MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drnggrpd Structured version   Visualization version   GIF version

Theorem drnggrpd 20657
Description: A division ring is a group (deduction form). (Contributed by SN, 16-May-2024.)
Hypothesis
Ref Expression
drngringd.1 (𝜑𝑅 ∈ DivRing)
Assertion
Ref Expression
drnggrpd (𝜑𝑅 ∈ Grp)

Proof of Theorem drnggrpd
StepHypRef Expression
1 drngringd.1 . . 3 (𝜑𝑅 ∈ DivRing)
21drngringd 20656 . 2 (𝜑𝑅 ∈ Ring)
32ringgrpd 20164 1 (𝜑𝑅 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  Grpcgrp 18850  DivRingcdr 20648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6444  df-fv 6496  df-ov 7357  df-ring 20157  df-drng 20650
This theorem is referenced by:  drnggrp  20658  constrsdrg  33811
  Copyright terms: Public domain W3C validator