5847resmptd 5631 . . . . . . 7 ((𝜑𝐴𝐵) → ((𝑡 ∈ (𝑋(,)𝑌) ↦ ((ℝ D 𝐹)‘𝑡)) ↾ (𝐴(,)𝐵)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)))
5957, 58eqtrd 2799 . . . . . 6 ((𝜑𝐴𝐵) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)))
6031, 59eqtrd 2799 . . . . 5 ((𝜑𝐴𝐵) → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)))
61 ioombl 23637 . . . . . . 7 (𝐴(,)𝐵) ∈ dom vol
6261a1i 11 . . . . . 6 ((𝜑𝐴𝐵) → (𝐴(,)𝐵) ∈ dom vol)
63 fvexd 6394 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑡 ∈ (𝑋(,)𝑌)) → ((ℝ D 𝐹)‘𝑡) ∈ V)
64 ftc2ditg.i . . . . . . . 8 (𝜑 → (ℝ D 𝐹) ∈ 𝐿1)
6564adantr 472 . . . . . . 7 ((𝜑𝐴𝐵) → (ℝ D 𝐹) ∈ 𝐿1)
6656, 65eqeltrrd 2845 . . . . . 6 ((𝜑𝐴𝐵) → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ 𝐿1)
6747, 62, 63, 66iblss 23876 . . . . 5 ((𝜑𝐴𝐵) → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ 𝐿1)
6860, 67eqeltrd 2844 . . . 4 ((𝜑𝐴𝐵) → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) ∈ 𝐿1)
69 iccss2 12451 . . . . . . 7 ((𝐴 ∈ (𝑋[,]𝑌) ∧ 𝐵 ∈ (𝑋[,]𝑌)) → (𝐴[,]𝐵) ⊆ (𝑋[,]𝑌))
707, 10, 69syl2anc 579 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ (𝑋[,]𝑌))
71 rescncf 22993 . . . . . 6 ((𝐴[,]𝐵) ⊆ (𝑋[,]𝑌) → (𝐹 ∈ ((𝑋[,]𝑌)–cn→ℂ) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
7270, 15, 71sylc 65 . . . . 5 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
7372adantr 472 . . . 4 ((𝜑𝐴𝐵) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
749, 12, 1, 52, 68, 73ftc2 24112 . . 3 ((𝜑𝐴𝐵) → ∫(𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) d𝑡 = (((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴)))
7531fveq1d 6381 . . . . 5 ((𝜑𝐴𝐵) → ((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑡))
76 fvres 6398 . . . . 5 (𝑡 ∈ (𝐴(,)𝐵) → (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
7775, 76sylan9eq 2819 . . . 4 (((𝜑𝐴𝐵) ∧ 𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
7877itgeq2dv 23853 . . 3 ((𝜑𝐴𝐵) → ∫(𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
799rexrd 10347 . . . 4 ((𝜑𝐴𝐵) → 𝐴 ∈ ℝ*)
8012rexrd 10347 . . . 4 ((𝜑𝐴𝐵) → 𝐵 ∈ ℝ*)
81 ubicc2 12498 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
82 lbicc2 12497 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
83 fvres 6398 . . . . . 6 (𝐵 ∈ (𝐴[,]𝐵) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) = (𝐹𝐵))
84 fvres 6398 . . . . . 6 (𝐴 ∈ (𝐴[,]𝐵) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴) = (𝐹𝐴))
8583, 84oveqan12d 6865 . . . . 5 ((𝐵 ∈ (𝐴[,]𝐵) ∧ 𝐴 ∈ (𝐴[,]𝐵)) → (((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴)) = ((𝐹𝐵) − (𝐹𝐴)))
8681, 82, 85syl2anc 579 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴)) = ((𝐹𝐵) − (𝐹𝐴)))
8779, 80, 1, 86syl3anc 1490 . . 3 ((𝜑𝐴𝐵) → (((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴)) = ((𝐹𝐵) − (𝐹𝐴)))
8874, 78, 873eqtr3d 2807 . 2 ((𝜑𝐴𝐵) → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
892, 88eqtrd 2799 1 ((𝜑𝐴𝐵) → ⨜[𝐴𝐵]((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  Vcvv 3350  wss 3734   class class class wbr 4811  cmpt 4890  dom cdm 5279  ran crn 5280  cres 5281  wf 6066  cfv 6070  (class class class)co 6846  cc 10191  cr 10192  *cxr 10331  cle 10333  cmin 10524  (,)cioo 12382  [,]cicc 12385  TopOpenctopn 16362  topGenctg 16378  fldccnfld 20033  intcnt 21115  cnccncf 22972  volcvol 23535  𝐿1cibl 23689  citg 23690  cdit 23915   D cdv 23932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-inf2 8757  ax-cc 9514  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271  ax-addf 10272  ax-mulf 10273
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-symdif 4007  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-disj 4780  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-of 7099  df-ofr 7100  df-om 7268  df-1st 7370  df-2nd 7371  df-supp 7502  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-2o 7769  df-oadd 7772  df-omul 7773  df-er 7951  df-map 8066  df-pm 8067  df-ixp 8118  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-fsupp 8487  df-fi 8528  df-sup 8559  df-inf 8560  df-oi 8626  df-card 9020  df-acn 9023  df-cda 9247  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-div 10943  df-nn 11279  df-2 11339  df-3 11340  df-4 11341  df-5 11342  df-6 11343  df-7 11344  df-8 11345  df-9 11346  df-n0 11543  df-z 11629  df-dec 11746  df-uz 11892  df-q 11995  df-rp 12034  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12386  df-ioc 12387  df-ico 12388  df-icc 12389  df-fz 12539  df-fzo 12679  df-fl 12806  df-mod 12882  df-seq 13014  df-exp 13073  df-hash 13327  df-cj 14138  df-re 14139  df-im 14140  df-sqrt 14274  df-abs 14275  df-clim 14518  df-rlim 14519  df-sum 14716  df-struct 16146  df-ndx 16147  df-slot 16148  df-base 16150  df-sets 16151  df-ress 16152  df-plusg 16241  df-mulr 16242  df-starv 16243  df-sca 16244  df-vsca 16245  df-ip 16246  df-tset 16247  df-ple 16248  df-ds 16250  df-unif 16251  df-hom 16252  df-cco 16253  df-rest 16363  df-topn 16364  df-0g 16382  df-gsum 16383  df-topgen 16384  df-pt 16385  df-prds 16388  df-xrs 16442  df-qtop 16447  df-imas 16448  df-xps 16450  df-mre 16526  df-mrc 16527  df-acs 16529  df-mgm 17522  df-sgrp 17564  df-mnd 17575  df-submnd 17616  df-mulg 17822  df-cntz 18027  df-cmn 18475  df-psmet 20025  df-xmet 20026  df-met 20027  df-bl 20028  df-mopn 20029  df-fbas 20030  df-fg 20031  df-cnfld 20034  df-top 20992  df-topon 21009  df-topsp 21031  df-bases 21044  df-cld 21117  df-ntr 21118  df-cls 21119  df-nei 21196  df-lp 21234  df-perf 21235  df-cn 21325  df-cnp 21326  df-haus 21413  df-cmp 21484  df-tx 21659  df-hmeo 21852  df-fil 21943  df-fm 22035  df-flim 22036  df-flf 22037  df-xms 22418  df-ms 22419  df-tms 22420  df-cncf 22974  df-ovol 23536  df-vol 23537  df-mbf 23691  df-itg1 23692  df-itg2 23693  df-ibl 23694  df-itg 23695  df-0p 23742  df-ditg 23916  df-limc 23935  df-dv 23936
This theorem is referenced by:  ftc2ditg  24114
  Copyright terms: Public domain W3C validator