![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drnggrpd | Structured version Visualization version GIF version |
Description: A division ring is a group (deduction form). (Contributed by SN, 16-May-2024.) |
Ref | Expression |
---|---|
drngringd.1 | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
Ref | Expression |
---|---|
drnggrpd | ⊢ (𝜑 → 𝑅 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ DivRing) | |
2 | 1 | drngringd 20763 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) |
3 | 2 | ringgrpd 20269 | 1 ⊢ (𝜑 → 𝑅 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Grpcgrp 18973 DivRingcdr 20755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-nul 5315 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rab 3437 df-v 3483 df-sbc 3795 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-iota 6522 df-fv 6577 df-ov 7441 df-ring 20262 df-drng 20757 |
This theorem is referenced by: drnggrp 20765 |
Copyright terms: Public domain | W3C validator |