| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmncrng | Structured version Visualization version GIF version | ||
| Description: A domain is a commutative ring. (Contributed by Jeff Madsen, 6-Jan-2011.) |
| Ref | Expression |
|---|---|
| dmncrng | ⊢ (𝑅 ∈ Dmn → 𝑅 ∈ CRingOps) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdmn2 38049 | . 2 ⊢ (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝑅 ∈ Dmn → 𝑅 ∈ CRingOps) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 CRingOpsccring 37987 PrRingcprrng 38040 Dmncdmn 38041 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-crngo 37988 df-prrngo 38042 df-dmn 38043 |
| This theorem is referenced by: dmnrngo 38051 dmncan2 38071 |
| Copyright terms: Public domain | W3C validator |