Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgperiod Structured version   Visualization version   GIF version

Theorem itgperiod 46106
Description: The integral of a periodic function, with period 𝑇 stays the same if the domain of integration is shifted. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgperiod.a (𝜑𝐴 ∈ ℝ)
itgperiod.b (𝜑𝐵 ∈ ℝ)
itgperiod.aleb (𝜑𝐴𝐵)
itgperiod.t (𝜑𝑇 ∈ ℝ+)
itgperiod.f (𝜑𝐹:ℝ⟶ℂ)
itgperiod.fper ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
itgperiod.fcn (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
Assertion
Ref Expression
itgperiod (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑇   𝜑,𝑥

Proof of Theorem itgperiod
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgperiod.a . . . . 5 (𝜑𝐴 ∈ ℝ)
2 itgperiod.b . . . . 5 (𝜑𝐵 ∈ ℝ)
3 itgperiod.t . . . . . 6 (𝜑𝑇 ∈ ℝ+)
43rpred 12938 . . . . 5 (𝜑𝑇 ∈ ℝ)
5 itgperiod.aleb . . . . 5 (𝜑𝐴𝐵)
61, 2, 4, 5leadd1dd 11740 . . . 4 (𝜑 → (𝐴 + 𝑇) ≤ (𝐵 + 𝑇))
76ditgpos 25787 . . 3 (𝜑 → ⨜[(𝐴 + 𝑇) → (𝐵 + 𝑇)](𝐹𝑥) d𝑥 = ∫((𝐴 + 𝑇)(,)(𝐵 + 𝑇))(𝐹𝑥) d𝑥)
81, 4readdcld 11150 . . . 4 (𝜑 → (𝐴 + 𝑇) ∈ ℝ)
92, 4readdcld 11150 . . . 4 (𝜑 → (𝐵 + 𝑇) ∈ ℝ)
10 itgperiod.f . . . . . 6 (𝜑𝐹:ℝ⟶ℂ)
1110adantr 480 . . . . 5 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐹:ℝ⟶ℂ)
128adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐴 + 𝑇) ∈ ℝ)
139adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐵 + 𝑇) ∈ ℝ)
14 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
15 eliccre 45632 . . . . . 6 (((𝐴 + 𝑇) ∈ ℝ ∧ (𝐵 + 𝑇) ∈ ℝ ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℝ)
1612, 13, 14, 15syl3anc 1373 . . . . 5 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℝ)
1711, 16ffvelcdmd 7026 . . . 4 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐹𝑥) ∈ ℂ)
188, 9, 17itgioo 25747 . . 3 (𝜑 → ∫((𝐴 + 𝑇)(,)(𝐵 + 𝑇))(𝐹𝑥) d𝑥 = ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹𝑥) d𝑥)
197, 18eqtr2d 2769 . 2 (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹𝑥) d𝑥 = ⨜[(𝐴 + 𝑇) → (𝐵 + 𝑇)](𝐹𝑥) d𝑥)
20 eqid 2733 . . . 4 (𝑦 ∈ ℂ ↦ (𝑦 + 𝑇)) = (𝑦 ∈ ℂ ↦ (𝑦 + 𝑇))
214recnd 11149 . . . . 5 (𝜑𝑇 ∈ ℂ)
2220addccncf 24840 . . . . 5 (𝑇 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝑦 + 𝑇)) ∈ (ℂ–cn→ℂ))
2321, 22syl 17 . . . 4 (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦 + 𝑇)) ∈ (ℂ–cn→ℂ))
241, 2iccssred 13338 . . . . 5 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
25 ax-resscn 11072 . . . . 5 ℝ ⊆ ℂ
2624, 25sstrdi 3943 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
278, 9iccssred 13338 . . . . 5 (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ⊆ ℝ)
2827, 25sstrdi 3943 . . . 4 (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ⊆ ℂ)
298adantr 480 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐴 + 𝑇) ∈ ℝ)
309adantr 480 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐵 + 𝑇) ∈ ℝ)
3124sselda 3930 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ ℝ)
324adantr 480 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑇 ∈ ℝ)
3331, 32readdcld 11150 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 + 𝑇) ∈ ℝ)
341adantr 480 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
35 simpr 484 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐴[,]𝐵))
362adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
37 elicc2 13315 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
3834, 36, 37syl2anc 584 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
3935, 38mpbid 232 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
4039simp2d 1143 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐴𝑦)
4134, 31, 32, 40leadd1dd 11740 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐴 + 𝑇) ≤ (𝑦 + 𝑇))
4239simp3d 1144 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦𝐵)
4331, 36, 32, 42leadd1dd 11740 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 + 𝑇) ≤ (𝐵 + 𝑇))
4429, 30, 33, 41, 43eliccd 45631 . . . 4 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 + 𝑇) ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
4520, 23, 26, 28, 44cncfmptssg 45996 . . 3 (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇)) ∈ ((𝐴[,]𝐵)–cn→((𝐴 + 𝑇)[,](𝐵 + 𝑇))))
46 eqeq1 2737 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑧 + 𝑇)))
4746rexbidv 3157 . . . . . . 7 (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇)))
48 oveq1 7361 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑧 + 𝑇) = (𝑦 + 𝑇))
4948eqeq2d 2744 . . . . . . . 8 (𝑧 = 𝑦 → (𝑥 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑦 + 𝑇)))
5049cbvrexvw 3212 . . . . . . 7 (∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇))
5147, 50bitrdi 287 . . . . . 6 (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)))
5251cbvrabv 3406 . . . . 5 {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)}
5310ffdmd 6688 . . . . 5 (𝜑𝐹:dom 𝐹⟶ℂ)
54 simp3 1138 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑤 = (𝑧 + 𝑇)) → 𝑤 = (𝑧 + 𝑇))
5524sselda 3930 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ∈ ℝ)
564adantr 480 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝑇 ∈ ℝ)
5755, 56readdcld 11150 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝑧 + 𝑇) ∈ ℝ)
58573adant3 1132 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑤 = (𝑧 + 𝑇)) → (𝑧 + 𝑇) ∈ ℝ)
5954, 58eqeltrd 2833 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑤 = (𝑧 + 𝑇)) → 𝑤 ∈ ℝ)
6059rexlimdv3a 3138 . . . . . . . 8 (𝜑 → (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) → 𝑤 ∈ ℝ))
6160ralrimivw 3129 . . . . . . 7 (𝜑 → ∀𝑤 ∈ ℂ (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) → 𝑤 ∈ ℝ))
62 rabss 4019 . . . . . . 7 ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} ⊆ ℝ ↔ ∀𝑤 ∈ ℂ (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) → 𝑤 ∈ ℝ))
6361, 62sylibr 234 . . . . . 6 (𝜑 → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} ⊆ ℝ)
6410fdmd 6668 . . . . . 6 (𝜑 → dom 𝐹 = ℝ)
6563, 64sseqtrrd 3968 . . . . 5 (𝜑 → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} ⊆ dom 𝐹)
66 itgperiod.fper . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
67 itgperiod.fcn . . . . 5 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
6826, 4, 52, 53, 65, 66, 67cncfperiod 46004 . . . 4 (𝜑 → (𝐹 ↾ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}) ∈ ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}–cn→ℂ))
6947elrab 3643 . . . . . . . . 9 (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} ↔ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇)))
70 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))) → ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))
71 nfv 1915 . . . . . . . . . . . 12 𝑧𝜑
72 nfv 1915 . . . . . . . . . . . . 13 𝑧 𝑥 ∈ ℂ
73 nfre1 3258 . . . . . . . . . . . . 13 𝑧𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇)
7472, 73nfan 1900 . . . . . . . . . . . 12 𝑧(𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))
7571, 74nfan 1900 . . . . . . . . . . 11 𝑧(𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇)))
76 nfv 1915 . . . . . . . . . . 11 𝑧 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))
77 simp3 1138 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 = (𝑧 + 𝑇))
781adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
79 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ∈ (𝐴[,]𝐵))
802adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
81 elicc2 13315 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑧 ∈ (𝐴[,]𝐵) ↔ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵)))
8278, 80, 81syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝑧 ∈ (𝐴[,]𝐵) ↔ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵)))
8379, 82mpbid 232 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵))
8483simp2d 1143 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝐴𝑧)
8578, 55, 56, 84leadd1dd 11740 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝐴 + 𝑇) ≤ (𝑧 + 𝑇))
8683simp3d 1144 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝑧𝐵)
8755, 80, 56, 86leadd1dd 11740 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝑧 + 𝑇) ≤ (𝐵 + 𝑇))
8857, 85, 873jca 1128 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → ((𝑧 + 𝑇) ∈ ℝ ∧ (𝐴 + 𝑇) ≤ (𝑧 + 𝑇) ∧ (𝑧 + 𝑇) ≤ (𝐵 + 𝑇)))
89883adant3 1132 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → ((𝑧 + 𝑇) ∈ ℝ ∧ (𝐴 + 𝑇) ≤ (𝑧 + 𝑇) ∧ (𝑧 + 𝑇) ≤ (𝐵 + 𝑇)))
9083ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝐴 + 𝑇) ∈ ℝ)
9193ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝐵 + 𝑇) ∈ ℝ)
92 elicc2 13315 . . . . . . . . . . . . . . . 16 (((𝐴 + 𝑇) ∈ ℝ ∧ (𝐵 + 𝑇) ∈ ℝ) → ((𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ ((𝑧 + 𝑇) ∈ ℝ ∧ (𝐴 + 𝑇) ≤ (𝑧 + 𝑇) ∧ (𝑧 + 𝑇) ≤ (𝐵 + 𝑇))))
9390, 91, 92syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → ((𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ ((𝑧 + 𝑇) ∈ ℝ ∧ (𝐴 + 𝑇) ≤ (𝑧 + 𝑇) ∧ (𝑧 + 𝑇) ≤ (𝐵 + 𝑇))))
9489, 93mpbird 257 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
9577, 94eqeltrd 2833 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
96953exp 1119 . . . . . . . . . . . 12 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) → (𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))))
9796adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))) → (𝑧 ∈ (𝐴[,]𝐵) → (𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))))
9875, 76, 97rexlimd 3240 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))) → (∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))))
9970, 98mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
10069, 99sylan2b 594 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
10116recnd 11149 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℂ)
1021adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 ∈ ℝ)
1032adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐵 ∈ ℝ)
1044adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑇 ∈ ℝ)
10516, 104resubcld 11554 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ∈ ℝ)
1061recnd 11149 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℂ)
107106, 21pncand 11482 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 + 𝑇) − 𝑇) = 𝐴)
108107eqcomd 2739 . . . . . . . . . . . . 13 (𝜑𝐴 = ((𝐴 + 𝑇) − 𝑇))
109108adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 = ((𝐴 + 𝑇) − 𝑇))
110 elicc2 13315 . . . . . . . . . . . . . . . 16 (((𝐴 + 𝑇) ∈ ℝ ∧ (𝐵 + 𝑇) ∈ ℝ) → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 + 𝑇) ≤ 𝑥𝑥 ≤ (𝐵 + 𝑇))))
11112, 13, 110syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 + 𝑇) ≤ 𝑥𝑥 ≤ (𝐵 + 𝑇))))
11214, 111mpbid 232 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 ∈ ℝ ∧ (𝐴 + 𝑇) ≤ 𝑥𝑥 ≤ (𝐵 + 𝑇)))
113112simp2d 1143 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐴 + 𝑇) ≤ 𝑥)
11412, 16, 104, 113lesub1dd 11742 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝐴 + 𝑇) − 𝑇) ≤ (𝑥𝑇))
115109, 114eqbrtrd 5117 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 ≤ (𝑥𝑇))
116112simp3d 1144 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ≤ (𝐵 + 𝑇))
11716, 13, 104, 116lesub1dd 11742 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ≤ ((𝐵 + 𝑇) − 𝑇))
1182recnd 11149 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℂ)
119118, 21pncand 11482 . . . . . . . . . . . . 13 (𝜑 → ((𝐵 + 𝑇) − 𝑇) = 𝐵)
120119adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝐵 + 𝑇) − 𝑇) = 𝐵)
121117, 120breqtrd 5121 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ≤ 𝐵)
122102, 103, 105, 115, 121eliccd 45631 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ∈ (𝐴[,]𝐵))
12321adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑇 ∈ ℂ)
124101, 123npcand 11485 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝑥𝑇) + 𝑇) = 𝑥)
125124eqcomd 2739 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 = ((𝑥𝑇) + 𝑇))
126 oveq1 7361 . . . . . . . . . . 11 (𝑧 = (𝑥𝑇) → (𝑧 + 𝑇) = ((𝑥𝑇) + 𝑇))
127126rspceeqv 3596 . . . . . . . . . 10 (((𝑥𝑇) ∈ (𝐴[,]𝐵) ∧ 𝑥 = ((𝑥𝑇) + 𝑇)) → ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))
128122, 125, 127syl2anc 584 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))
129101, 128, 69sylanbrc 583 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)})
130100, 129impbida 800 . . . . . . 7 (𝜑 → (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} ↔ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))))
131130eqrdv 2731 . . . . . 6 (𝜑 → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} = ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
132131reseq2d 5934 . . . . 5 (𝜑 → (𝐹 ↾ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}) = (𝐹 ↾ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))))
133131, 65eqsstrrd 3966 . . . . . 6 (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ⊆ dom 𝐹)
13453, 133feqresmpt 6899 . . . . 5 (𝜑 → (𝐹 ↾ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) = (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹𝑥)))
135132, 134eqtr2d 2769 . . . 4 (𝜑 → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹𝑥)) = (𝐹 ↾ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}))
1361, 2, 4iccshift 45645 . . . . 5 (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)})
137136oveq1d 7369 . . . 4 (𝜑 → (((𝐴 + 𝑇)[,](𝐵 + 𝑇))–cn→ℂ) = ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}–cn→ℂ))
13868, 135, 1373eltr4d 2848 . . 3 (𝜑 → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹𝑥)) ∈ (((𝐴 + 𝑇)[,](𝐵 + 𝑇))–cn→ℂ))
139 ioosscn 13312 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
140139a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
141 1cnd 11116 . . . . 5 (𝜑 → 1 ∈ ℂ)
142 ssid 3953 . . . . . 6 ℂ ⊆ ℂ
143142a1i 11 . . . . 5 (𝜑 → ℂ ⊆ ℂ)
144140, 141, 143constcncfg 45997 . . . 4 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ))
145 fconstmpt 5683 . . . . 5 ((𝐴(,)𝐵) × {1}) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1)
146 ioombl 25496 . . . . . . 7 (𝐴(,)𝐵) ∈ dom vol
147146a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
148 ioovolcl 25501 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
1491, 2, 148syl2anc 584 . . . . . 6 (𝜑 → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
150 iblconst 25749 . . . . . 6 (((𝐴(,)𝐵) ∈ dom vol ∧ (vol‘(𝐴(,)𝐵)) ∈ ℝ ∧ 1 ∈ ℂ) → ((𝐴(,)𝐵) × {1}) ∈ 𝐿1)
151147, 149, 141, 150syl3anc 1373 . . . . 5 (𝜑 → ((𝐴(,)𝐵) × {1}) ∈ 𝐿1)
152145, 151eqeltrrid 2838 . . . 4 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ 1) ∈ 𝐿1)
153144, 152elind 4149 . . 3 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ 1) ∈ (((𝐴(,)𝐵)–cn→ℂ) ∩ 𝐿1))
15424resmptd 5995 . . . . . . 7 (𝜑 → ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵)) = (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇)))
155154eqcomd 2739 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇)) = ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵)))
156155oveq2d 7370 . . . . 5 (𝜑 → (ℝ D (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇))) = (ℝ D ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵))))
15725a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
158157sselda 3930 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
15921adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝑇 ∈ ℂ)
160158, 159addcld 11140 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝑦 + 𝑇) ∈ ℂ)
161160fmpttd 7056 . . . . . 6 (𝜑 → (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)):ℝ⟶ℂ)
162 ssid 3953 . . . . . . 7 ℝ ⊆ ℝ
163162a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℝ)
164 eqid 2733 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
165 tgioo4 24723 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
166164, 165dvres 25842 . . . . . 6 (((ℝ ⊆ ℂ ∧ (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ)) → (ℝ D ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵))) = ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
167157, 161, 163, 24, 166syl22anc 838 . . . . 5 (𝜑 → (ℝ D ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵))) = ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
168156, 167eqtrd 2768 . . . 4 (𝜑 → (ℝ D (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇))) = ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
169 iccntr 24740 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
1701, 2, 169syl2anc 584 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
171170reseq2d 5934 . . . 4 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) = ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ (𝐴(,)𝐵)))
172 reelprrecn 11107 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
173172a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
174 1cnd 11116 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℂ)
175173dvmptid 25891 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ 𝑦)) = (𝑦 ∈ ℝ ↦ 1))
176 0cnd 11114 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 0 ∈ ℂ)
177173, 21dvmptc 25892 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ 𝑇)) = (𝑦 ∈ ℝ ↦ 0))
178173, 158, 174, 175, 159, 176, 177dvmptadd 25894 . . . . . 6 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) = (𝑦 ∈ ℝ ↦ (1 + 0)))
179178reseq1d 5933 . . . . 5 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ (𝐴(,)𝐵)) = ((𝑦 ∈ ℝ ↦ (1 + 0)) ↾ (𝐴(,)𝐵)))
180 ioossre 13311 . . . . . . 7 (𝐴(,)𝐵) ⊆ ℝ
181180a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
182181resmptd 5995 . . . . 5 (𝜑 → ((𝑦 ∈ ℝ ↦ (1 + 0)) ↾ (𝐴(,)𝐵)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ (1 + 0)))
183 1p0e1 12253 . . . . . . 7 (1 + 0) = 1
184183mpteq2i 5191 . . . . . 6 (𝑦 ∈ (𝐴(,)𝐵) ↦ (1 + 0)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1)
185184a1i 11 . . . . 5 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ (1 + 0)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1))
186179, 182, 1853eqtrd 2772 . . . 4 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ (𝐴(,)𝐵)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1))
187168, 171, 1863eqtrd 2772 . . 3 (𝜑 → (ℝ D (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1))
188 fveq2 6830 . . 3 (𝑥 = (𝑦 + 𝑇) → (𝐹𝑥) = (𝐹‘(𝑦 + 𝑇)))
189 oveq1 7361 . . 3 (𝑦 = 𝐴 → (𝑦 + 𝑇) = (𝐴 + 𝑇))
190 oveq1 7361 . . 3 (𝑦 = 𝐵 → (𝑦 + 𝑇) = (𝐵 + 𝑇))
1911, 2, 5, 45, 138, 153, 187, 188, 189, 190, 8, 9itgsubsticc 46101 . 2 (𝜑 → ⨜[(𝐴 + 𝑇) → (𝐵 + 𝑇)](𝐹𝑥) d𝑥 = ⨜[𝐴𝐵]((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦)
1925ditgpos 25787 . . 3 (𝜑 → ⨜[𝐴𝐵]((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴(,)𝐵)((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦)
19310adantr 480 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℂ)
194193, 33ffvelcdmd 7026 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑦 + 𝑇)) ∈ ℂ)
195 1cnd 11116 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 1 ∈ ℂ)
196194, 195mulcld 11141 . . . 4 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → ((𝐹‘(𝑦 + 𝑇)) · 1) ∈ ℂ)
1971, 2, 196itgioo 25747 . . 3 (𝜑 → ∫(𝐴(,)𝐵)((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴[,]𝐵)((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦)
198 fvoveq1 7377 . . . . . 6 (𝑦 = 𝑥 → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘(𝑥 + 𝑇)))
199198oveq1d 7369 . . . . 5 (𝑦 = 𝑥 → ((𝐹‘(𝑦 + 𝑇)) · 1) = ((𝐹‘(𝑥 + 𝑇)) · 1))
200199cbvitgv 25708 . . . 4 ∫(𝐴[,]𝐵)((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴[,]𝐵)((𝐹‘(𝑥 + 𝑇)) · 1) d𝑥
20110adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℂ)
20224sselda 3930 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
2034adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑇 ∈ ℝ)
204202, 203readdcld 11150 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 + 𝑇) ∈ ℝ)
205201, 204ffvelcdmd 7026 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) ∈ ℂ)
206205mulridd 11138 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹‘(𝑥 + 𝑇)) · 1) = (𝐹‘(𝑥 + 𝑇)))
207206, 66eqtrd 2768 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹‘(𝑥 + 𝑇)) · 1) = (𝐹𝑥))
208207itgeq2dv 25713 . . . 4 (𝜑 → ∫(𝐴[,]𝐵)((𝐹‘(𝑥 + 𝑇)) · 1) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
209200, 208eqtrid 2780 . . 3 (𝜑 → ∫(𝐴[,]𝐵)((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
210192, 197, 2093eqtrd 2772 . 2 (𝜑 → ⨜[𝐴𝐵]((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
21119, 191, 2103eqtrd 2772 1 (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  wrex 3057  {crab 3396  wss 3898  {csn 4577  {cpr 4579   class class class wbr 5095  cmpt 5176   × cxp 5619  dom cdm 5621  ran crn 5622  cres 5623  wf 6484  cfv 6488  (class class class)co 7354  cc 11013  cr 11014  0cc0 11015  1c1 11016   + caddc 11018   · cmul 11020  cle 11156  cmin 11353  +crp 12894  (,)cioo 13249  [,]cicc 13252  TopOpenctopn 17329  topGenctg 17345  fldccnfld 21295  intcnt 22935  cnccncf 24799  volcvol 25394  𝐿1cibl 25548  citg 25549  cdit 25777   D cdv 25794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cc 10335  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093  ax-addf 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-symdif 4202  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-ofr 7619  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-oadd 8397  df-omul 8398  df-er 8630  df-map 8760  df-pm 8761  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-fi 9304  df-sup 9335  df-inf 9336  df-oi 9405  df-dju 9803  df-card 9841  df-acn 9844  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-q 12851  df-rp 12895  df-xneg 13015  df-xadd 13016  df-xmul 13017  df-ioo 13253  df-ioc 13254  df-ico 13255  df-icc 13256  df-fz 13412  df-fzo 13559  df-fl 13700  df-mod 13778  df-seq 13913  df-exp 13973  df-hash 14242  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-limsup 15382  df-clim 15399  df-rlim 15400  df-sum 15598  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-starv 17180  df-sca 17181  df-vsca 17182  df-ip 17183  df-tset 17184  df-ple 17185  df-ds 17187  df-unif 17188  df-hom 17189  df-cco 17190  df-rest 17330  df-topn 17331  df-0g 17349  df-gsum 17350  df-topgen 17351  df-pt 17352  df-prds 17355  df-xrs 17410  df-qtop 17415  df-imas 17416  df-xps 17418  df-mre 17492  df-mrc 17493  df-acs 17495  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-submnd 18696  df-mulg 18985  df-cntz 19233  df-cmn 19698  df-psmet 21287  df-xmet 21288  df-met 21289  df-bl 21290  df-mopn 21291  df-fbas 21292  df-fg 21293  df-cnfld 21296  df-top 22812  df-topon 22829  df-topsp 22851  df-bases 22864  df-cld 22937  df-ntr 22938  df-cls 22939  df-nei 23016  df-lp 23054  df-perf 23055  df-cn 23145  df-cnp 23146  df-haus 23233  df-cmp 23305  df-tx 23480  df-hmeo 23673  df-fil 23764  df-fm 23856  df-flim 23857  df-flf 23858  df-xms 24238  df-ms 24239  df-tms 24240  df-cncf 24801  df-ovol 25395  df-vol 25396  df-mbf 25550  df-itg1 25551  df-itg2 25552  df-ibl 25553  df-itg 25554  df-0p 25601  df-ditg 25778  df-limc 25797  df-dv 25798
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator