MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drnggrp Structured version   Visualization version   GIF version

Theorem drnggrp 20593
Description: A division ring is a group (closed form). (Contributed by NM, 8-Sep-2011.)
Assertion
Ref Expression
drnggrp (𝑅 ∈ DivRing → 𝑅 ∈ Grp)

Proof of Theorem drnggrp
StepHypRef Expression
1 id 22 . 2 (𝑅 ∈ DivRing → 𝑅 ∈ DivRing)
21drnggrpd 20592 1 (𝑅 ∈ DivRing → 𝑅 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  Grpcgrp 18861  DivRingcdr 20583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7415  df-ring 20136  df-drng 20585
This theorem is referenced by:  drgextlsp  33135  qqh0  33429  qqhghm  33433  dvhvaddass  40434  dvhgrp  40444  cdlemn4  40535  fldhmf1  41424
  Copyright terms: Public domain W3C validator