![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > flddmn | Structured version Visualization version GIF version |
Description: A field is a domain. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
flddmn | ⊢ (𝐾 ∈ Fld → 𝐾 ∈ Dmn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divrngpr 34721 | . . 3 ⊢ (𝐾 ∈ DivRingOps → 𝐾 ∈ PrRing) | |
2 | 1 | anim1i 605 | . 2 ⊢ ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps) → (𝐾 ∈ PrRing ∧ 𝐾 ∈ CRingOps)) |
3 | isfld2 34673 | . 2 ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps)) | |
4 | isdmn2 34723 | . 2 ⊢ (𝐾 ∈ Dmn ↔ (𝐾 ∈ PrRing ∧ 𝐾 ∈ CRingOps)) | |
5 | 2, 3, 4 | 3imtr4i 284 | 1 ⊢ (𝐾 ∈ Fld → 𝐾 ∈ Dmn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∈ wcel 2048 DivRingOpscdrng 34616 Fldcfld 34659 CRingOpsccring 34661 PrRingcprrng 34714 Dmncdmn 34715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-om 7391 df-1st 7494 df-2nd 7495 df-1o 7897 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 df-fin 8302 df-grpo 28037 df-gid 28038 df-ginv 28039 df-ablo 28089 df-ass 34511 df-exid 34513 df-mgmOLD 34517 df-sgrOLD 34529 df-mndo 34535 df-rngo 34563 df-drngo 34617 df-fld 34660 df-crngo 34662 df-idl 34678 df-pridl 34679 df-prrngo 34716 df-dmn 34717 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |