| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drnggrpd | Structured version Visualization version GIF version | ||
| Description: A division ring is a group (deduction form). (Contributed by SN, 16-May-2024.) |
| Ref | Expression |
|---|---|
| drngringd.1 | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| Ref | Expression |
|---|---|
| drnggrpd | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ DivRing) | |
| 2 | 1 | drngringd 20656 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 3 | 2 | ringgrpd 20164 | 1 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Grpcgrp 18850 DivRingcdr 20648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6444 df-fv 6496 df-ov 7357 df-ring 20157 df-drng 20650 |
| This theorem is referenced by: drnggrp 20658 constrsdrg 33811 |
| Copyright terms: Public domain | W3C validator |