![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drnggrp | Structured version Visualization version GIF version |
Description: A division ring is a group (closed form). (Contributed by NM, 8-Sep-2011.) |
Ref | Expression |
---|---|
drnggrp | ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ DivRing) | |
2 | 1 | drnggrpd 20596 | 1 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 Grpcgrp 18863 DivRingcdr 20587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-nul 5299 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-iota 6489 df-fv 6545 df-ov 7408 df-ring 20140 df-drng 20589 |
This theorem is referenced by: drgextlsp 33198 qqh0 33494 qqhghm 33498 dvhvaddass 40481 dvhgrp 40491 cdlemn4 40582 fldhmf1 41472 |
Copyright terms: Public domain | W3C validator |