MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drnggrp Structured version   Visualization version   GIF version

Theorem drnggrp 19999
Description: A division ring is a group. (Contributed by NM, 8-Sep-2011.)
Assertion
Ref Expression
drnggrp (𝑅 ∈ DivRing → 𝑅 ∈ Grp)

Proof of Theorem drnggrp
StepHypRef Expression
1 drngring 19998 . 2 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
2 ringgrp 19788 . 2 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
31, 2syl 17 1 (𝑅 ∈ DivRing → 𝑅 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Grpcgrp 18577  Ringcrg 19783  DivRingcdr 19991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-ring 19785  df-drng 19993
This theorem is referenced by:  drgextlsp  31681  qqh0  31934  qqhghm  31938  dvhvaddass  39111  dvhgrp  39121  cdlemn4  39212
  Copyright terms: Public domain W3C validator