![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > flddmn | Structured version Visualization version GIF version |
Description: A field is a domain. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
flddmn | ⊢ (𝐾 ∈ Fld → 𝐾 ∈ Dmn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divrngpr 38005 | . . 3 ⊢ (𝐾 ∈ DivRingOps → 𝐾 ∈ PrRing) | |
2 | 1 | anim1i 614 | . 2 ⊢ ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps) → (𝐾 ∈ PrRing ∧ 𝐾 ∈ CRingOps)) |
3 | isfld2 37957 | . 2 ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps)) | |
4 | isdmn2 38007 | . 2 ⊢ (𝐾 ∈ Dmn ↔ (𝐾 ∈ PrRing ∧ 𝐾 ∈ CRingOps)) | |
5 | 2, 3, 4 | 3imtr4i 292 | 1 ⊢ (𝐾 ∈ Fld → 𝐾 ∈ Dmn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 DivRingOpscdrng 37900 Fldcfld 37943 CRingOpsccring 37945 PrRingcprrng 37998 Dmncdmn 37999 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-riota 7399 df-ov 7446 df-1st 8024 df-2nd 8025 df-1o 8516 df-en 8998 df-grpo 30517 df-gid 30518 df-ginv 30519 df-ablo 30569 df-ass 37795 df-exid 37797 df-mgmOLD 37801 df-sgrOLD 37813 df-mndo 37819 df-rngo 37847 df-drngo 37901 df-fld 37944 df-crngo 37946 df-idl 37962 df-pridl 37963 df-prrngo 38000 df-dmn 38001 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |