Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgiccshift Structured version   Visualization version   GIF version

Theorem itgiccshift 46083
Description: The integral of a function, 𝐹 stays the same if its closed interval domain is shifted by 𝑇. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgiccshift.a (𝜑𝐴 ∈ ℝ)
itgiccshift.b (𝜑𝐵 ∈ ℝ)
itgiccshift.aleb (𝜑𝐴𝐵)
itgiccshift.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
itgiccshift.t (𝜑𝑇 ∈ ℝ+)
itgiccshift.g 𝐺 = (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹‘(𝑥𝑇)))
Assertion
Ref Expression
itgiccshift (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐺𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝑥,𝑇   𝜑,𝑥

Proof of Theorem itgiccshift
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgiccshift.a . . . . 5 (𝜑𝐴 ∈ ℝ)
2 itgiccshift.b . . . . 5 (𝜑𝐵 ∈ ℝ)
3 itgiccshift.t . . . . . 6 (𝜑𝑇 ∈ ℝ+)
43rpred 12940 . . . . 5 (𝜑𝑇 ∈ ℝ)
5 itgiccshift.aleb . . . . 5 (𝜑𝐴𝐵)
61, 2, 4, 5leadd1dd 11737 . . . 4 (𝜑 → (𝐴 + 𝑇) ≤ (𝐵 + 𝑇))
76ditgpos 25790 . . 3 (𝜑 → ⨜[(𝐴 + 𝑇) → (𝐵 + 𝑇)](𝐺𝑥) d𝑥 = ∫((𝐴 + 𝑇)(,)(𝐵 + 𝑇))(𝐺𝑥) d𝑥)
81, 4readdcld 11147 . . . 4 (𝜑 → (𝐴 + 𝑇) ∈ ℝ)
92, 4readdcld 11147 . . . 4 (𝜑 → (𝐵 + 𝑇) ∈ ℝ)
10 itgiccshift.f . . . . . . . . 9 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
11 cncff 24819 . . . . . . . . 9 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
1210, 11syl 17 . . . . . . . 8 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
1312adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
141adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 ∈ ℝ)
152adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐵 ∈ ℝ)
168adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐴 + 𝑇) ∈ ℝ)
179adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐵 + 𝑇) ∈ ℝ)
18 simpr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
19 eliccre 45610 . . . . . . . . . 10 (((𝐴 + 𝑇) ∈ ℝ ∧ (𝐵 + 𝑇) ∈ ℝ ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℝ)
2016, 17, 18, 19syl3anc 1373 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℝ)
214adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑇 ∈ ℝ)
2220, 21resubcld 11551 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ∈ ℝ)
231recnd 11146 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
244recnd 11146 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℂ)
2523, 24pncand 11479 . . . . . . . . . . 11 (𝜑 → ((𝐴 + 𝑇) − 𝑇) = 𝐴)
2625eqcomd 2737 . . . . . . . . . 10 (𝜑𝐴 = ((𝐴 + 𝑇) − 𝑇))
2726adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 = ((𝐴 + 𝑇) − 𝑇))
28 elicc2 13317 . . . . . . . . . . . . 13 (((𝐴 + 𝑇) ∈ ℝ ∧ (𝐵 + 𝑇) ∈ ℝ) → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 + 𝑇) ≤ 𝑥𝑥 ≤ (𝐵 + 𝑇))))
2916, 17, 28syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 + 𝑇) ≤ 𝑥𝑥 ≤ (𝐵 + 𝑇))))
3018, 29mpbid 232 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 ∈ ℝ ∧ (𝐴 + 𝑇) ≤ 𝑥𝑥 ≤ (𝐵 + 𝑇)))
3130simp2d 1143 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐴 + 𝑇) ≤ 𝑥)
3216, 20, 21, 31lesub1dd 11739 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝐴 + 𝑇) − 𝑇) ≤ (𝑥𝑇))
3327, 32eqbrtrd 5115 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 ≤ (𝑥𝑇))
3430simp3d 1144 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ≤ (𝐵 + 𝑇))
3520, 17, 21, 34lesub1dd 11739 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ≤ ((𝐵 + 𝑇) − 𝑇))
362recnd 11146 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
3736, 24pncand 11479 . . . . . . . . . 10 (𝜑 → ((𝐵 + 𝑇) − 𝑇) = 𝐵)
3837adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝐵 + 𝑇) − 𝑇) = 𝐵)
3935, 38breqtrd 5119 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ≤ 𝐵)
4014, 15, 22, 33, 39eliccd 45609 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ∈ (𝐴[,]𝐵))
4113, 40ffvelcdmd 7024 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐹‘(𝑥𝑇)) ∈ ℂ)
42 itgiccshift.g . . . . . 6 𝐺 = (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹‘(𝑥𝑇)))
4341, 42fmptd 7053 . . . . 5 (𝜑𝐺:((𝐴 + 𝑇)[,](𝐵 + 𝑇))⟶ℂ)
4443ffvelcdmda 7023 . . . 4 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐺𝑥) ∈ ℂ)
458, 9, 44itgioo 25750 . . 3 (𝜑 → ∫((𝐴 + 𝑇)(,)(𝐵 + 𝑇))(𝐺𝑥) d𝑥 = ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐺𝑥) d𝑥)
467, 45eqtr2d 2767 . 2 (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐺𝑥) d𝑥 = ⨜[(𝐴 + 𝑇) → (𝐵 + 𝑇)](𝐺𝑥) d𝑥)
47 eqid 2731 . . . 4 (𝑦 ∈ ℂ ↦ (𝑦 + 𝑇)) = (𝑦 ∈ ℂ ↦ (𝑦 + 𝑇))
4847addccncf 24843 . . . . 5 (𝑇 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝑦 + 𝑇)) ∈ (ℂ–cn→ℂ))
4924, 48syl 17 . . . 4 (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦 + 𝑇)) ∈ (ℂ–cn→ℂ))
501, 2iccssred 13340 . . . . 5 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
51 ax-resscn 11069 . . . . 5 ℝ ⊆ ℂ
5250, 51sstrdi 3942 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
538, 9iccssred 13340 . . . . 5 (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ⊆ ℝ)
5453, 51sstrdi 3942 . . . 4 (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ⊆ ℂ)
558adantr 480 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐴 + 𝑇) ∈ ℝ)
569adantr 480 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐵 + 𝑇) ∈ ℝ)
5750sselda 3929 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ ℝ)
584adantr 480 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑇 ∈ ℝ)
5957, 58readdcld 11147 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 + 𝑇) ∈ ℝ)
601adantr 480 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
61 simpr 484 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐴[,]𝐵))
622adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
63 elicc2 13317 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
6460, 62, 63syl2anc 584 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
6561, 64mpbid 232 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
6665simp2d 1143 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐴𝑦)
6760, 57, 58, 66leadd1dd 11737 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐴 + 𝑇) ≤ (𝑦 + 𝑇))
6865simp3d 1144 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦𝐵)
6957, 62, 58, 68leadd1dd 11737 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 + 𝑇) ≤ (𝐵 + 𝑇))
7055, 56, 59, 67, 69eliccd 45609 . . . 4 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 + 𝑇) ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
7147, 49, 52, 54, 70cncfmptssg 45974 . . 3 (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇)) ∈ ((𝐴[,]𝐵)–cn→((𝐴 + 𝑇)[,](𝐵 + 𝑇))))
72 fvoveq1 7375 . . . . . . . 8 (𝑥 = 𝑤 → (𝐹‘(𝑥𝑇)) = (𝐹‘(𝑤𝑇)))
7372cbvmptv 5197 . . . . . . 7 (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹‘(𝑥𝑇))) = (𝑤 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹‘(𝑤𝑇)))
741, 2, 4iccshift 45623 . . . . . . . 8 (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)})
7574mpteq1d 5183 . . . . . . 7 (𝜑 → (𝑤 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹‘(𝑤𝑇))) = (𝑤 ∈ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)} ↦ (𝐹‘(𝑤𝑇))))
7673, 75eqtrid 2778 . . . . . 6 (𝜑 → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹‘(𝑥𝑇))) = (𝑤 ∈ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)} ↦ (𝐹‘(𝑤𝑇))))
7742, 76eqtrid 2778 . . . . 5 (𝜑𝐺 = (𝑤 ∈ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)} ↦ (𝐹‘(𝑤𝑇))))
78 eqeq1 2735 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝑤 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑧 + 𝑇)))
7978rexbidv 3156 . . . . . . . . 9 (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇)))
80 oveq1 7359 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝑧 + 𝑇) = (𝑦 + 𝑇))
8180eqeq2d 2742 . . . . . . . . . 10 (𝑧 = 𝑦 → (𝑥 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑦 + 𝑇)))
8281cbvrexvw 3211 . . . . . . . . 9 (∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇))
8379, 82bitrdi 287 . . . . . . . 8 (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)))
8483cbvrabv 3405 . . . . . . 7 {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)}
8584eqcomi 2740 . . . . . 6 {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)} = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}
86 eqid 2731 . . . . . 6 (𝑤 ∈ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)} ↦ (𝐹‘(𝑤𝑇))) = (𝑤 ∈ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)} ↦ (𝐹‘(𝑤𝑇)))
8752, 24, 85, 10, 86cncfshift 45977 . . . . 5 (𝜑 → (𝑤 ∈ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)} ↦ (𝐹‘(𝑤𝑇))) ∈ ({𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)}–cn→ℂ))
8877, 87eqeltrd 2831 . . . 4 (𝜑𝐺 ∈ ({𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)}–cn→ℂ))
8943feqmptd 6896 . . . 4 (𝜑𝐺 = (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐺𝑥)))
9074eqcomd 2737 . . . . 5 (𝜑 → {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)} = ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
9190oveq1d 7367 . . . 4 (𝜑 → ({𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)}–cn→ℂ) = (((𝐴 + 𝑇)[,](𝐵 + 𝑇))–cn→ℂ))
9288, 89, 913eltr3d 2845 . . 3 (𝜑 → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐺𝑥)) ∈ (((𝐴 + 𝑇)[,](𝐵 + 𝑇))–cn→ℂ))
93 ioosscn 13314 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
9493a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
95 1cnd 11113 . . . . 5 (𝜑 → 1 ∈ ℂ)
96 ssid 3952 . . . . . 6 ℂ ⊆ ℂ
9796a1i 11 . . . . 5 (𝜑 → ℂ ⊆ ℂ)
9894, 95, 97constcncfg 45975 . . . 4 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ))
99 fconstmpt 5681 . . . . 5 ((𝐴(,)𝐵) × {1}) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1)
100 ioombl 25499 . . . . . . 7 (𝐴(,)𝐵) ∈ dom vol
101100a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
102 ioovolcl 25504 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
1031, 2, 102syl2anc 584 . . . . . 6 (𝜑 → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
104 iblconst 25752 . . . . . 6 (((𝐴(,)𝐵) ∈ dom vol ∧ (vol‘(𝐴(,)𝐵)) ∈ ℝ ∧ 1 ∈ ℂ) → ((𝐴(,)𝐵) × {1}) ∈ 𝐿1)
105101, 103, 95, 104syl3anc 1373 . . . . 5 (𝜑 → ((𝐴(,)𝐵) × {1}) ∈ 𝐿1)
10699, 105eqeltrrid 2836 . . . 4 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ 1) ∈ 𝐿1)
10798, 106elind 4149 . . 3 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ 1) ∈ (((𝐴(,)𝐵)–cn→ℂ) ∩ 𝐿1))
10850resmptd 5994 . . . . . . 7 (𝜑 → ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵)) = (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇)))
109108eqcomd 2737 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇)) = ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵)))
110109oveq2d 7368 . . . . 5 (𝜑 → (ℝ D (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇))) = (ℝ D ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵))))
11151a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
112111sselda 3929 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
11324adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝑇 ∈ ℂ)
114112, 113addcld 11137 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝑦 + 𝑇) ∈ ℂ)
115114fmpttd 7054 . . . . . 6 (𝜑 → (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)):ℝ⟶ℂ)
116 ssid 3952 . . . . . . 7 ℝ ⊆ ℝ
117116a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℝ)
118 eqid 2731 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
119 tgioo4 24726 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
120118, 119dvres 25845 . . . . . 6 (((ℝ ⊆ ℂ ∧ (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ)) → (ℝ D ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵))) = ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
121111, 115, 117, 50, 120syl22anc 838 . . . . 5 (𝜑 → (ℝ D ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵))) = ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
122110, 121eqtrd 2766 . . . 4 (𝜑 → (ℝ D (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇))) = ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
123 iccntr 24743 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
1241, 2, 123syl2anc 584 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
125124reseq2d 5933 . . . 4 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) = ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ (𝐴(,)𝐵)))
126 reelprrecn 11104 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
127126a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
128 1cnd 11113 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℂ)
129127dvmptid 25894 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ 𝑦)) = (𝑦 ∈ ℝ ↦ 1))
130 0cnd 11111 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 0 ∈ ℂ)
131127, 24dvmptc 25895 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ 𝑇)) = (𝑦 ∈ ℝ ↦ 0))
132127, 112, 128, 129, 113, 130, 131dvmptadd 25897 . . . . . 6 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) = (𝑦 ∈ ℝ ↦ (1 + 0)))
133132reseq1d 5932 . . . . 5 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ (𝐴(,)𝐵)) = ((𝑦 ∈ ℝ ↦ (1 + 0)) ↾ (𝐴(,)𝐵)))
134 ioossre 13313 . . . . . . 7 (𝐴(,)𝐵) ⊆ ℝ
135134a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
136135resmptd 5994 . . . . 5 (𝜑 → ((𝑦 ∈ ℝ ↦ (1 + 0)) ↾ (𝐴(,)𝐵)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ (1 + 0)))
137 1p0e1 12250 . . . . . . 7 (1 + 0) = 1
138137mpteq2i 5189 . . . . . 6 (𝑦 ∈ (𝐴(,)𝐵) ↦ (1 + 0)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1)
139138a1i 11 . . . . 5 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ (1 + 0)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1))
140133, 136, 1393eqtrd 2770 . . . 4 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ (𝐴(,)𝐵)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1))
141122, 125, 1403eqtrd 2770 . . 3 (𝜑 → (ℝ D (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1))
142 fveq2 6828 . . 3 (𝑥 = (𝑦 + 𝑇) → (𝐺𝑥) = (𝐺‘(𝑦 + 𝑇)))
143 oveq1 7359 . . 3 (𝑦 = 𝐴 → (𝑦 + 𝑇) = (𝐴 + 𝑇))
144 oveq1 7359 . . 3 (𝑦 = 𝐵 → (𝑦 + 𝑇) = (𝐵 + 𝑇))
1451, 2, 5, 71, 92, 107, 141, 142, 143, 144, 8, 9itgsubsticc 46079 . 2 (𝜑 → ⨜[(𝐴 + 𝑇) → (𝐵 + 𝑇)](𝐺𝑥) d𝑥 = ⨜[𝐴𝐵]((𝐺‘(𝑦 + 𝑇)) · 1) d𝑦)
1465ditgpos 25790 . . 3 (𝜑 → ⨜[𝐴𝐵]((𝐺‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴(,)𝐵)((𝐺‘(𝑦 + 𝑇)) · 1) d𝑦)
14743adantr 480 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐺:((𝐴 + 𝑇)[,](𝐵 + 𝑇))⟶ℂ)
148147, 70ffvelcdmd 7024 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐺‘(𝑦 + 𝑇)) ∈ ℂ)
149 1cnd 11113 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 1 ∈ ℂ)
150148, 149mulcld 11138 . . . 4 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → ((𝐺‘(𝑦 + 𝑇)) · 1) ∈ ℂ)
1511, 2, 150itgioo 25750 . . 3 (𝜑 → ∫(𝐴(,)𝐵)((𝐺‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴[,]𝐵)((𝐺‘(𝑦 + 𝑇)) · 1) d𝑦)
152 fvoveq1 7375 . . . . . 6 (𝑦 = 𝑥 → (𝐺‘(𝑦 + 𝑇)) = (𝐺‘(𝑥 + 𝑇)))
153152oveq1d 7367 . . . . 5 (𝑦 = 𝑥 → ((𝐺‘(𝑦 + 𝑇)) · 1) = ((𝐺‘(𝑥 + 𝑇)) · 1))
154153cbvitgv 25711 . . . 4 ∫(𝐴[,]𝐵)((𝐺‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴[,]𝐵)((𝐺‘(𝑥 + 𝑇)) · 1) d𝑥
15543adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐺:((𝐴 + 𝑇)[,](𝐵 + 𝑇))⟶ℂ)
1568adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴 + 𝑇) ∈ ℝ)
1579adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐵 + 𝑇) ∈ ℝ)
15850sselda 3929 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
1594adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑇 ∈ ℝ)
160158, 159readdcld 11147 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 + 𝑇) ∈ ℝ)
1611adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
1621rexrd 11168 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
163162adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ*)
1642rexrd 11168 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ*)
165164adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*)
166 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
167 iccgelb 13308 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝑥)
168163, 165, 166, 167syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝑥)
169161, 158, 159, 168leadd1dd 11737 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴 + 𝑇) ≤ (𝑥 + 𝑇))
1702adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
171 iccleub 13307 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
172163, 165, 166, 171syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
173158, 170, 159, 172leadd1dd 11737 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 + 𝑇) ≤ (𝐵 + 𝑇))
174156, 157, 160, 169, 173eliccd 45609 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 + 𝑇) ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
175155, 174ffvelcdmd 7024 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐺‘(𝑥 + 𝑇)) ∈ ℂ)
176175mulridd 11135 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝐺‘(𝑥 + 𝑇)) · 1) = (𝐺‘(𝑥 + 𝑇)))
17742, 73eqtri 2754 . . . . . . . 8 𝐺 = (𝑤 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹‘(𝑤𝑇)))
178177a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐺 = (𝑤 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹‘(𝑤𝑇))))
179 fvoveq1 7375 . . . . . . . 8 (𝑤 = (𝑥 + 𝑇) → (𝐹‘(𝑤𝑇)) = (𝐹‘((𝑥 + 𝑇) − 𝑇)))
180158recnd 11146 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ)
18124adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑇 ∈ ℂ)
182180, 181pncand 11479 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝑥 + 𝑇) − 𝑇) = 𝑥)
183182fveq2d 6832 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘((𝑥 + 𝑇) − 𝑇)) = (𝐹𝑥))
184179, 183sylan9eqr 2788 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑤 = (𝑥 + 𝑇)) → (𝐹‘(𝑤𝑇)) = (𝐹𝑥))
18512ffvelcdmda 7023 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
186178, 184, 174, 185fvmptd 6942 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐺‘(𝑥 + 𝑇)) = (𝐹𝑥))
187176, 186eqtrd 2766 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝐺‘(𝑥 + 𝑇)) · 1) = (𝐹𝑥))
188187itgeq2dv 25716 . . . 4 (𝜑 → ∫(𝐴[,]𝐵)((𝐺‘(𝑥 + 𝑇)) · 1) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
189154, 188eqtrid 2778 . . 3 (𝜑 → ∫(𝐴[,]𝐵)((𝐺‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
190146, 151, 1893eqtrd 2770 . 2 (𝜑 → ⨜[𝐴𝐵]((𝐺‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
19146, 145, 1903eqtrd 2770 1 (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐺𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  wss 3897  {csn 4575  {cpr 4577   class class class wbr 5093  cmpt 5174   × cxp 5617  dom cdm 5619  ran crn 5620  cres 5621  wf 6483  cfv 6487  (class class class)co 7352  cc 11010  cr 11011  0cc0 11012  1c1 11013   + caddc 11015   · cmul 11017  *cxr 11151  cle 11153  cmin 11350  +crp 12896  (,)cioo 13251  [,]cicc 13254  TopOpenctopn 17331  topGenctg 17347  fldccnfld 21297  intcnt 22938  cnccncf 24802  volcvol 25397  𝐿1cibl 25551  citg 25552  cdit 25780   D cdv 25797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9537  ax-cc 10332  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-pre-sup 11090  ax-addf 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-symdif 4202  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-disj 5061  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-isom 6496  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-ofr 7617  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-omul 8396  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9800  df-card 9838  df-acn 9841  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-div 11781  df-nn 12132  df-2 12194  df-3 12195  df-4 12196  df-5 12197  df-6 12198  df-7 12199  df-8 12200  df-9 12201  df-n0 12388  df-z 12475  df-dec 12595  df-uz 12739  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ioo 13255  df-ioc 13256  df-ico 13257  df-icc 13258  df-fz 13414  df-fzo 13561  df-fl 13702  df-mod 13780  df-seq 13915  df-exp 13975  df-hash 14244  df-cj 15012  df-re 15013  df-im 15014  df-sqrt 15148  df-abs 15149  df-limsup 15384  df-clim 15401  df-rlim 15402  df-sum 15600  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17127  df-ress 17148  df-plusg 17180  df-mulr 17181  df-starv 17182  df-sca 17183  df-vsca 17184  df-ip 17185  df-tset 17186  df-ple 17187  df-ds 17189  df-unif 17190  df-hom 17191  df-cco 17192  df-rest 17332  df-topn 17333  df-0g 17351  df-gsum 17352  df-topgen 17353  df-pt 17354  df-prds 17357  df-xrs 17412  df-qtop 17417  df-imas 17418  df-xps 17420  df-mre 17494  df-mrc 17495  df-acs 17497  df-mgm 18554  df-sgrp 18633  df-mnd 18649  df-submnd 18698  df-mulg 18987  df-cntz 19235  df-cmn 19700  df-psmet 21289  df-xmet 21290  df-met 21291  df-bl 21292  df-mopn 21293  df-fbas 21294  df-fg 21295  df-cnfld 21298  df-top 22815  df-topon 22832  df-topsp 22854  df-bases 22867  df-cld 22940  df-ntr 22941  df-cls 22942  df-nei 23019  df-lp 23057  df-perf 23058  df-cn 23148  df-cnp 23149  df-haus 23236  df-cmp 23308  df-tx 23483  df-hmeo 23676  df-fil 23767  df-fm 23859  df-flim 23860  df-flf 23861  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-ovol 25398  df-vol 25399  df-mbf 25553  df-itg1 25554  df-itg2 25555  df-ibl 25556  df-itg 25557  df-0p 25604  df-ditg 25781  df-limc 25800  df-dv 25801
This theorem is referenced by:  fourierdlem81  46290
  Copyright terms: Public domain W3C validator