| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drnggrp | Structured version Visualization version GIF version | ||
| Description: A division ring is a group (closed form). (Contributed by NM, 8-Sep-2011.) |
| Ref | Expression |
|---|---|
| drnggrp | ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ DivRing) | |
| 2 | 1 | drnggrpd 20696 | 1 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Grpcgrp 18914 DivRingcdr 20687 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 df-ov 7406 df-ring 20193 df-drng 20689 |
| This theorem is referenced by: drgextlsp 33579 qqh0 33961 qqhghm 33965 dvhvaddass 41062 dvhgrp 41072 cdlemn4 41163 fldhmf1 42049 |
| Copyright terms: Public domain | W3C validator |