Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgperiod Structured version   Visualization version   GIF version

Theorem itgperiod 44342
Description: The integral of a periodic function, with period 𝑇 stays the same if the domain of integration is shifted. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgperiod.a (𝜑𝐴 ∈ ℝ)
itgperiod.b (𝜑𝐵 ∈ ℝ)
itgperiod.aleb (𝜑𝐴𝐵)
itgperiod.t (𝜑𝑇 ∈ ℝ+)
itgperiod.f (𝜑𝐹:ℝ⟶ℂ)
itgperiod.fper ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
itgperiod.fcn (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
Assertion
Ref Expression
itgperiod (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑇   𝜑,𝑥

Proof of Theorem itgperiod
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgperiod.a . . . . 5 (𝜑𝐴 ∈ ℝ)
2 itgperiod.b . . . . 5 (𝜑𝐵 ∈ ℝ)
3 itgperiod.t . . . . . 6 (𝜑𝑇 ∈ ℝ+)
43rpred 12966 . . . . 5 (𝜑𝑇 ∈ ℝ)
5 itgperiod.aleb . . . . 5 (𝜑𝐴𝐵)
61, 2, 4, 5leadd1dd 11778 . . . 4 (𝜑 → (𝐴 + 𝑇) ≤ (𝐵 + 𝑇))
76ditgpos 25257 . . 3 (𝜑 → ⨜[(𝐴 + 𝑇) → (𝐵 + 𝑇)](𝐹𝑥) d𝑥 = ∫((𝐴 + 𝑇)(,)(𝐵 + 𝑇))(𝐹𝑥) d𝑥)
81, 4readdcld 11193 . . . 4 (𝜑 → (𝐴 + 𝑇) ∈ ℝ)
92, 4readdcld 11193 . . . 4 (𝜑 → (𝐵 + 𝑇) ∈ ℝ)
10 itgperiod.f . . . . . 6 (𝜑𝐹:ℝ⟶ℂ)
1110adantr 481 . . . . 5 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐹:ℝ⟶ℂ)
128adantr 481 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐴 + 𝑇) ∈ ℝ)
139adantr 481 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐵 + 𝑇) ∈ ℝ)
14 simpr 485 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
15 eliccre 43863 . . . . . 6 (((𝐴 + 𝑇) ∈ ℝ ∧ (𝐵 + 𝑇) ∈ ℝ ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℝ)
1612, 13, 14, 15syl3anc 1371 . . . . 5 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℝ)
1711, 16ffvelcdmd 7041 . . . 4 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐹𝑥) ∈ ℂ)
188, 9, 17itgioo 25217 . . 3 (𝜑 → ∫((𝐴 + 𝑇)(,)(𝐵 + 𝑇))(𝐹𝑥) d𝑥 = ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹𝑥) d𝑥)
197, 18eqtr2d 2772 . 2 (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹𝑥) d𝑥 = ⨜[(𝐴 + 𝑇) → (𝐵 + 𝑇)](𝐹𝑥) d𝑥)
20 eqid 2731 . . . 4 (𝑦 ∈ ℂ ↦ (𝑦 + 𝑇)) = (𝑦 ∈ ℂ ↦ (𝑦 + 𝑇))
214recnd 11192 . . . . 5 (𝜑𝑇 ∈ ℂ)
2220addccncf 24317 . . . . 5 (𝑇 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝑦 + 𝑇)) ∈ (ℂ–cn→ℂ))
2321, 22syl 17 . . . 4 (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦 + 𝑇)) ∈ (ℂ–cn→ℂ))
241, 2iccssred 13361 . . . . 5 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
25 ax-resscn 11117 . . . . 5 ℝ ⊆ ℂ
2624, 25sstrdi 3959 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
278, 9iccssred 13361 . . . . 5 (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ⊆ ℝ)
2827, 25sstrdi 3959 . . . 4 (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ⊆ ℂ)
298adantr 481 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐴 + 𝑇) ∈ ℝ)
309adantr 481 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐵 + 𝑇) ∈ ℝ)
3124sselda 3947 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ ℝ)
324adantr 481 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑇 ∈ ℝ)
3331, 32readdcld 11193 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 + 𝑇) ∈ ℝ)
341adantr 481 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
35 simpr 485 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐴[,]𝐵))
362adantr 481 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
37 elicc2 13339 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
3834, 36, 37syl2anc 584 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
3935, 38mpbid 231 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
4039simp2d 1143 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐴𝑦)
4134, 31, 32, 40leadd1dd 11778 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐴 + 𝑇) ≤ (𝑦 + 𝑇))
4239simp3d 1144 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦𝐵)
4331, 36, 32, 42leadd1dd 11778 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 + 𝑇) ≤ (𝐵 + 𝑇))
4429, 30, 33, 41, 43eliccd 43862 . . . 4 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 + 𝑇) ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
4520, 23, 26, 28, 44cncfmptssg 44232 . . 3 (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇)) ∈ ((𝐴[,]𝐵)–cn→((𝐴 + 𝑇)[,](𝐵 + 𝑇))))
46 eqeq1 2735 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑧 + 𝑇)))
4746rexbidv 3171 . . . . . . 7 (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇)))
48 oveq1 7369 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑧 + 𝑇) = (𝑦 + 𝑇))
4948eqeq2d 2742 . . . . . . . 8 (𝑧 = 𝑦 → (𝑥 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑦 + 𝑇)))
5049cbvrexvw 3224 . . . . . . 7 (∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇))
5147, 50bitrdi 286 . . . . . 6 (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)))
5251cbvrabv 3415 . . . . 5 {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)}
5310ffdmd 6704 . . . . 5 (𝜑𝐹:dom 𝐹⟶ℂ)
54 simp3 1138 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑤 = (𝑧 + 𝑇)) → 𝑤 = (𝑧 + 𝑇))
5524sselda 3947 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ∈ ℝ)
564adantr 481 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝑇 ∈ ℝ)
5755, 56readdcld 11193 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝑧 + 𝑇) ∈ ℝ)
58573adant3 1132 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑤 = (𝑧 + 𝑇)) → (𝑧 + 𝑇) ∈ ℝ)
5954, 58eqeltrd 2832 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑤 = (𝑧 + 𝑇)) → 𝑤 ∈ ℝ)
6059rexlimdv3a 3152 . . . . . . . 8 (𝜑 → (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) → 𝑤 ∈ ℝ))
6160ralrimivw 3143 . . . . . . 7 (𝜑 → ∀𝑤 ∈ ℂ (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) → 𝑤 ∈ ℝ))
62 rabss 4034 . . . . . . 7 ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} ⊆ ℝ ↔ ∀𝑤 ∈ ℂ (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) → 𝑤 ∈ ℝ))
6361, 62sylibr 233 . . . . . 6 (𝜑 → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} ⊆ ℝ)
6410fdmd 6684 . . . . . 6 (𝜑 → dom 𝐹 = ℝ)
6563, 64sseqtrrd 3988 . . . . 5 (𝜑 → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} ⊆ dom 𝐹)
66 itgperiod.fper . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
67 itgperiod.fcn . . . . 5 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
6826, 4, 52, 53, 65, 66, 67cncfperiod 44240 . . . 4 (𝜑 → (𝐹 ↾ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}) ∈ ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}–cn→ℂ))
6947elrab 3648 . . . . . . . . 9 (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} ↔ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇)))
70 simprr 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))) → ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))
71 nfv 1917 . . . . . . . . . . . 12 𝑧𝜑
72 nfv 1917 . . . . . . . . . . . . 13 𝑧 𝑥 ∈ ℂ
73 nfre1 3266 . . . . . . . . . . . . 13 𝑧𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇)
7472, 73nfan 1902 . . . . . . . . . . . 12 𝑧(𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))
7571, 74nfan 1902 . . . . . . . . . . 11 𝑧(𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇)))
76 nfv 1917 . . . . . . . . . . 11 𝑧 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))
77 simp3 1138 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 = (𝑧 + 𝑇))
781adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
79 simpr 485 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ∈ (𝐴[,]𝐵))
802adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
81 elicc2 13339 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑧 ∈ (𝐴[,]𝐵) ↔ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵)))
8278, 80, 81syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝑧 ∈ (𝐴[,]𝐵) ↔ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵)))
8379, 82mpbid 231 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵))
8483simp2d 1143 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝐴𝑧)
8578, 55, 56, 84leadd1dd 11778 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝐴 + 𝑇) ≤ (𝑧 + 𝑇))
8683simp3d 1144 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝑧𝐵)
8755, 80, 56, 86leadd1dd 11778 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝑧 + 𝑇) ≤ (𝐵 + 𝑇))
8857, 85, 873jca 1128 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → ((𝑧 + 𝑇) ∈ ℝ ∧ (𝐴 + 𝑇) ≤ (𝑧 + 𝑇) ∧ (𝑧 + 𝑇) ≤ (𝐵 + 𝑇)))
89883adant3 1132 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → ((𝑧 + 𝑇) ∈ ℝ ∧ (𝐴 + 𝑇) ≤ (𝑧 + 𝑇) ∧ (𝑧 + 𝑇) ≤ (𝐵 + 𝑇)))
9083ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝐴 + 𝑇) ∈ ℝ)
9193ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝐵 + 𝑇) ∈ ℝ)
92 elicc2 13339 . . . . . . . . . . . . . . . 16 (((𝐴 + 𝑇) ∈ ℝ ∧ (𝐵 + 𝑇) ∈ ℝ) → ((𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ ((𝑧 + 𝑇) ∈ ℝ ∧ (𝐴 + 𝑇) ≤ (𝑧 + 𝑇) ∧ (𝑧 + 𝑇) ≤ (𝐵 + 𝑇))))
9390, 91, 92syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → ((𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ ((𝑧 + 𝑇) ∈ ℝ ∧ (𝐴 + 𝑇) ≤ (𝑧 + 𝑇) ∧ (𝑧 + 𝑇) ≤ (𝐵 + 𝑇))))
9489, 93mpbird 256 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
9577, 94eqeltrd 2832 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
96953exp 1119 . . . . . . . . . . . 12 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) → (𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))))
9796adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))) → (𝑧 ∈ (𝐴[,]𝐵) → (𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))))
9875, 76, 97rexlimd 3247 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))) → (∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))))
9970, 98mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
10069, 99sylan2b 594 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
10116recnd 11192 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℂ)
1021adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 ∈ ℝ)
1032adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐵 ∈ ℝ)
1044adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑇 ∈ ℝ)
10516, 104resubcld 11592 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ∈ ℝ)
1061recnd 11192 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℂ)
107106, 21pncand 11522 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 + 𝑇) − 𝑇) = 𝐴)
108107eqcomd 2737 . . . . . . . . . . . . 13 (𝜑𝐴 = ((𝐴 + 𝑇) − 𝑇))
109108adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 = ((𝐴 + 𝑇) − 𝑇))
110 elicc2 13339 . . . . . . . . . . . . . . . 16 (((𝐴 + 𝑇) ∈ ℝ ∧ (𝐵 + 𝑇) ∈ ℝ) → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 + 𝑇) ≤ 𝑥𝑥 ≤ (𝐵 + 𝑇))))
11112, 13, 110syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 + 𝑇) ≤ 𝑥𝑥 ≤ (𝐵 + 𝑇))))
11214, 111mpbid 231 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 ∈ ℝ ∧ (𝐴 + 𝑇) ≤ 𝑥𝑥 ≤ (𝐵 + 𝑇)))
113112simp2d 1143 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐴 + 𝑇) ≤ 𝑥)
11412, 16, 104, 113lesub1dd 11780 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝐴 + 𝑇) − 𝑇) ≤ (𝑥𝑇))
115109, 114eqbrtrd 5132 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 ≤ (𝑥𝑇))
116112simp3d 1144 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ≤ (𝐵 + 𝑇))
11716, 13, 104, 116lesub1dd 11780 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ≤ ((𝐵 + 𝑇) − 𝑇))
1182recnd 11192 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℂ)
119118, 21pncand 11522 . . . . . . . . . . . . 13 (𝜑 → ((𝐵 + 𝑇) − 𝑇) = 𝐵)
120119adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝐵 + 𝑇) − 𝑇) = 𝐵)
121117, 120breqtrd 5136 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ≤ 𝐵)
122102, 103, 105, 115, 121eliccd 43862 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ∈ (𝐴[,]𝐵))
12321adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑇 ∈ ℂ)
124101, 123npcand 11525 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝑥𝑇) + 𝑇) = 𝑥)
125124eqcomd 2737 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 = ((𝑥𝑇) + 𝑇))
126 oveq1 7369 . . . . . . . . . . 11 (𝑧 = (𝑥𝑇) → (𝑧 + 𝑇) = ((𝑥𝑇) + 𝑇))
127126rspceeqv 3598 . . . . . . . . . 10 (((𝑥𝑇) ∈ (𝐴[,]𝐵) ∧ 𝑥 = ((𝑥𝑇) + 𝑇)) → ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))
128122, 125, 127syl2anc 584 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))
129101, 128, 69sylanbrc 583 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)})
130100, 129impbida 799 . . . . . . 7 (𝜑 → (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} ↔ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))))
131130eqrdv 2729 . . . . . 6 (𝜑 → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} = ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
132131reseq2d 5942 . . . . 5 (𝜑 → (𝐹 ↾ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}) = (𝐹 ↾ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))))
133131, 65eqsstrrd 3986 . . . . . 6 (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ⊆ dom 𝐹)
13453, 133feqresmpt 6916 . . . . 5 (𝜑 → (𝐹 ↾ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) = (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹𝑥)))
135132, 134eqtr2d 2772 . . . 4 (𝜑 → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹𝑥)) = (𝐹 ↾ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}))
1361, 2, 4iccshift 43876 . . . . 5 (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)})
137136oveq1d 7377 . . . 4 (𝜑 → (((𝐴 + 𝑇)[,](𝐵 + 𝑇))–cn→ℂ) = ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}–cn→ℂ))
13868, 135, 1373eltr4d 2847 . . 3 (𝜑 → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹𝑥)) ∈ (((𝐴 + 𝑇)[,](𝐵 + 𝑇))–cn→ℂ))
139 ioosscn 13336 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
140139a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
141 1cnd 11159 . . . . 5 (𝜑 → 1 ∈ ℂ)
142 ssid 3969 . . . . . 6 ℂ ⊆ ℂ
143142a1i 11 . . . . 5 (𝜑 → ℂ ⊆ ℂ)
144140, 141, 143constcncfg 44233 . . . 4 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ))
145 fconstmpt 5699 . . . . 5 ((𝐴(,)𝐵) × {1}) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1)
146 ioombl 24966 . . . . . . 7 (𝐴(,)𝐵) ∈ dom vol
147146a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
148 ioovolcl 24971 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
1491, 2, 148syl2anc 584 . . . . . 6 (𝜑 → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
150 iblconst 25219 . . . . . 6 (((𝐴(,)𝐵) ∈ dom vol ∧ (vol‘(𝐴(,)𝐵)) ∈ ℝ ∧ 1 ∈ ℂ) → ((𝐴(,)𝐵) × {1}) ∈ 𝐿1)
151147, 149, 141, 150syl3anc 1371 . . . . 5 (𝜑 → ((𝐴(,)𝐵) × {1}) ∈ 𝐿1)
152145, 151eqeltrrid 2837 . . . 4 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ 1) ∈ 𝐿1)
153144, 152elind 4159 . . 3 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ 1) ∈ (((𝐴(,)𝐵)–cn→ℂ) ∩ 𝐿1))
15424resmptd 5999 . . . . . . 7 (𝜑 → ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵)) = (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇)))
155154eqcomd 2737 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇)) = ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵)))
156155oveq2d 7378 . . . . 5 (𝜑 → (ℝ D (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇))) = (ℝ D ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵))))
15725a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
158157sselda 3947 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
15921adantr 481 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝑇 ∈ ℂ)
160158, 159addcld 11183 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝑦 + 𝑇) ∈ ℂ)
161160fmpttd 7068 . . . . . 6 (𝜑 → (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)):ℝ⟶ℂ)
162 ssid 3969 . . . . . . 7 ℝ ⊆ ℝ
163162a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℝ)
164 eqid 2731 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
165164tgioo2 24203 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
166164, 165dvres 25312 . . . . . 6 (((ℝ ⊆ ℂ ∧ (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ)) → (ℝ D ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵))) = ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
167157, 161, 163, 24, 166syl22anc 837 . . . . 5 (𝜑 → (ℝ D ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵))) = ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
168156, 167eqtrd 2771 . . . 4 (𝜑 → (ℝ D (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇))) = ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
169 iccntr 24221 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
1701, 2, 169syl2anc 584 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
171170reseq2d 5942 . . . 4 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) = ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ (𝐴(,)𝐵)))
172 reelprrecn 11152 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
173172a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
174 1cnd 11159 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℂ)
175173dvmptid 25358 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ 𝑦)) = (𝑦 ∈ ℝ ↦ 1))
176 0cnd 11157 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 0 ∈ ℂ)
177173, 21dvmptc 25359 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ 𝑇)) = (𝑦 ∈ ℝ ↦ 0))
178173, 158, 174, 175, 159, 176, 177dvmptadd 25361 . . . . . 6 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) = (𝑦 ∈ ℝ ↦ (1 + 0)))
179178reseq1d 5941 . . . . 5 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ (𝐴(,)𝐵)) = ((𝑦 ∈ ℝ ↦ (1 + 0)) ↾ (𝐴(,)𝐵)))
180 ioossre 13335 . . . . . . 7 (𝐴(,)𝐵) ⊆ ℝ
181180a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
182181resmptd 5999 . . . . 5 (𝜑 → ((𝑦 ∈ ℝ ↦ (1 + 0)) ↾ (𝐴(,)𝐵)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ (1 + 0)))
183 1p0e1 12286 . . . . . . 7 (1 + 0) = 1
184183mpteq2i 5215 . . . . . 6 (𝑦 ∈ (𝐴(,)𝐵) ↦ (1 + 0)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1)
185184a1i 11 . . . . 5 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ (1 + 0)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1))
186179, 182, 1853eqtrd 2775 . . . 4 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ (𝐴(,)𝐵)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1))
187168, 171, 1863eqtrd 2775 . . 3 (𝜑 → (ℝ D (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1))
188 fveq2 6847 . . 3 (𝑥 = (𝑦 + 𝑇) → (𝐹𝑥) = (𝐹‘(𝑦 + 𝑇)))
189 oveq1 7369 . . 3 (𝑦 = 𝐴 → (𝑦 + 𝑇) = (𝐴 + 𝑇))
190 oveq1 7369 . . 3 (𝑦 = 𝐵 → (𝑦 + 𝑇) = (𝐵 + 𝑇))
1911, 2, 5, 45, 138, 153, 187, 188, 189, 190, 8, 9itgsubsticc 44337 . 2 (𝜑 → ⨜[(𝐴 + 𝑇) → (𝐵 + 𝑇)](𝐹𝑥) d𝑥 = ⨜[𝐴𝐵]((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦)
1925ditgpos 25257 . . 3 (𝜑 → ⨜[𝐴𝐵]((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴(,)𝐵)((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦)
19310adantr 481 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℂ)
194193, 33ffvelcdmd 7041 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑦 + 𝑇)) ∈ ℂ)
195 1cnd 11159 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 1 ∈ ℂ)
196194, 195mulcld 11184 . . . 4 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → ((𝐹‘(𝑦 + 𝑇)) · 1) ∈ ℂ)
1971, 2, 196itgioo 25217 . . 3 (𝜑 → ∫(𝐴(,)𝐵)((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴[,]𝐵)((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦)
198 fvoveq1 7385 . . . . . 6 (𝑦 = 𝑥 → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘(𝑥 + 𝑇)))
199198oveq1d 7377 . . . . 5 (𝑦 = 𝑥 → ((𝐹‘(𝑦 + 𝑇)) · 1) = ((𝐹‘(𝑥 + 𝑇)) · 1))
200199cbvitgv 25178 . . . 4 ∫(𝐴[,]𝐵)((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴[,]𝐵)((𝐹‘(𝑥 + 𝑇)) · 1) d𝑥
20110adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℂ)
20224sselda 3947 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
2034adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑇 ∈ ℝ)
204202, 203readdcld 11193 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 + 𝑇) ∈ ℝ)
205201, 204ffvelcdmd 7041 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) ∈ ℂ)
206205mulridd 11181 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹‘(𝑥 + 𝑇)) · 1) = (𝐹‘(𝑥 + 𝑇)))
207206, 66eqtrd 2771 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹‘(𝑥 + 𝑇)) · 1) = (𝐹𝑥))
208207itgeq2dv 25183 . . . 4 (𝜑 → ∫(𝐴[,]𝐵)((𝐹‘(𝑥 + 𝑇)) · 1) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
209200, 208eqtrid 2783 . . 3 (𝜑 → ∫(𝐴[,]𝐵)((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
210192, 197, 2093eqtrd 2775 . 2 (𝜑 → ⨜[𝐴𝐵]((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
21119, 191, 2103eqtrd 2775 1 (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3060  wrex 3069  {crab 3405  wss 3913  {csn 4591  {cpr 4593   class class class wbr 5110  cmpt 5193   × cxp 5636  dom cdm 5638  ran crn 5639  cres 5640  wf 6497  cfv 6501  (class class class)co 7362  cc 11058  cr 11059  0cc0 11060  1c1 11061   + caddc 11063   · cmul 11065  cle 11199  cmin 11394  +crp 12924  (,)cioo 13274  [,]cicc 13277  TopOpenctopn 17317  topGenctg 17333  fldccnfld 20833  intcnt 22405  cnccncf 24276  volcvol 24864  𝐿1cibl 25018  citg 25019  cdit 25247   D cdv 25264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9586  ax-cc 10380  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137  ax-pre-sup 11138  ax-addf 11139  ax-mulf 11140
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-symdif 4207  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-iin 4962  df-disj 5076  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-ofr 7623  df-om 7808  df-1st 7926  df-2nd 7927  df-supp 8098  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-oadd 8421  df-omul 8422  df-er 8655  df-map 8774  df-pm 8775  df-ixp 8843  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fsupp 9313  df-fi 9356  df-sup 9387  df-inf 9388  df-oi 9455  df-dju 9846  df-card 9884  df-acn 9887  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12423  df-z 12509  df-dec 12628  df-uz 12773  df-q 12883  df-rp 12925  df-xneg 13042  df-xadd 13043  df-xmul 13044  df-ioo 13278  df-ioc 13279  df-ico 13280  df-icc 13281  df-fz 13435  df-fzo 13578  df-fl 13707  df-mod 13785  df-seq 13917  df-exp 13978  df-hash 14241  df-cj 14996  df-re 14997  df-im 14998  df-sqrt 15132  df-abs 15133  df-limsup 15365  df-clim 15382  df-rlim 15383  df-sum 15583  df-struct 17030  df-sets 17047  df-slot 17065  df-ndx 17077  df-base 17095  df-ress 17124  df-plusg 17160  df-mulr 17161  df-starv 17162  df-sca 17163  df-vsca 17164  df-ip 17165  df-tset 17166  df-ple 17167  df-ds 17169  df-unif 17170  df-hom 17171  df-cco 17172  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18511  df-sgrp 18560  df-mnd 18571  df-submnd 18616  df-mulg 18887  df-cntz 19111  df-cmn 19578  df-psmet 20825  df-xmet 20826  df-met 20827  df-bl 20828  df-mopn 20829  df-fbas 20830  df-fg 20831  df-cnfld 20834  df-top 22280  df-topon 22297  df-topsp 22319  df-bases 22333  df-cld 22407  df-ntr 22408  df-cls 22409  df-nei 22486  df-lp 22524  df-perf 22525  df-cn 22615  df-cnp 22616  df-haus 22703  df-cmp 22775  df-tx 22950  df-hmeo 23143  df-fil 23234  df-fm 23326  df-flim 23327  df-flf 23328  df-xms 23710  df-ms 23711  df-tms 23712  df-cncf 24278  df-ovol 24865  df-vol 24866  df-mbf 25020  df-itg1 25021  df-itg2 25022  df-ibl 25023  df-itg 25024  df-0p 25071  df-ditg 25248  df-limc 25267  df-dv 25268
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator