Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flddmn Structured version   Visualization version   GIF version

Theorem flddmn 38043
Description: A field is a domain. (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
flddmn (𝐾 ∈ Fld → 𝐾 ∈ Dmn)

Proof of Theorem flddmn
StepHypRef Expression
1 divrngpr 38038 . . 3 (𝐾 ∈ DivRingOps → 𝐾 ∈ PrRing)
21anim1i 615 . 2 ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps) → (𝐾 ∈ PrRing ∧ 𝐾 ∈ CRingOps))
3 isfld2 37990 . 2 (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps))
4 isdmn2 38040 . 2 (𝐾 ∈ Dmn ↔ (𝐾 ∈ PrRing ∧ 𝐾 ∈ CRingOps))
52, 3, 43imtr4i 292 1 (𝐾 ∈ Fld → 𝐾 ∈ Dmn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  DivRingOpscdrng 37933  Fldcfld 37976  CRingOpsccring 37978  PrRingcprrng 38031  Dmncdmn 38032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-id 5576  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-riota 7386  df-ov 7432  df-1st 8010  df-2nd 8011  df-1o 8502  df-en 8982  df-grpo 30502  df-gid 30503  df-ginv 30504  df-ablo 30554  df-ass 37828  df-exid 37830  df-mgmOLD 37834  df-sgrOLD 37846  df-mndo 37852  df-rngo 37880  df-drngo 37934  df-fld 37977  df-crngo 37979  df-idl 37995  df-pridl 37996  df-prrngo 38033  df-dmn 38034
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator