| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > flddmn | Structured version Visualization version GIF version | ||
| Description: A field is a domain. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| flddmn | ⊢ (𝐾 ∈ Fld → 𝐾 ∈ Dmn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divrngpr 37998 | . . 3 ⊢ (𝐾 ∈ DivRingOps → 𝐾 ∈ PrRing) | |
| 2 | 1 | anim1i 615 | . 2 ⊢ ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps) → (𝐾 ∈ PrRing ∧ 𝐾 ∈ CRingOps)) |
| 3 | isfld2 37950 | . 2 ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps)) | |
| 4 | isdmn2 38000 | . 2 ⊢ (𝐾 ∈ Dmn ↔ (𝐾 ∈ PrRing ∧ 𝐾 ∈ CRingOps)) | |
| 5 | 2, 3, 4 | 3imtr4i 292 | 1 ⊢ (𝐾 ∈ Fld → 𝐾 ∈ Dmn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 DivRingOpscdrng 37893 Fldcfld 37936 CRingOpsccring 37938 PrRingcprrng 37991 Dmncdmn 37992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-1st 7982 df-2nd 7983 df-1o 8474 df-en 8954 df-grpo 30406 df-gid 30407 df-ginv 30408 df-ablo 30458 df-ass 37788 df-exid 37790 df-mgmOLD 37794 df-sgrOLD 37806 df-mndo 37812 df-rngo 37840 df-drngo 37894 df-fld 37937 df-crngo 37939 df-idl 37955 df-pridl 37956 df-prrngo 37993 df-dmn 37994 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |