| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > flddmn | Structured version Visualization version GIF version | ||
| Description: A field is a domain. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| flddmn | ⊢ (𝐾 ∈ Fld → 𝐾 ∈ Dmn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divrngpr 38020 | . . 3 ⊢ (𝐾 ∈ DivRingOps → 𝐾 ∈ PrRing) | |
| 2 | 1 | anim1i 615 | . 2 ⊢ ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps) → (𝐾 ∈ PrRing ∧ 𝐾 ∈ CRingOps)) |
| 3 | isfld2 37972 | . 2 ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps)) | |
| 4 | isdmn2 38022 | . 2 ⊢ (𝐾 ∈ Dmn ↔ (𝐾 ∈ PrRing ∧ 𝐾 ∈ CRingOps)) | |
| 5 | 2, 3, 4 | 3imtr4i 292 | 1 ⊢ (𝐾 ∈ Fld → 𝐾 ∈ Dmn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 DivRingOpscdrng 37915 Fldcfld 37958 CRingOpsccring 37960 PrRingcprrng 38013 Dmncdmn 38014 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-1st 7947 df-2nd 7948 df-1o 8411 df-en 8896 df-grpo 30395 df-gid 30396 df-ginv 30397 df-ablo 30447 df-ass 37810 df-exid 37812 df-mgmOLD 37816 df-sgrOLD 37828 df-mndo 37834 df-rngo 37862 df-drngo 37916 df-fld 37959 df-crngo 37961 df-idl 37977 df-pridl 37978 df-prrngo 38015 df-dmn 38016 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |