Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > drnggrpd | Structured version Visualization version GIF version |
Description: A division ring is a group. (Contributed by SN, 16-May-2024.) |
Ref | Expression |
---|---|
drngringd.1 | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
Ref | Expression |
---|---|
drnggrpd | ⊢ (𝜑 → 𝑅 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ DivRing) | |
2 | 1 | drngringd 39959 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) |
3 | 2 | ringgrpd 19571 | 1 ⊢ (𝜑 → 𝑅 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 Grpcgrp 18365 DivRingcdr 19767 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-nul 5199 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-iota 6338 df-fv 6388 df-ov 7216 df-ring 19564 df-drng 19769 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |