| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drnggrp | Structured version Visualization version GIF version | ||
| Description: A division ring is a group (closed form). (Contributed by NM, 8-Sep-2011.) |
| Ref | Expression |
|---|---|
| drnggrp | ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ DivRing) | |
| 2 | 1 | drnggrpd 20654 | 1 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Grpcgrp 18872 DivRingcdr 20645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-ring 20151 df-drng 20647 |
| This theorem is referenced by: drgextlsp 33596 qqh0 33981 qqhghm 33985 dvhvaddass 41098 dvhgrp 41108 cdlemn4 41199 fldhmf1 42085 |
| Copyright terms: Public domain | W3C validator |