Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > drnggrp | Structured version Visualization version GIF version |
Description: A division ring is a group. (Contributed by NM, 8-Sep-2011.) |
Ref | Expression |
---|---|
drnggrp | ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngring 19986 | . 2 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
2 | ringgrp 19776 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Grpcgrp 18565 Ringcrg 19771 DivRingcdr 19979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5229 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3432 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5075 df-iota 6385 df-fv 6435 df-ov 7271 df-ring 19773 df-drng 19981 |
This theorem is referenced by: drgextlsp 31667 qqh0 31920 qqhghm 31924 dvhvaddass 39097 dvhgrp 39107 cdlemn4 39198 |
Copyright terms: Public domain | W3C validator |