Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmncrng Structured version   Visualization version   GIF version

Theorem dmncrng 38050
Description: A domain is a commutative ring. (Contributed by Jeff Madsen, 6-Jan-2011.)
Assertion
Ref Expression
dmncrng (𝑅 ∈ Dmn → 𝑅 ∈ CRingOps)

Proof of Theorem dmncrng
StepHypRef Expression
1 isdmn2 38049 . 2 (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps))
21simprbi 496 1 (𝑅 ∈ Dmn → 𝑅 ∈ CRingOps)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  CRingOpsccring 37987  PrRingcprrng 38040  Dmncdmn 38041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-crngo 37988  df-prrngo 38042  df-dmn 38043
This theorem is referenced by:  dmnrngo  38051  dmncan2  38071
  Copyright terms: Public domain W3C validator