![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > flddmn | Structured version Visualization version GIF version |
Description: A field is a domain. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
flddmn | ⊢ (𝐾 ∈ Fld → 𝐾 ∈ Dmn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divrngpr 38000 | . . 3 ⊢ (𝐾 ∈ DivRingOps → 𝐾 ∈ PrRing) | |
2 | 1 | anim1i 614 | . 2 ⊢ ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps) → (𝐾 ∈ PrRing ∧ 𝐾 ∈ CRingOps)) |
3 | isfld2 37952 | . 2 ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps)) | |
4 | isdmn2 38002 | . 2 ⊢ (𝐾 ∈ Dmn ↔ (𝐾 ∈ PrRing ∧ 𝐾 ∈ CRingOps)) | |
5 | 2, 3, 4 | 3imtr4i 292 | 1 ⊢ (𝐾 ∈ Fld → 𝐾 ∈ Dmn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2104 DivRingOpscdrng 37895 Fldcfld 37938 CRingOpsccring 37940 PrRingcprrng 37993 Dmncdmn 37994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-11 2153 ax-12 2173 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5366 ax-pr 5430 ax-un 7747 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2536 df-eu 2565 df-clab 2711 df-cleq 2725 df-clel 2812 df-nfc 2888 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3479 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4915 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-suc 6386 df-iota 6510 df-fun 6560 df-fn 6561 df-f 6562 df-f1 6563 df-fo 6564 df-f1o 6565 df-fv 6566 df-riota 7381 df-ov 7428 df-1st 8007 df-2nd 8008 df-1o 8499 df-en 8979 df-grpo 30503 df-gid 30504 df-ginv 30505 df-ablo 30555 df-ass 37790 df-exid 37792 df-mgmOLD 37796 df-sgrOLD 37808 df-mndo 37814 df-rngo 37842 df-drngo 37896 df-fld 37939 df-crngo 37941 df-idl 37957 df-pridl 37958 df-prrngo 37995 df-dmn 37996 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |