MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drnggrp Structured version   Visualization version   GIF version

Theorem drnggrp 20663
Description: A division ring is a group (closed form). (Contributed by NM, 8-Sep-2011.)
Assertion
Ref Expression
drnggrp (𝑅 ∈ DivRing → 𝑅 ∈ Grp)

Proof of Theorem drnggrp
StepHypRef Expression
1 id 22 . 2 (𝑅 ∈ DivRing → 𝑅 ∈ DivRing)
21drnggrpd 20662 1 (𝑅 ∈ DivRing → 𝑅 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  Grpcgrp 18854  DivRingcdr 20653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6445  df-fv 6497  df-ov 7358  df-ring 20161  df-drng 20655
This theorem is referenced by:  drgextlsp  33678  qqh0  34069  qqhghm  34073  dvhvaddass  41269  dvhgrp  41279  cdlemn4  41370  fldhmf1  42256
  Copyright terms: Public domain W3C validator