Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgiccshift Structured version   Visualization version   GIF version

Theorem itgiccshift 43528
Description: The integral of a function, 𝐹 stays the same if its closed interval domain is shifted by 𝑇. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgiccshift.a (𝜑𝐴 ∈ ℝ)
itgiccshift.b (𝜑𝐵 ∈ ℝ)
itgiccshift.aleb (𝜑𝐴𝐵)
itgiccshift.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
itgiccshift.t (𝜑𝑇 ∈ ℝ+)
itgiccshift.g 𝐺 = (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹‘(𝑥𝑇)))
Assertion
Ref Expression
itgiccshift (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐺𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝑥,𝑇   𝜑,𝑥

Proof of Theorem itgiccshift
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgiccshift.a . . . . 5 (𝜑𝐴 ∈ ℝ)
2 itgiccshift.b . . . . 5 (𝜑𝐵 ∈ ℝ)
3 itgiccshift.t . . . . . 6 (𝜑𝑇 ∈ ℝ+)
43rpred 12781 . . . . 5 (𝜑𝑇 ∈ ℝ)
5 itgiccshift.aleb . . . . 5 (𝜑𝐴𝐵)
61, 2, 4, 5leadd1dd 11598 . . . 4 (𝜑 → (𝐴 + 𝑇) ≤ (𝐵 + 𝑇))
76ditgpos 25029 . . 3 (𝜑 → ⨜[(𝐴 + 𝑇) → (𝐵 + 𝑇)](𝐺𝑥) d𝑥 = ∫((𝐴 + 𝑇)(,)(𝐵 + 𝑇))(𝐺𝑥) d𝑥)
81, 4readdcld 11013 . . . 4 (𝜑 → (𝐴 + 𝑇) ∈ ℝ)
92, 4readdcld 11013 . . . 4 (𝜑 → (𝐵 + 𝑇) ∈ ℝ)
10 itgiccshift.f . . . . . . . . 9 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
11 cncff 24065 . . . . . . . . 9 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
1210, 11syl 17 . . . . . . . 8 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
1312adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
141adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 ∈ ℝ)
152adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐵 ∈ ℝ)
168adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐴 + 𝑇) ∈ ℝ)
179adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐵 + 𝑇) ∈ ℝ)
18 simpr 485 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
19 eliccre 43050 . . . . . . . . . 10 (((𝐴 + 𝑇) ∈ ℝ ∧ (𝐵 + 𝑇) ∈ ℝ ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℝ)
2016, 17, 18, 19syl3anc 1370 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℝ)
214adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑇 ∈ ℝ)
2220, 21resubcld 11412 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ∈ ℝ)
231recnd 11012 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
244recnd 11012 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℂ)
2523, 24pncand 11342 . . . . . . . . . . 11 (𝜑 → ((𝐴 + 𝑇) − 𝑇) = 𝐴)
2625eqcomd 2745 . . . . . . . . . 10 (𝜑𝐴 = ((𝐴 + 𝑇) − 𝑇))
2726adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 = ((𝐴 + 𝑇) − 𝑇))
28 elicc2 13153 . . . . . . . . . . . . 13 (((𝐴 + 𝑇) ∈ ℝ ∧ (𝐵 + 𝑇) ∈ ℝ) → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 + 𝑇) ≤ 𝑥𝑥 ≤ (𝐵 + 𝑇))))
2916, 17, 28syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 + 𝑇) ≤ 𝑥𝑥 ≤ (𝐵 + 𝑇))))
3018, 29mpbid 231 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 ∈ ℝ ∧ (𝐴 + 𝑇) ≤ 𝑥𝑥 ≤ (𝐵 + 𝑇)))
3130simp2d 1142 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐴 + 𝑇) ≤ 𝑥)
3216, 20, 21, 31lesub1dd 11600 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝐴 + 𝑇) − 𝑇) ≤ (𝑥𝑇))
3327, 32eqbrtrd 5097 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 ≤ (𝑥𝑇))
3430simp3d 1143 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ≤ (𝐵 + 𝑇))
3520, 17, 21, 34lesub1dd 11600 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ≤ ((𝐵 + 𝑇) − 𝑇))
362recnd 11012 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
3736, 24pncand 11342 . . . . . . . . . 10 (𝜑 → ((𝐵 + 𝑇) − 𝑇) = 𝐵)
3837adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝐵 + 𝑇) − 𝑇) = 𝐵)
3935, 38breqtrd 5101 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ≤ 𝐵)
4014, 15, 22, 33, 39eliccd 43049 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ∈ (𝐴[,]𝐵))
4113, 40ffvelrnd 6971 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐹‘(𝑥𝑇)) ∈ ℂ)
42 itgiccshift.g . . . . . 6 𝐺 = (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹‘(𝑥𝑇)))
4341, 42fmptd 6997 . . . . 5 (𝜑𝐺:((𝐴 + 𝑇)[,](𝐵 + 𝑇))⟶ℂ)
4443ffvelrnda 6970 . . . 4 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐺𝑥) ∈ ℂ)
458, 9, 44itgioo 24989 . . 3 (𝜑 → ∫((𝐴 + 𝑇)(,)(𝐵 + 𝑇))(𝐺𝑥) d𝑥 = ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐺𝑥) d𝑥)
467, 45eqtr2d 2780 . 2 (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐺𝑥) d𝑥 = ⨜[(𝐴 + 𝑇) → (𝐵 + 𝑇)](𝐺𝑥) d𝑥)
47 eqid 2739 . . . 4 (𝑦 ∈ ℂ ↦ (𝑦 + 𝑇)) = (𝑦 ∈ ℂ ↦ (𝑦 + 𝑇))
4847addccncf 24089 . . . . 5 (𝑇 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝑦 + 𝑇)) ∈ (ℂ–cn→ℂ))
4924, 48syl 17 . . . 4 (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦 + 𝑇)) ∈ (ℂ–cn→ℂ))
501, 2iccssred 13175 . . . . 5 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
51 ax-resscn 10937 . . . . 5 ℝ ⊆ ℂ
5250, 51sstrdi 3934 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
538, 9iccssred 13175 . . . . 5 (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ⊆ ℝ)
5453, 51sstrdi 3934 . . . 4 (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ⊆ ℂ)
558adantr 481 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐴 + 𝑇) ∈ ℝ)
569adantr 481 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐵 + 𝑇) ∈ ℝ)
5750sselda 3922 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ ℝ)
584adantr 481 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑇 ∈ ℝ)
5957, 58readdcld 11013 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 + 𝑇) ∈ ℝ)
601adantr 481 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
61 simpr 485 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐴[,]𝐵))
622adantr 481 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
63 elicc2 13153 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
6460, 62, 63syl2anc 584 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
6561, 64mpbid 231 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
6665simp2d 1142 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐴𝑦)
6760, 57, 58, 66leadd1dd 11598 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐴 + 𝑇) ≤ (𝑦 + 𝑇))
6865simp3d 1143 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦𝐵)
6957, 62, 58, 68leadd1dd 11598 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 + 𝑇) ≤ (𝐵 + 𝑇))
7055, 56, 59, 67, 69eliccd 43049 . . . 4 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 + 𝑇) ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
7147, 49, 52, 54, 70cncfmptssg 43419 . . 3 (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇)) ∈ ((𝐴[,]𝐵)–cn→((𝐴 + 𝑇)[,](𝐵 + 𝑇))))
72 fvoveq1 7307 . . . . . . . 8 (𝑥 = 𝑤 → (𝐹‘(𝑥𝑇)) = (𝐹‘(𝑤𝑇)))
7372cbvmptv 5188 . . . . . . 7 (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹‘(𝑥𝑇))) = (𝑤 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹‘(𝑤𝑇)))
741, 2, 4iccshift 43063 . . . . . . . 8 (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)})
7574mpteq1d 5170 . . . . . . 7 (𝜑 → (𝑤 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹‘(𝑤𝑇))) = (𝑤 ∈ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)} ↦ (𝐹‘(𝑤𝑇))))
7673, 75eqtrid 2791 . . . . . 6 (𝜑 → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹‘(𝑥𝑇))) = (𝑤 ∈ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)} ↦ (𝐹‘(𝑤𝑇))))
7742, 76eqtrid 2791 . . . . 5 (𝜑𝐺 = (𝑤 ∈ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)} ↦ (𝐹‘(𝑤𝑇))))
78 eqeq1 2743 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝑤 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑧 + 𝑇)))
7978rexbidv 3227 . . . . . . . . 9 (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇)))
80 oveq1 7291 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝑧 + 𝑇) = (𝑦 + 𝑇))
8180eqeq2d 2750 . . . . . . . . . 10 (𝑧 = 𝑦 → (𝑥 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑦 + 𝑇)))
8281cbvrexvw 3385 . . . . . . . . 9 (∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇))
8379, 82bitrdi 287 . . . . . . . 8 (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)))
8483cbvrabv 3427 . . . . . . 7 {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)}
8584eqcomi 2748 . . . . . 6 {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)} = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}
86 eqid 2739 . . . . . 6 (𝑤 ∈ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)} ↦ (𝐹‘(𝑤𝑇))) = (𝑤 ∈ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)} ↦ (𝐹‘(𝑤𝑇)))
8752, 24, 85, 10, 86cncfshift 43422 . . . . 5 (𝜑 → (𝑤 ∈ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)} ↦ (𝐹‘(𝑤𝑇))) ∈ ({𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)}–cn→ℂ))
8877, 87eqeltrd 2840 . . . 4 (𝜑𝐺 ∈ ({𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)}–cn→ℂ))
8943feqmptd 6846 . . . 4 (𝜑𝐺 = (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐺𝑥)))
9074eqcomd 2745 . . . . 5 (𝜑 → {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)} = ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
9190oveq1d 7299 . . . 4 (𝜑 → ({𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)}–cn→ℂ) = (((𝐴 + 𝑇)[,](𝐵 + 𝑇))–cn→ℂ))
9288, 89, 913eltr3d 2854 . . 3 (𝜑 → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐺𝑥)) ∈ (((𝐴 + 𝑇)[,](𝐵 + 𝑇))–cn→ℂ))
93 ioosscn 13150 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
9493a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
95 1cnd 10979 . . . . 5 (𝜑 → 1 ∈ ℂ)
96 ssid 3944 . . . . . 6 ℂ ⊆ ℂ
9796a1i 11 . . . . 5 (𝜑 → ℂ ⊆ ℂ)
9894, 95, 97constcncfg 43420 . . . 4 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ))
99 fconstmpt 5650 . . . . 5 ((𝐴(,)𝐵) × {1}) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1)
100 ioombl 24738 . . . . . . 7 (𝐴(,)𝐵) ∈ dom vol
101100a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
102 ioovolcl 24743 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
1031, 2, 102syl2anc 584 . . . . . 6 (𝜑 → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
104 iblconst 24991 . . . . . 6 (((𝐴(,)𝐵) ∈ dom vol ∧ (vol‘(𝐴(,)𝐵)) ∈ ℝ ∧ 1 ∈ ℂ) → ((𝐴(,)𝐵) × {1}) ∈ 𝐿1)
105101, 103, 95, 104syl3anc 1370 . . . . 5 (𝜑 → ((𝐴(,)𝐵) × {1}) ∈ 𝐿1)
10699, 105eqeltrrid 2845 . . . 4 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ 1) ∈ 𝐿1)
10798, 106elind 4129 . . 3 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ 1) ∈ (((𝐴(,)𝐵)–cn→ℂ) ∩ 𝐿1))
10850resmptd 5951 . . . . . . 7 (𝜑 → ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵)) = (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇)))
109108eqcomd 2745 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇)) = ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵)))
110109oveq2d 7300 . . . . 5 (𝜑 → (ℝ D (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇))) = (ℝ D ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵))))
11151a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
112111sselda 3922 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
11324adantr 481 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝑇 ∈ ℂ)
114112, 113addcld 11003 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝑦 + 𝑇) ∈ ℂ)
115114fmpttd 6998 . . . . . 6 (𝜑 → (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)):ℝ⟶ℂ)
116 ssid 3944 . . . . . . 7 ℝ ⊆ ℝ
117116a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℝ)
118 eqid 2739 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
119118tgioo2 23975 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
120118, 119dvres 25084 . . . . . 6 (((ℝ ⊆ ℂ ∧ (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ)) → (ℝ D ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵))) = ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
121111, 115, 117, 50, 120syl22anc 836 . . . . 5 (𝜑 → (ℝ D ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵))) = ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
122110, 121eqtrd 2779 . . . 4 (𝜑 → (ℝ D (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇))) = ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
123 iccntr 23993 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
1241, 2, 123syl2anc 584 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
125124reseq2d 5894 . . . 4 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) = ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ (𝐴(,)𝐵)))
126 reelprrecn 10972 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
127126a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
128 1cnd 10979 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℂ)
129127dvmptid 25130 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ 𝑦)) = (𝑦 ∈ ℝ ↦ 1))
130 0cnd 10977 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 0 ∈ ℂ)
131127, 24dvmptc 25131 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ 𝑇)) = (𝑦 ∈ ℝ ↦ 0))
132127, 112, 128, 129, 113, 130, 131dvmptadd 25133 . . . . . 6 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) = (𝑦 ∈ ℝ ↦ (1 + 0)))
133132reseq1d 5893 . . . . 5 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ (𝐴(,)𝐵)) = ((𝑦 ∈ ℝ ↦ (1 + 0)) ↾ (𝐴(,)𝐵)))
134 ioossre 13149 . . . . . . 7 (𝐴(,)𝐵) ⊆ ℝ
135134a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
136135resmptd 5951 . . . . 5 (𝜑 → ((𝑦 ∈ ℝ ↦ (1 + 0)) ↾ (𝐴(,)𝐵)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ (1 + 0)))
137 1p0e1 12106 . . . . . . 7 (1 + 0) = 1
138137mpteq2i 5180 . . . . . 6 (𝑦 ∈ (𝐴(,)𝐵) ↦ (1 + 0)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1)
139138a1i 11 . . . . 5 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ (1 + 0)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1))
140133, 136, 1393eqtrd 2783 . . . 4 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ (𝐴(,)𝐵)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1))
141122, 125, 1403eqtrd 2783 . . 3 (𝜑 → (ℝ D (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1))
142 fveq2 6783 . . 3 (𝑥 = (𝑦 + 𝑇) → (𝐺𝑥) = (𝐺‘(𝑦 + 𝑇)))
143 oveq1 7291 . . 3 (𝑦 = 𝐴 → (𝑦 + 𝑇) = (𝐴 + 𝑇))
144 oveq1 7291 . . 3 (𝑦 = 𝐵 → (𝑦 + 𝑇) = (𝐵 + 𝑇))
1451, 2, 5, 71, 92, 107, 141, 142, 143, 144, 8, 9itgsubsticc 43524 . 2 (𝜑 → ⨜[(𝐴 + 𝑇) → (𝐵 + 𝑇)](𝐺𝑥) d𝑥 = ⨜[𝐴𝐵]((𝐺‘(𝑦 + 𝑇)) · 1) d𝑦)
1465ditgpos 25029 . . 3 (𝜑 → ⨜[𝐴𝐵]((𝐺‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴(,)𝐵)((𝐺‘(𝑦 + 𝑇)) · 1) d𝑦)
14743adantr 481 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐺:((𝐴 + 𝑇)[,](𝐵 + 𝑇))⟶ℂ)
148147, 70ffvelrnd 6971 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐺‘(𝑦 + 𝑇)) ∈ ℂ)
149 1cnd 10979 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 1 ∈ ℂ)
150148, 149mulcld 11004 . . . 4 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → ((𝐺‘(𝑦 + 𝑇)) · 1) ∈ ℂ)
1511, 2, 150itgioo 24989 . . 3 (𝜑 → ∫(𝐴(,)𝐵)((𝐺‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴[,]𝐵)((𝐺‘(𝑦 + 𝑇)) · 1) d𝑦)
152 fvoveq1 7307 . . . . . 6 (𝑦 = 𝑥 → (𝐺‘(𝑦 + 𝑇)) = (𝐺‘(𝑥 + 𝑇)))
153152oveq1d 7299 . . . . 5 (𝑦 = 𝑥 → ((𝐺‘(𝑦 + 𝑇)) · 1) = ((𝐺‘(𝑥 + 𝑇)) · 1))
154153cbvitgv 24950 . . . 4 ∫(𝐴[,]𝐵)((𝐺‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴[,]𝐵)((𝐺‘(𝑥 + 𝑇)) · 1) d𝑥
15543adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐺:((𝐴 + 𝑇)[,](𝐵 + 𝑇))⟶ℂ)
1568adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴 + 𝑇) ∈ ℝ)
1579adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐵 + 𝑇) ∈ ℝ)
15850sselda 3922 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
1594adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑇 ∈ ℝ)
160158, 159readdcld 11013 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 + 𝑇) ∈ ℝ)
1611adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
1621rexrd 11034 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
163162adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ*)
1642rexrd 11034 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ*)
165164adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*)
166 simpr 485 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
167 iccgelb 13144 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝑥)
168163, 165, 166, 167syl3anc 1370 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝑥)
169161, 158, 159, 168leadd1dd 11598 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴 + 𝑇) ≤ (𝑥 + 𝑇))
1702adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
171 iccleub 13143 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
172163, 165, 166, 171syl3anc 1370 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
173158, 170, 159, 172leadd1dd 11598 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 + 𝑇) ≤ (𝐵 + 𝑇))
174156, 157, 160, 169, 173eliccd 43049 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 + 𝑇) ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
175155, 174ffvelrnd 6971 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐺‘(𝑥 + 𝑇)) ∈ ℂ)
176175mulid1d 11001 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝐺‘(𝑥 + 𝑇)) · 1) = (𝐺‘(𝑥 + 𝑇)))
17742, 73eqtri 2767 . . . . . . . 8 𝐺 = (𝑤 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹‘(𝑤𝑇)))
178177a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐺 = (𝑤 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹‘(𝑤𝑇))))
179 fvoveq1 7307 . . . . . . . 8 (𝑤 = (𝑥 + 𝑇) → (𝐹‘(𝑤𝑇)) = (𝐹‘((𝑥 + 𝑇) − 𝑇)))
180158recnd 11012 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ)
18124adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑇 ∈ ℂ)
182180, 181pncand 11342 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝑥 + 𝑇) − 𝑇) = 𝑥)
183182fveq2d 6787 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘((𝑥 + 𝑇) − 𝑇)) = (𝐹𝑥))
184179, 183sylan9eqr 2801 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑤 = (𝑥 + 𝑇)) → (𝐹‘(𝑤𝑇)) = (𝐹𝑥))
18512ffvelrnda 6970 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
186178, 184, 174, 185fvmptd 6891 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐺‘(𝑥 + 𝑇)) = (𝐹𝑥))
187176, 186eqtrd 2779 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝐺‘(𝑥 + 𝑇)) · 1) = (𝐹𝑥))
188187itgeq2dv 24955 . . . 4 (𝜑 → ∫(𝐴[,]𝐵)((𝐺‘(𝑥 + 𝑇)) · 1) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
189154, 188eqtrid 2791 . . 3 (𝜑 → ∫(𝐴[,]𝐵)((𝐺‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
190146, 151, 1893eqtrd 2783 . 2 (𝜑 → ⨜[𝐴𝐵]((𝐺‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
19146, 145, 1903eqtrd 2783 1 (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐺𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2107  wrex 3066  {crab 3069  wss 3888  {csn 4562  {cpr 4564   class class class wbr 5075  cmpt 5158   × cxp 5588  dom cdm 5590  ran crn 5591  cres 5592  wf 6433  cfv 6437  (class class class)co 7284  cc 10878  cr 10879  0cc0 10880  1c1 10881   + caddc 10883   · cmul 10885  *cxr 11017  cle 11019  cmin 11214  +crp 12739  (,)cioo 13088  [,]cicc 13091  TopOpenctopn 17141  topGenctg 17157  fldccnfld 20606  intcnt 22177  cnccncf 24048  volcvol 24636  𝐿1cibl 24790  citg 24791  cdit 25019   D cdv 25036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-cc 10200  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958  ax-addf 10959  ax-mulf 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-symdif 4177  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-disj 5041  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-ofr 7543  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-2o 8307  df-oadd 8310  df-omul 8311  df-er 8507  df-map 8626  df-pm 8627  df-ixp 8695  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-fi 9179  df-sup 9210  df-inf 9211  df-oi 9278  df-dju 9668  df-card 9706  df-acn 9709  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-q 12698  df-rp 12740  df-xneg 12857  df-xadd 12858  df-xmul 12859  df-ioo 13092  df-ioc 13093  df-ico 13094  df-icc 13095  df-fz 13249  df-fzo 13392  df-fl 13521  df-mod 13599  df-seq 13731  df-exp 13792  df-hash 14054  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-limsup 15189  df-clim 15206  df-rlim 15207  df-sum 15407  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-mulr 16985  df-starv 16986  df-sca 16987  df-vsca 16988  df-ip 16989  df-tset 16990  df-ple 16991  df-ds 16993  df-unif 16994  df-hom 16995  df-cco 16996  df-rest 17142  df-topn 17143  df-0g 17161  df-gsum 17162  df-topgen 17163  df-pt 17164  df-prds 17167  df-xrs 17222  df-qtop 17227  df-imas 17228  df-xps 17230  df-mre 17304  df-mrc 17305  df-acs 17307  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-submnd 18440  df-mulg 18710  df-cntz 18932  df-cmn 19397  df-psmet 20598  df-xmet 20599  df-met 20600  df-bl 20601  df-mopn 20602  df-fbas 20603  df-fg 20604  df-cnfld 20607  df-top 22052  df-topon 22069  df-topsp 22091  df-bases 22105  df-cld 22179  df-ntr 22180  df-cls 22181  df-nei 22258  df-lp 22296  df-perf 22297  df-cn 22387  df-cnp 22388  df-haus 22475  df-cmp 22547  df-tx 22722  df-hmeo 22915  df-fil 23006  df-fm 23098  df-flim 23099  df-flf 23100  df-xms 23482  df-ms 23483  df-tms 23484  df-cncf 24050  df-ovol 24637  df-vol 24638  df-mbf 24792  df-itg1 24793  df-itg2 24794  df-ibl 24795  df-itg 24796  df-0p 24843  df-ditg 25020  df-limc 25039  df-dv 25040
This theorem is referenced by:  fourierdlem81  43735
  Copyright terms: Public domain W3C validator