Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgperiod Structured version   Visualization version   GIF version

Theorem itgperiod 40766
Description: The integral of a periodic function, with period 𝑇 stays the same if the domain of integration is shifted. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgperiod.a (𝜑𝐴 ∈ ℝ)
itgperiod.b (𝜑𝐵 ∈ ℝ)
itgperiod.aleb (𝜑𝐴𝐵)
itgperiod.t (𝜑𝑇 ∈ ℝ+)
itgperiod.f (𝜑𝐹:ℝ⟶ℂ)
itgperiod.fper ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
itgperiod.fcn (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
Assertion
Ref Expression
itgperiod (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑇   𝜑,𝑥

Proof of Theorem itgperiod
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgperiod.a . . . . 5 (𝜑𝐴 ∈ ℝ)
2 itgperiod.b . . . . 5 (𝜑𝐵 ∈ ℝ)
3 itgperiod.t . . . . . 6 (𝜑𝑇 ∈ ℝ+)
43rpred 12070 . . . . 5 (𝜑𝑇 ∈ ℝ)
5 itgperiod.aleb . . . . 5 (𝜑𝐴𝐵)
61, 2, 4, 5leadd1dd 10895 . . . 4 (𝜑 → (𝐴 + 𝑇) ≤ (𝐵 + 𝑇))
76ditgpos 23911 . . 3 (𝜑 → ⨜[(𝐴 + 𝑇) → (𝐵 + 𝑇)](𝐹𝑥) d𝑥 = ∫((𝐴 + 𝑇)(,)(𝐵 + 𝑇))(𝐹𝑥) d𝑥)
81, 4readdcld 10323 . . . 4 (𝜑 → (𝐴 + 𝑇) ∈ ℝ)
92, 4readdcld 10323 . . . 4 (𝜑 → (𝐵 + 𝑇) ∈ ℝ)
10 itgperiod.f . . . . . 6 (𝜑𝐹:ℝ⟶ℂ)
1110adantr 472 . . . . 5 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐹:ℝ⟶ℂ)
128adantr 472 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐴 + 𝑇) ∈ ℝ)
139adantr 472 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐵 + 𝑇) ∈ ℝ)
14 simpr 477 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
15 eliccre 40302 . . . . . 6 (((𝐴 + 𝑇) ∈ ℝ ∧ (𝐵 + 𝑇) ∈ ℝ ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℝ)
1612, 13, 14, 15syl3anc 1490 . . . . 5 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℝ)
1711, 16ffvelrnd 6550 . . . 4 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐹𝑥) ∈ ℂ)
188, 9, 17itgioo 23873 . . 3 (𝜑 → ∫((𝐴 + 𝑇)(,)(𝐵 + 𝑇))(𝐹𝑥) d𝑥 = ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹𝑥) d𝑥)
197, 18eqtr2d 2800 . 2 (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹𝑥) d𝑥 = ⨜[(𝐴 + 𝑇) → (𝐵 + 𝑇)](𝐹𝑥) d𝑥)
20 eqid 2765 . . . 4 (𝑦 ∈ ℂ ↦ (𝑦 + 𝑇)) = (𝑦 ∈ ℂ ↦ (𝑦 + 𝑇))
214recnd 10322 . . . . 5 (𝜑𝑇 ∈ ℂ)
2220addccncf 22998 . . . . 5 (𝑇 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝑦 + 𝑇)) ∈ (ℂ–cn→ℂ))
2321, 22syl 17 . . . 4 (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦 + 𝑇)) ∈ (ℂ–cn→ℂ))
241, 2iccssred 40301 . . . . 5 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
25 ax-resscn 10246 . . . . 5 ℝ ⊆ ℂ
2624, 25syl6ss 3773 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
278, 9iccssred 40301 . . . . 5 (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ⊆ ℝ)
2827, 25syl6ss 3773 . . . 4 (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ⊆ ℂ)
298adantr 472 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐴 + 𝑇) ∈ ℝ)
309adantr 472 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐵 + 𝑇) ∈ ℝ)
3124sselda 3761 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ ℝ)
324adantr 472 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑇 ∈ ℝ)
3331, 32readdcld 10323 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 + 𝑇) ∈ ℝ)
341adantr 472 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
35 simpr 477 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐴[,]𝐵))
362adantr 472 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
37 elicc2 12440 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
3834, 36, 37syl2anc 579 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
3935, 38mpbid 223 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
4039simp2d 1173 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐴𝑦)
4134, 31, 32, 40leadd1dd 10895 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐴 + 𝑇) ≤ (𝑦 + 𝑇))
4239simp3d 1174 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦𝐵)
4331, 36, 32, 42leadd1dd 10895 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 + 𝑇) ≤ (𝐵 + 𝑇))
4429, 30, 33, 41, 43eliccd 40300 . . . 4 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 + 𝑇) ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
4520, 23, 26, 28, 44cncfmptssg 40653 . . 3 (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇)) ∈ ((𝐴[,]𝐵)–cn→((𝐴 + 𝑇)[,](𝐵 + 𝑇))))
46 eqeq1 2769 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑧 + 𝑇)))
4746rexbidv 3199 . . . . . . 7 (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇)))
48 oveq1 6849 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑧 + 𝑇) = (𝑦 + 𝑇))
4948eqeq2d 2775 . . . . . . . 8 (𝑧 = 𝑦 → (𝑥 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑦 + 𝑇)))
5049cbvrexv 3320 . . . . . . 7 (∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇))
5147, 50syl6bb 278 . . . . . 6 (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)))
5251cbvrabv 3348 . . . . 5 {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)}
5310ffdmd 6245 . . . . 5 (𝜑𝐹:dom 𝐹⟶ℂ)
54 simp3 1168 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑤 = (𝑧 + 𝑇)) → 𝑤 = (𝑧 + 𝑇))
5524sselda 3761 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ∈ ℝ)
564adantr 472 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝑇 ∈ ℝ)
5755, 56readdcld 10323 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝑧 + 𝑇) ∈ ℝ)
58573adant3 1162 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑤 = (𝑧 + 𝑇)) → (𝑧 + 𝑇) ∈ ℝ)
5954, 58eqeltrd 2844 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑤 = (𝑧 + 𝑇)) → 𝑤 ∈ ℝ)
6059rexlimdv3a 3180 . . . . . . . 8 (𝜑 → (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) → 𝑤 ∈ ℝ))
6160ralrimivw 3114 . . . . . . 7 (𝜑 → ∀𝑤 ∈ ℂ (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) → 𝑤 ∈ ℝ))
62 rabss 3839 . . . . . . 7 ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} ⊆ ℝ ↔ ∀𝑤 ∈ ℂ (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) → 𝑤 ∈ ℝ))
6361, 62sylibr 225 . . . . . 6 (𝜑 → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} ⊆ ℝ)
6410fdmd 6232 . . . . . 6 (𝜑 → dom 𝐹 = ℝ)
6563, 64sseqtr4d 3802 . . . . 5 (𝜑 → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} ⊆ dom 𝐹)
66 itgperiod.fper . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
67 itgperiod.fcn . . . . 5 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
6826, 4, 52, 53, 65, 66, 67cncfperiod 40662 . . . 4 (𝜑 → (𝐹 ↾ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}) ∈ ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}–cn→ℂ))
6947elrab 3519 . . . . . . . . 9 (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} ↔ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇)))
70 simprr 789 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))) → ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))
71 nfv 2009 . . . . . . . . . . . 12 𝑧𝜑
72 nfv 2009 . . . . . . . . . . . . 13 𝑧 𝑥 ∈ ℂ
73 nfre1 3151 . . . . . . . . . . . . 13 𝑧𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇)
7472, 73nfan 1998 . . . . . . . . . . . 12 𝑧(𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))
7571, 74nfan 1998 . . . . . . . . . . 11 𝑧(𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇)))
76 nfv 2009 . . . . . . . . . . 11 𝑧 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))
77 simp3 1168 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 = (𝑧 + 𝑇))
781adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
79 simpr 477 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ∈ (𝐴[,]𝐵))
802adantr 472 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
81 elicc2 12440 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑧 ∈ (𝐴[,]𝐵) ↔ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵)))
8278, 80, 81syl2anc 579 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝑧 ∈ (𝐴[,]𝐵) ↔ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵)))
8379, 82mpbid 223 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵))
8483simp2d 1173 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝐴𝑧)
8578, 55, 56, 84leadd1dd 10895 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝐴 + 𝑇) ≤ (𝑧 + 𝑇))
8683simp3d 1174 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝑧𝐵)
8755, 80, 56, 86leadd1dd 10895 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝑧 + 𝑇) ≤ (𝐵 + 𝑇))
8857, 85, 873jca 1158 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → ((𝑧 + 𝑇) ∈ ℝ ∧ (𝐴 + 𝑇) ≤ (𝑧 + 𝑇) ∧ (𝑧 + 𝑇) ≤ (𝐵 + 𝑇)))
89883adant3 1162 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → ((𝑧 + 𝑇) ∈ ℝ ∧ (𝐴 + 𝑇) ≤ (𝑧 + 𝑇) ∧ (𝑧 + 𝑇) ≤ (𝐵 + 𝑇)))
9083ad2ant1 1163 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝐴 + 𝑇) ∈ ℝ)
9193ad2ant1 1163 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝐵 + 𝑇) ∈ ℝ)
92 elicc2 12440 . . . . . . . . . . . . . . . 16 (((𝐴 + 𝑇) ∈ ℝ ∧ (𝐵 + 𝑇) ∈ ℝ) → ((𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ ((𝑧 + 𝑇) ∈ ℝ ∧ (𝐴 + 𝑇) ≤ (𝑧 + 𝑇) ∧ (𝑧 + 𝑇) ≤ (𝐵 + 𝑇))))
9390, 91, 92syl2anc 579 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → ((𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ ((𝑧 + 𝑇) ∈ ℝ ∧ (𝐴 + 𝑇) ≤ (𝑧 + 𝑇) ∧ (𝑧 + 𝑇) ≤ (𝐵 + 𝑇))))
9489, 93mpbird 248 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
9577, 94eqeltrd 2844 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
96953exp 1148 . . . . . . . . . . . 12 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) → (𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))))
9796adantr 472 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))) → (𝑧 ∈ (𝐴[,]𝐵) → (𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))))
9875, 76, 97rexlimd 3173 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))) → (∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))))
9970, 98mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
10069, 99sylan2b 587 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
10116recnd 10322 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℂ)
1021adantr 472 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 ∈ ℝ)
1032adantr 472 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐵 ∈ ℝ)
1044adantr 472 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑇 ∈ ℝ)
10516, 104resubcld 10712 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ∈ ℝ)
1061recnd 10322 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℂ)
107106, 21pncand 10647 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 + 𝑇) − 𝑇) = 𝐴)
108107eqcomd 2771 . . . . . . . . . . . . 13 (𝜑𝐴 = ((𝐴 + 𝑇) − 𝑇))
109108adantr 472 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 = ((𝐴 + 𝑇) − 𝑇))
110 elicc2 12440 . . . . . . . . . . . . . . . 16 (((𝐴 + 𝑇) ∈ ℝ ∧ (𝐵 + 𝑇) ∈ ℝ) → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 + 𝑇) ≤ 𝑥𝑥 ≤ (𝐵 + 𝑇))))
11112, 13, 110syl2anc 579 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 + 𝑇) ≤ 𝑥𝑥 ≤ (𝐵 + 𝑇))))
11214, 111mpbid 223 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 ∈ ℝ ∧ (𝐴 + 𝑇) ≤ 𝑥𝑥 ≤ (𝐵 + 𝑇)))
113112simp2d 1173 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐴 + 𝑇) ≤ 𝑥)
11412, 16, 104, 113lesub1dd 10897 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝐴 + 𝑇) − 𝑇) ≤ (𝑥𝑇))
115109, 114eqbrtrd 4831 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 ≤ (𝑥𝑇))
116112simp3d 1174 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ≤ (𝐵 + 𝑇))
11716, 13, 104, 116lesub1dd 10897 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ≤ ((𝐵 + 𝑇) − 𝑇))
1182recnd 10322 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℂ)
119118, 21pncand 10647 . . . . . . . . . . . . 13 (𝜑 → ((𝐵 + 𝑇) − 𝑇) = 𝐵)
120119adantr 472 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝐵 + 𝑇) − 𝑇) = 𝐵)
121117, 120breqtrd 4835 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ≤ 𝐵)
122102, 103, 105, 115, 121eliccd 40300 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ∈ (𝐴[,]𝐵))
12321adantr 472 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑇 ∈ ℂ)
124101, 123npcand 10650 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝑥𝑇) + 𝑇) = 𝑥)
125124eqcomd 2771 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 = ((𝑥𝑇) + 𝑇))
126 oveq1 6849 . . . . . . . . . . 11 (𝑧 = (𝑥𝑇) → (𝑧 + 𝑇) = ((𝑥𝑇) + 𝑇))
127126rspceeqv 3479 . . . . . . . . . 10 (((𝑥𝑇) ∈ (𝐴[,]𝐵) ∧ 𝑥 = ((𝑥𝑇) + 𝑇)) → ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))
128122, 125, 127syl2anc 579 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))
129101, 128, 69sylanbrc 578 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)})
130100, 129impbida 835 . . . . . . 7 (𝜑 → (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} ↔ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))))
131130eqrdv 2763 . . . . . 6 (𝜑 → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} = ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
132131reseq2d 5565 . . . . 5 (𝜑 → (𝐹 ↾ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}) = (𝐹 ↾ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))))
133131, 65eqsstr3d 3800 . . . . . 6 (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ⊆ dom 𝐹)
13453, 133feqresmpt 6439 . . . . 5 (𝜑 → (𝐹 ↾ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) = (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹𝑥)))
135132, 134eqtr2d 2800 . . . 4 (𝜑 → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹𝑥)) = (𝐹 ↾ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}))
1361, 2, 4iccshift 40315 . . . . 5 (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)})
137136oveq1d 6857 . . . 4 (𝜑 → (((𝐴 + 𝑇)[,](𝐵 + 𝑇))–cn→ℂ) = ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}–cn→ℂ))
13868, 135, 1373eltr4d 2859 . . 3 (𝜑 → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹𝑥)) ∈ (((𝐴 + 𝑇)[,](𝐵 + 𝑇))–cn→ℂ))
139 ioosscn 40290 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
140139a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
141 1cnd 10288 . . . . 5 (𝜑 → 1 ∈ ℂ)
142 ssid 3783 . . . . . 6 ℂ ⊆ ℂ
143142a1i 11 . . . . 5 (𝜑 → ℂ ⊆ ℂ)
144140, 141, 143constcncfg 40654 . . . 4 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ))
145 fconstmpt 5333 . . . . 5 ((𝐴(,)𝐵) × {1}) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1)
146 ioombl 23623 . . . . . . 7 (𝐴(,)𝐵) ∈ dom vol
147146a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
148 ioovolcl 23628 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
1491, 2, 148syl2anc 579 . . . . . 6 (𝜑 → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
150 iblconst 23875 . . . . . 6 (((𝐴(,)𝐵) ∈ dom vol ∧ (vol‘(𝐴(,)𝐵)) ∈ ℝ ∧ 1 ∈ ℂ) → ((𝐴(,)𝐵) × {1}) ∈ 𝐿1)
151147, 149, 141, 150syl3anc 1490 . . . . 5 (𝜑 → ((𝐴(,)𝐵) × {1}) ∈ 𝐿1)
152145, 151syl5eqelr 2849 . . . 4 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ 1) ∈ 𝐿1)
153144, 152elind 3960 . . 3 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ 1) ∈ (((𝐴(,)𝐵)–cn→ℂ) ∩ 𝐿1))
15424resmptd 5629 . . . . . . 7 (𝜑 → ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵)) = (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇)))
155154eqcomd 2771 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇)) = ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵)))
156155oveq2d 6858 . . . . 5 (𝜑 → (ℝ D (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇))) = (ℝ D ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵))))
15725a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
158157sselda 3761 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
15921adantr 472 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝑇 ∈ ℂ)
160158, 159addcld 10313 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝑦 + 𝑇) ∈ ℂ)
161160fmpttd 6575 . . . . . 6 (𝜑 → (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)):ℝ⟶ℂ)
162 ssid 3783 . . . . . . 7 ℝ ⊆ ℝ
163162a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℝ)
164 eqid 2765 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
165164tgioo2 22885 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
166164, 165dvres 23966 . . . . . 6 (((ℝ ⊆ ℂ ∧ (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ)) → (ℝ D ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵))) = ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
167157, 161, 163, 24, 166syl22anc 867 . . . . 5 (𝜑 → (ℝ D ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵))) = ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
168156, 167eqtrd 2799 . . . 4 (𝜑 → (ℝ D (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇))) = ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
169 iccntr 22903 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
1701, 2, 169syl2anc 579 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
171170reseq2d 5565 . . . 4 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) = ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ (𝐴(,)𝐵)))
172 reelprrecn 10281 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
173172a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
174 1cnd 10288 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℂ)
175173dvmptid 24011 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ 𝑦)) = (𝑦 ∈ ℝ ↦ 1))
176 0cnd 10286 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 0 ∈ ℂ)
177173, 21dvmptc 24012 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ 𝑇)) = (𝑦 ∈ ℝ ↦ 0))
178173, 158, 174, 175, 159, 176, 177dvmptadd 24014 . . . . . 6 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) = (𝑦 ∈ ℝ ↦ (1 + 0)))
179178reseq1d 5564 . . . . 5 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ (𝐴(,)𝐵)) = ((𝑦 ∈ ℝ ↦ (1 + 0)) ↾ (𝐴(,)𝐵)))
180 ioossre 12437 . . . . . . 7 (𝐴(,)𝐵) ⊆ ℝ
181180a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
182181resmptd 5629 . . . . 5 (𝜑 → ((𝑦 ∈ ℝ ↦ (1 + 0)) ↾ (𝐴(,)𝐵)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ (1 + 0)))
183 1p0e1 11403 . . . . . . 7 (1 + 0) = 1
184183mpteq2i 4900 . . . . . 6 (𝑦 ∈ (𝐴(,)𝐵) ↦ (1 + 0)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1)
185184a1i 11 . . . . 5 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ (1 + 0)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1))
186179, 182, 1853eqtrd 2803 . . . 4 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ (𝐴(,)𝐵)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1))
187168, 171, 1863eqtrd 2803 . . 3 (𝜑 → (ℝ D (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1))
188 fveq2 6375 . . 3 (𝑥 = (𝑦 + 𝑇) → (𝐹𝑥) = (𝐹‘(𝑦 + 𝑇)))
189 oveq1 6849 . . 3 (𝑦 = 𝐴 → (𝑦 + 𝑇) = (𝐴 + 𝑇))
190 oveq1 6849 . . 3 (𝑦 = 𝐵 → (𝑦 + 𝑇) = (𝐵 + 𝑇))
1911, 2, 5, 45, 138, 153, 187, 188, 189, 190, 8, 9itgsubsticc 40761 . 2 (𝜑 → ⨜[(𝐴 + 𝑇) → (𝐵 + 𝑇)](𝐹𝑥) d𝑥 = ⨜[𝐴𝐵]((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦)
1925ditgpos 23911 . . 3 (𝜑 → ⨜[𝐴𝐵]((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴(,)𝐵)((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦)
19310adantr 472 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℂ)
194193, 33ffvelrnd 6550 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑦 + 𝑇)) ∈ ℂ)
195 1cnd 10288 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 1 ∈ ℂ)
196194, 195mulcld 10314 . . . 4 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → ((𝐹‘(𝑦 + 𝑇)) · 1) ∈ ℂ)
1971, 2, 196itgioo 23873 . . 3 (𝜑 → ∫(𝐴(,)𝐵)((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴[,]𝐵)((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦)
198 fvoveq1 6865 . . . . . 6 (𝑦 = 𝑥 → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘(𝑥 + 𝑇)))
199198oveq1d 6857 . . . . 5 (𝑦 = 𝑥 → ((𝐹‘(𝑦 + 𝑇)) · 1) = ((𝐹‘(𝑥 + 𝑇)) · 1))
200199cbvitgv 23834 . . . 4 ∫(𝐴[,]𝐵)((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴[,]𝐵)((𝐹‘(𝑥 + 𝑇)) · 1) d𝑥
20110adantr 472 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℂ)
20224sselda 3761 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
2034adantr 472 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑇 ∈ ℝ)
204202, 203readdcld 10323 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 + 𝑇) ∈ ℝ)
205201, 204ffvelrnd 6550 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) ∈ ℂ)
206205mulid1d 10311 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹‘(𝑥 + 𝑇)) · 1) = (𝐹‘(𝑥 + 𝑇)))
207206, 66eqtrd 2799 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹‘(𝑥 + 𝑇)) · 1) = (𝐹𝑥))
208207itgeq2dv 23839 . . . 4 (𝜑 → ∫(𝐴[,]𝐵)((𝐹‘(𝑥 + 𝑇)) · 1) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
209200, 208syl5eq 2811 . . 3 (𝜑 → ∫(𝐴[,]𝐵)((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
210192, 197, 2093eqtrd 2803 . 2 (𝜑 → ⨜[𝐴𝐵]((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
21119, 191, 2103eqtrd 2803 1 (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wral 3055  wrex 3056  {crab 3059  wss 3732  {csn 4334  {cpr 4336   class class class wbr 4809  cmpt 4888   × cxp 5275  dom cdm 5277  ran crn 5278  cres 5279  wf 6064  cfv 6068  (class class class)co 6842  cc 10187  cr 10188  0cc0 10189  1c1 10190   + caddc 10192   · cmul 10194  cle 10329  cmin 10520  +crp 12028  (,)cioo 12377  [,]cicc 12380  TopOpenctopn 16350  topGenctg 16366  fldccnfld 20019  intcnt 21101  cnccncf 22958  volcvol 23521  𝐿1cibl 23675  citg 23676  cdit 23901   D cdv 23918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cc 9510  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-symdif 4005  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-disj 4778  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-ofr 7096  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-omul 7769  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-acn 9019  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ioc 12382  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-limsup 14489  df-clim 14506  df-rlim 14507  df-sum 14704  df-struct 16134  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-ress 16140  df-plusg 16229  df-mulr 16230  df-starv 16231  df-sca 16232  df-vsca 16233  df-ip 16234  df-tset 16235  df-ple 16236  df-ds 16238  df-unif 16239  df-hom 16240  df-cco 16241  df-rest 16351  df-topn 16352  df-0g 16370  df-gsum 16371  df-topgen 16372  df-pt 16373  df-prds 16376  df-xrs 16430  df-qtop 16435  df-imas 16436  df-xps 16438  df-mre 16514  df-mrc 16515  df-acs 16517  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-submnd 17604  df-mulg 17810  df-cntz 18015  df-cmn 18461  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-fbas 20016  df-fg 20017  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105  df-nei 21182  df-lp 21220  df-perf 21221  df-cn 21311  df-cnp 21312  df-haus 21399  df-cmp 21470  df-tx 21645  df-hmeo 21838  df-fil 21929  df-fm 22021  df-flim 22022  df-flf 22023  df-xms 22404  df-ms 22405  df-tms 22406  df-cncf 22960  df-ovol 23522  df-vol 23523  df-mbf 23677  df-itg1 23678  df-itg2 23679  df-ibl 23680  df-itg 23681  df-0p 23728  df-ditg 23902  df-limc 23921  df-dv 23922
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator