![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmncrng | Structured version Visualization version GIF version |
Description: A domain is a commutative ring. (Contributed by Jeff Madsen, 6-Jan-2011.) |
Ref | Expression |
---|---|
dmncrng | ⊢ (𝑅 ∈ Dmn → 𝑅 ∈ CRingOps) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isdmn2 34341 | . 2 ⊢ (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps)) | |
2 | 1 | simprbi 491 | 1 ⊢ (𝑅 ∈ Dmn → 𝑅 ∈ CRingOps) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 CRingOpsccring 34279 PrRingcprrng 34332 Dmncdmn 34333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-iota 6064 df-fv 6109 df-crngo 34280 df-prrngo 34334 df-dmn 34335 |
This theorem is referenced by: dmnrngo 34343 dmncan2 34363 |
Copyright terms: Public domain | W3C validator |