![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drnggrp | Structured version Visualization version GIF version |
Description: A division ring is a group (closed form). (Contributed by NM, 8-Sep-2011.) |
Ref | Expression |
---|---|
drnggrp | ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ DivRing) | |
2 | 1 | drnggrpd 20760 | 1 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Grpcgrp 18973 DivRingcdr 20751 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-ring 20262 df-drng 20753 |
This theorem is referenced by: drgextlsp 33608 qqh0 33930 qqhghm 33934 dvhvaddass 41054 dvhgrp 41064 cdlemn4 41155 fldhmf1 42047 |
Copyright terms: Public domain | W3C validator |