MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drnggrpd Structured version   Visualization version   GIF version

Theorem drnggrpd 20365
Description: A division ring is a group (deduction form). (Contributed by SN, 16-May-2024.)
Hypothesis
Ref Expression
drngringd.1 (𝜑𝑅 ∈ DivRing)
Assertion
Ref Expression
drnggrpd (𝜑𝑅 ∈ Grp)

Proof of Theorem drnggrpd
StepHypRef Expression
1 drngringd.1 . . 3 (𝜑𝑅 ∈ DivRing)
21drngringd 20364 . 2 (𝜑𝑅 ∈ Ring)
32ringgrpd 20064 1 (𝜑𝑅 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Grpcgrp 18818  DivRingcdr 20356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7411  df-ring 20057  df-drng 20358
This theorem is referenced by:  drnggrp  20366
  Copyright terms: Public domain W3C validator