Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgperiod Structured version   Visualization version   GIF version

Theorem itgperiod 41833
Description: The integral of a periodic function, with period 𝑇 stays the same if the domain of integration is shifted. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgperiod.a (𝜑𝐴 ∈ ℝ)
itgperiod.b (𝜑𝐵 ∈ ℝ)
itgperiod.aleb (𝜑𝐴𝐵)
itgperiod.t (𝜑𝑇 ∈ ℝ+)
itgperiod.f (𝜑𝐹:ℝ⟶ℂ)
itgperiod.fper ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
itgperiod.fcn (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
Assertion
Ref Expression
itgperiod (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑇   𝜑,𝑥

Proof of Theorem itgperiod
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgperiod.a . . . . 5 (𝜑𝐴 ∈ ℝ)
2 itgperiod.b . . . . 5 (𝜑𝐵 ∈ ℝ)
3 itgperiod.t . . . . . 6 (𝜑𝑇 ∈ ℝ+)
43rpred 12286 . . . . 5 (𝜑𝑇 ∈ ℝ)
5 itgperiod.aleb . . . . 5 (𝜑𝐴𝐵)
61, 2, 4, 5leadd1dd 11107 . . . 4 (𝜑 → (𝐴 + 𝑇) ≤ (𝐵 + 𝑇))
76ditgpos 24142 . . 3 (𝜑 → ⨜[(𝐴 + 𝑇) → (𝐵 + 𝑇)](𝐹𝑥) d𝑥 = ∫((𝐴 + 𝑇)(,)(𝐵 + 𝑇))(𝐹𝑥) d𝑥)
81, 4readdcld 10521 . . . 4 (𝜑 → (𝐴 + 𝑇) ∈ ℝ)
92, 4readdcld 10521 . . . 4 (𝜑 → (𝐵 + 𝑇) ∈ ℝ)
10 itgperiod.f . . . . . 6 (𝜑𝐹:ℝ⟶ℂ)
1110adantr 481 . . . . 5 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐹:ℝ⟶ℂ)
128adantr 481 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐴 + 𝑇) ∈ ℝ)
139adantr 481 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐵 + 𝑇) ∈ ℝ)
14 simpr 485 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
15 eliccre 41348 . . . . . 6 (((𝐴 + 𝑇) ∈ ℝ ∧ (𝐵 + 𝑇) ∈ ℝ ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℝ)
1612, 13, 14, 15syl3anc 1364 . . . . 5 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℝ)
1711, 16ffvelrnd 6722 . . . 4 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐹𝑥) ∈ ℂ)
188, 9, 17itgioo 24104 . . 3 (𝜑 → ∫((𝐴 + 𝑇)(,)(𝐵 + 𝑇))(𝐹𝑥) d𝑥 = ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹𝑥) d𝑥)
197, 18eqtr2d 2832 . 2 (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹𝑥) d𝑥 = ⨜[(𝐴 + 𝑇) → (𝐵 + 𝑇)](𝐹𝑥) d𝑥)
20 eqid 2795 . . . 4 (𝑦 ∈ ℂ ↦ (𝑦 + 𝑇)) = (𝑦 ∈ ℂ ↦ (𝑦 + 𝑇))
214recnd 10520 . . . . 5 (𝜑𝑇 ∈ ℂ)
2220addccncf 23212 . . . . 5 (𝑇 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝑦 + 𝑇)) ∈ (ℂ–cn→ℂ))
2321, 22syl 17 . . . 4 (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦 + 𝑇)) ∈ (ℂ–cn→ℂ))
241, 2iccssred 41347 . . . . 5 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
25 ax-resscn 10445 . . . . 5 ℝ ⊆ ℂ
2624, 25syl6ss 3905 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
278, 9iccssred 41347 . . . . 5 (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ⊆ ℝ)
2827, 25syl6ss 3905 . . . 4 (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ⊆ ℂ)
298adantr 481 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐴 + 𝑇) ∈ ℝ)
309adantr 481 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐵 + 𝑇) ∈ ℝ)
3124sselda 3893 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ ℝ)
324adantr 481 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑇 ∈ ℝ)
3331, 32readdcld 10521 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 + 𝑇) ∈ ℝ)
341adantr 481 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
35 simpr 485 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐴[,]𝐵))
362adantr 481 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
37 elicc2 12656 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
3834, 36, 37syl2anc 584 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
3935, 38mpbid 233 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
4039simp2d 1136 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐴𝑦)
4134, 31, 32, 40leadd1dd 11107 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐴 + 𝑇) ≤ (𝑦 + 𝑇))
4239simp3d 1137 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦𝐵)
4331, 36, 32, 42leadd1dd 11107 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 + 𝑇) ≤ (𝐵 + 𝑇))
4429, 30, 33, 41, 43eliccd 41346 . . . 4 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 + 𝑇) ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
4520, 23, 26, 28, 44cncfmptssg 41720 . . 3 (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇)) ∈ ((𝐴[,]𝐵)–cn→((𝐴 + 𝑇)[,](𝐵 + 𝑇))))
46 eqeq1 2799 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑧 + 𝑇)))
4746rexbidv 3260 . . . . . . 7 (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇)))
48 oveq1 7028 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑧 + 𝑇) = (𝑦 + 𝑇))
4948eqeq2d 2805 . . . . . . . 8 (𝑧 = 𝑦 → (𝑥 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑦 + 𝑇)))
5049cbvrexv 3404 . . . . . . 7 (∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇))
5147, 50syl6bb 288 . . . . . 6 (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)))
5251cbvrabv 3434 . . . . 5 {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)}
5310ffdmd 6410 . . . . 5 (𝜑𝐹:dom 𝐹⟶ℂ)
54 simp3 1131 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑤 = (𝑧 + 𝑇)) → 𝑤 = (𝑧 + 𝑇))
5524sselda 3893 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ∈ ℝ)
564adantr 481 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝑇 ∈ ℝ)
5755, 56readdcld 10521 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝑧 + 𝑇) ∈ ℝ)
58573adant3 1125 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑤 = (𝑧 + 𝑇)) → (𝑧 + 𝑇) ∈ ℝ)
5954, 58eqeltrd 2883 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑤 = (𝑧 + 𝑇)) → 𝑤 ∈ ℝ)
6059rexlimdv3a 3249 . . . . . . . 8 (𝜑 → (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) → 𝑤 ∈ ℝ))
6160ralrimivw 3150 . . . . . . 7 (𝜑 → ∀𝑤 ∈ ℂ (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) → 𝑤 ∈ ℝ))
62 rabss 3973 . . . . . . 7 ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} ⊆ ℝ ↔ ∀𝑤 ∈ ℂ (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) → 𝑤 ∈ ℝ))
6361, 62sylibr 235 . . . . . 6 (𝜑 → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} ⊆ ℝ)
6410fdmd 6396 . . . . . 6 (𝜑 → dom 𝐹 = ℝ)
6563, 64sseqtr4d 3933 . . . . 5 (𝜑 → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} ⊆ dom 𝐹)
66 itgperiod.fper . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
67 itgperiod.fcn . . . . 5 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
6826, 4, 52, 53, 65, 66, 67cncfperiod 41729 . . . 4 (𝜑 → (𝐹 ↾ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}) ∈ ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}–cn→ℂ))
6947elrab 3619 . . . . . . . . 9 (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} ↔ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇)))
70 simprr 769 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))) → ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))
71 nfv 1892 . . . . . . . . . . . 12 𝑧𝜑
72 nfv 1892 . . . . . . . . . . . . 13 𝑧 𝑥 ∈ ℂ
73 nfre1 3269 . . . . . . . . . . . . 13 𝑧𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇)
7472, 73nfan 1881 . . . . . . . . . . . 12 𝑧(𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))
7571, 74nfan 1881 . . . . . . . . . . 11 𝑧(𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇)))
76 nfv 1892 . . . . . . . . . . 11 𝑧 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))
77 simp3 1131 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 = (𝑧 + 𝑇))
781adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
79 simpr 485 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ∈ (𝐴[,]𝐵))
802adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
81 elicc2 12656 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑧 ∈ (𝐴[,]𝐵) ↔ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵)))
8278, 80, 81syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝑧 ∈ (𝐴[,]𝐵) ↔ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵)))
8379, 82mpbid 233 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵))
8483simp2d 1136 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝐴𝑧)
8578, 55, 56, 84leadd1dd 11107 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝐴 + 𝑇) ≤ (𝑧 + 𝑇))
8683simp3d 1137 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝑧𝐵)
8755, 80, 56, 86leadd1dd 11107 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝑧 + 𝑇) ≤ (𝐵 + 𝑇))
8857, 85, 873jca 1121 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → ((𝑧 + 𝑇) ∈ ℝ ∧ (𝐴 + 𝑇) ≤ (𝑧 + 𝑇) ∧ (𝑧 + 𝑇) ≤ (𝐵 + 𝑇)))
89883adant3 1125 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → ((𝑧 + 𝑇) ∈ ℝ ∧ (𝐴 + 𝑇) ≤ (𝑧 + 𝑇) ∧ (𝑧 + 𝑇) ≤ (𝐵 + 𝑇)))
9083ad2ant1 1126 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝐴 + 𝑇) ∈ ℝ)
9193ad2ant1 1126 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝐵 + 𝑇) ∈ ℝ)
92 elicc2 12656 . . . . . . . . . . . . . . . 16 (((𝐴 + 𝑇) ∈ ℝ ∧ (𝐵 + 𝑇) ∈ ℝ) → ((𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ ((𝑧 + 𝑇) ∈ ℝ ∧ (𝐴 + 𝑇) ≤ (𝑧 + 𝑇) ∧ (𝑧 + 𝑇) ≤ (𝐵 + 𝑇))))
9390, 91, 92syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → ((𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ ((𝑧 + 𝑇) ∈ ℝ ∧ (𝐴 + 𝑇) ≤ (𝑧 + 𝑇) ∧ (𝑧 + 𝑇) ≤ (𝐵 + 𝑇))))
9489, 93mpbird 258 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
9577, 94eqeltrd 2883 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
96953exp 1112 . . . . . . . . . . . 12 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) → (𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))))
9796adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))) → (𝑧 ∈ (𝐴[,]𝐵) → (𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))))
9875, 76, 97rexlimd 3278 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))) → (∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))))
9970, 98mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
10069, 99sylan2b 593 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
10116recnd 10520 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℂ)
1021adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 ∈ ℝ)
1032adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐵 ∈ ℝ)
1044adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑇 ∈ ℝ)
10516, 104resubcld 10921 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ∈ ℝ)
1061recnd 10520 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℂ)
107106, 21pncand 10851 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 + 𝑇) − 𝑇) = 𝐴)
108107eqcomd 2801 . . . . . . . . . . . . 13 (𝜑𝐴 = ((𝐴 + 𝑇) − 𝑇))
109108adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 = ((𝐴 + 𝑇) − 𝑇))
110 elicc2 12656 . . . . . . . . . . . . . . . 16 (((𝐴 + 𝑇) ∈ ℝ ∧ (𝐵 + 𝑇) ∈ ℝ) → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 + 𝑇) ≤ 𝑥𝑥 ≤ (𝐵 + 𝑇))))
11112, 13, 110syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 + 𝑇) ≤ 𝑥𝑥 ≤ (𝐵 + 𝑇))))
11214, 111mpbid 233 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 ∈ ℝ ∧ (𝐴 + 𝑇) ≤ 𝑥𝑥 ≤ (𝐵 + 𝑇)))
113112simp2d 1136 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐴 + 𝑇) ≤ 𝑥)
11412, 16, 104, 113lesub1dd 11109 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝐴 + 𝑇) − 𝑇) ≤ (𝑥𝑇))
115109, 114eqbrtrd 4988 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 ≤ (𝑥𝑇))
116112simp3d 1137 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ≤ (𝐵 + 𝑇))
11716, 13, 104, 116lesub1dd 11109 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ≤ ((𝐵 + 𝑇) − 𝑇))
1182recnd 10520 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℂ)
119118, 21pncand 10851 . . . . . . . . . . . . 13 (𝜑 → ((𝐵 + 𝑇) − 𝑇) = 𝐵)
120119adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝐵 + 𝑇) − 𝑇) = 𝐵)
121117, 120breqtrd 4992 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ≤ 𝐵)
122102, 103, 105, 115, 121eliccd 41346 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ∈ (𝐴[,]𝐵))
12321adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑇 ∈ ℂ)
124101, 123npcand 10854 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝑥𝑇) + 𝑇) = 𝑥)
125124eqcomd 2801 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 = ((𝑥𝑇) + 𝑇))
126 oveq1 7028 . . . . . . . . . . 11 (𝑧 = (𝑥𝑇) → (𝑧 + 𝑇) = ((𝑥𝑇) + 𝑇))
127126rspceeqv 3577 . . . . . . . . . 10 (((𝑥𝑇) ∈ (𝐴[,]𝐵) ∧ 𝑥 = ((𝑥𝑇) + 𝑇)) → ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))
128122, 125, 127syl2anc 584 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))
129101, 128, 69sylanbrc 583 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)})
130100, 129impbida 797 . . . . . . 7 (𝜑 → (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} ↔ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))))
131130eqrdv 2793 . . . . . 6 (𝜑 → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} = ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
132131reseq2d 5739 . . . . 5 (𝜑 → (𝐹 ↾ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}) = (𝐹 ↾ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))))
133131, 65eqsstrrd 3931 . . . . . 6 (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ⊆ dom 𝐹)
13453, 133feqresmpt 6607 . . . . 5 (𝜑 → (𝐹 ↾ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) = (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹𝑥)))
135132, 134eqtr2d 2832 . . . 4 (𝜑 → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹𝑥)) = (𝐹 ↾ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}))
1361, 2, 4iccshift 41361 . . . . 5 (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)})
137136oveq1d 7036 . . . 4 (𝜑 → (((𝐴 + 𝑇)[,](𝐵 + 𝑇))–cn→ℂ) = ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}–cn→ℂ))
13868, 135, 1373eltr4d 2898 . . 3 (𝜑 → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹𝑥)) ∈ (((𝐴 + 𝑇)[,](𝐵 + 𝑇))–cn→ℂ))
139 ioosscn 41336 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
140139a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
141 1cnd 10487 . . . . 5 (𝜑 → 1 ∈ ℂ)
142 ssid 3914 . . . . . 6 ℂ ⊆ ℂ
143142a1i 11 . . . . 5 (𝜑 → ℂ ⊆ ℂ)
144140, 141, 143constcncfg 41721 . . . 4 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ))
145 fconstmpt 5505 . . . . 5 ((𝐴(,)𝐵) × {1}) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1)
146 ioombl 23854 . . . . . . 7 (𝐴(,)𝐵) ∈ dom vol
147146a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
148 ioovolcl 23859 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
1491, 2, 148syl2anc 584 . . . . . 6 (𝜑 → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
150 iblconst 24106 . . . . . 6 (((𝐴(,)𝐵) ∈ dom vol ∧ (vol‘(𝐴(,)𝐵)) ∈ ℝ ∧ 1 ∈ ℂ) → ((𝐴(,)𝐵) × {1}) ∈ 𝐿1)
151147, 149, 141, 150syl3anc 1364 . . . . 5 (𝜑 → ((𝐴(,)𝐵) × {1}) ∈ 𝐿1)
152145, 151syl5eqelr 2888 . . . 4 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ 1) ∈ 𝐿1)
153144, 152elind 4096 . . 3 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ 1) ∈ (((𝐴(,)𝐵)–cn→ℂ) ∩ 𝐿1))
15424resmptd 5794 . . . . . . 7 (𝜑 → ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵)) = (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇)))
155154eqcomd 2801 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇)) = ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵)))
156155oveq2d 7037 . . . . 5 (𝜑 → (ℝ D (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇))) = (ℝ D ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵))))
15725a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
158157sselda 3893 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
15921adantr 481 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝑇 ∈ ℂ)
160158, 159addcld 10511 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝑦 + 𝑇) ∈ ℂ)
161160fmpttd 6747 . . . . . 6 (𝜑 → (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)):ℝ⟶ℂ)
162 ssid 3914 . . . . . . 7 ℝ ⊆ ℝ
163162a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℝ)
164 eqid 2795 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
165164tgioo2 23099 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
166164, 165dvres 24197 . . . . . 6 (((ℝ ⊆ ℂ ∧ (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ)) → (ℝ D ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵))) = ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
167157, 161, 163, 24, 166syl22anc 835 . . . . 5 (𝜑 → (ℝ D ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵))) = ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
168156, 167eqtrd 2831 . . . 4 (𝜑 → (ℝ D (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇))) = ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
169 iccntr 23117 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
1701, 2, 169syl2anc 584 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
171170reseq2d 5739 . . . 4 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) = ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ (𝐴(,)𝐵)))
172 reelprrecn 10480 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
173172a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
174 1cnd 10487 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℂ)
175173dvmptid 24242 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ 𝑦)) = (𝑦 ∈ ℝ ↦ 1))
176 0cnd 10485 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 0 ∈ ℂ)
177173, 21dvmptc 24243 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ 𝑇)) = (𝑦 ∈ ℝ ↦ 0))
178173, 158, 174, 175, 159, 176, 177dvmptadd 24245 . . . . . 6 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) = (𝑦 ∈ ℝ ↦ (1 + 0)))
179178reseq1d 5738 . . . . 5 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ (𝐴(,)𝐵)) = ((𝑦 ∈ ℝ ↦ (1 + 0)) ↾ (𝐴(,)𝐵)))
180 ioossre 12653 . . . . . . 7 (𝐴(,)𝐵) ⊆ ℝ
181180a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
182181resmptd 5794 . . . . 5 (𝜑 → ((𝑦 ∈ ℝ ↦ (1 + 0)) ↾ (𝐴(,)𝐵)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ (1 + 0)))
183 1p0e1 11614 . . . . . . 7 (1 + 0) = 1
184183mpteq2i 5057 . . . . . 6 (𝑦 ∈ (𝐴(,)𝐵) ↦ (1 + 0)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1)
185184a1i 11 . . . . 5 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ (1 + 0)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1))
186179, 182, 1853eqtrd 2835 . . . 4 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ (𝐴(,)𝐵)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1))
187168, 171, 1863eqtrd 2835 . . 3 (𝜑 → (ℝ D (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1))
188 fveq2 6543 . . 3 (𝑥 = (𝑦 + 𝑇) → (𝐹𝑥) = (𝐹‘(𝑦 + 𝑇)))
189 oveq1 7028 . . 3 (𝑦 = 𝐴 → (𝑦 + 𝑇) = (𝐴 + 𝑇))
190 oveq1 7028 . . 3 (𝑦 = 𝐵 → (𝑦 + 𝑇) = (𝐵 + 𝑇))
1911, 2, 5, 45, 138, 153, 187, 188, 189, 190, 8, 9itgsubsticc 41828 . 2 (𝜑 → ⨜[(𝐴 + 𝑇) → (𝐵 + 𝑇)](𝐹𝑥) d𝑥 = ⨜[𝐴𝐵]((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦)
1925ditgpos 24142 . . 3 (𝜑 → ⨜[𝐴𝐵]((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴(,)𝐵)((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦)
19310adantr 481 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℂ)
194193, 33ffvelrnd 6722 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑦 + 𝑇)) ∈ ℂ)
195 1cnd 10487 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 1 ∈ ℂ)
196194, 195mulcld 10512 . . . 4 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → ((𝐹‘(𝑦 + 𝑇)) · 1) ∈ ℂ)
1971, 2, 196itgioo 24104 . . 3 (𝜑 → ∫(𝐴(,)𝐵)((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴[,]𝐵)((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦)
198 fvoveq1 7044 . . . . . 6 (𝑦 = 𝑥 → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘(𝑥 + 𝑇)))
199198oveq1d 7036 . . . . 5 (𝑦 = 𝑥 → ((𝐹‘(𝑦 + 𝑇)) · 1) = ((𝐹‘(𝑥 + 𝑇)) · 1))
200199cbvitgv 24065 . . . 4 ∫(𝐴[,]𝐵)((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴[,]𝐵)((𝐹‘(𝑥 + 𝑇)) · 1) d𝑥
20110adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℂ)
20224sselda 3893 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
2034adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑇 ∈ ℝ)
204202, 203readdcld 10521 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 + 𝑇) ∈ ℝ)
205201, 204ffvelrnd 6722 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) ∈ ℂ)
206205mulid1d 10509 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹‘(𝑥 + 𝑇)) · 1) = (𝐹‘(𝑥 + 𝑇)))
207206, 66eqtrd 2831 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹‘(𝑥 + 𝑇)) · 1) = (𝐹𝑥))
208207itgeq2dv 24070 . . . 4 (𝜑 → ∫(𝐴[,]𝐵)((𝐹‘(𝑥 + 𝑇)) · 1) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
209200, 208syl5eq 2843 . . 3 (𝜑 → ∫(𝐴[,]𝐵)((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
210192, 197, 2093eqtrd 2835 . 2 (𝜑 → ⨜[𝐴𝐵]((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
21119, 191, 2103eqtrd 2835 1 (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081  wral 3105  wrex 3106  {crab 3109  wss 3863  {csn 4476  {cpr 4478   class class class wbr 4966  cmpt 5045   × cxp 5446  dom cdm 5448  ran crn 5449  cres 5450  wf 6226  cfv 6230  (class class class)co 7021  cc 10386  cr 10387  0cc0 10388  1c1 10389   + caddc 10391   · cmul 10393  cle 10527  cmin 10722  +crp 12244  (,)cioo 12593  [,]cicc 12596  TopOpenctopn 16529  topGenctg 16545  fldccnfld 20232  intcnt 21314  cnccncf 23172  volcvol 23752  𝐿1cibl 23906  citg 23907  cdit 24132   D cdv 24149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5086  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-inf2 8955  ax-cc 9708  ax-cnex 10444  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-mulcom 10452  ax-addass 10453  ax-mulass 10454  ax-distr 10455  ax-i2m1 10456  ax-1ne0 10457  ax-1rid 10458  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461  ax-pre-lttri 10462  ax-pre-lttrn 10463  ax-pre-ltadd 10464  ax-pre-mulgt0 10465  ax-pre-sup 10466  ax-addf 10467  ax-mulf 10468
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-symdif 4143  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-int 4787  df-iun 4831  df-iin 4832  df-disj 4935  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-se 5408  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-isom 6239  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-of 7272  df-ofr 7273  df-om 7442  df-1st 7550  df-2nd 7551  df-supp 7687  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-1o 7958  df-2o 7959  df-oadd 7962  df-omul 7963  df-er 8144  df-map 8263  df-pm 8264  df-ixp 8316  df-en 8363  df-dom 8364  df-sdom 8365  df-fin 8366  df-fsupp 8685  df-fi 8726  df-sup 8757  df-inf 8758  df-oi 8825  df-dju 9181  df-card 9219  df-acn 9222  df-pnf 10528  df-mnf 10529  df-xr 10530  df-ltxr 10531  df-le 10532  df-sub 10724  df-neg 10725  df-div 11151  df-nn 11492  df-2 11553  df-3 11554  df-4 11555  df-5 11556  df-6 11557  df-7 11558  df-8 11559  df-9 11560  df-n0 11751  df-z 11835  df-dec 11953  df-uz 12099  df-q 12203  df-rp 12245  df-xneg 12362  df-xadd 12363  df-xmul 12364  df-ioo 12597  df-ioc 12598  df-ico 12599  df-icc 12600  df-fz 12748  df-fzo 12889  df-fl 13017  df-mod 13093  df-seq 13225  df-exp 13285  df-hash 13546  df-cj 14297  df-re 14298  df-im 14299  df-sqrt 14433  df-abs 14434  df-limsup 14667  df-clim 14684  df-rlim 14685  df-sum 14882  df-struct 16319  df-ndx 16320  df-slot 16321  df-base 16323  df-sets 16324  df-ress 16325  df-plusg 16412  df-mulr 16413  df-starv 16414  df-sca 16415  df-vsca 16416  df-ip 16417  df-tset 16418  df-ple 16419  df-ds 16421  df-unif 16422  df-hom 16423  df-cco 16424  df-rest 16530  df-topn 16531  df-0g 16549  df-gsum 16550  df-topgen 16551  df-pt 16552  df-prds 16555  df-xrs 16609  df-qtop 16614  df-imas 16615  df-xps 16617  df-mre 16691  df-mrc 16692  df-acs 16694  df-mgm 17686  df-sgrp 17728  df-mnd 17739  df-submnd 17780  df-mulg 17987  df-cntz 18193  df-cmn 18640  df-psmet 20224  df-xmet 20225  df-met 20226  df-bl 20227  df-mopn 20228  df-fbas 20229  df-fg 20230  df-cnfld 20233  df-top 21191  df-topon 21208  df-topsp 21230  df-bases 21243  df-cld 21316  df-ntr 21317  df-cls 21318  df-nei 21395  df-lp 21433  df-perf 21434  df-cn 21524  df-cnp 21525  df-haus 21612  df-cmp 21684  df-tx 21859  df-hmeo 22052  df-fil 22143  df-fm 22235  df-flim 22236  df-flf 22237  df-xms 22618  df-ms 22619  df-tms 22620  df-cncf 23174  df-ovol 23753  df-vol 23754  df-mbf 23908  df-itg1 23909  df-itg2 23910  df-ibl 23911  df-itg 23912  df-0p 23959  df-ditg 24133  df-limc 24152  df-dv 24153
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator