| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringgrpd | Structured version Visualization version GIF version | ||
| Description: A ring is a group. (Contributed by SN, 16-May-2024.) |
| Ref | Expression |
|---|---|
| ringgrpd.1 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Ref | Expression |
|---|---|
| ringgrpd | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringgrpd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | ringgrp 20160 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Grpcgrp 18850 Ringcrg 20155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6444 df-fv 6496 df-ov 7357 df-ring 20157 |
| This theorem is referenced by: crnggrpd 20169 ringcom 20202 lringuplu 20463 isdomn4 20635 drnggrpd 20657 lssvnegcl 20893 rngqiprngimfo 21242 rngqiprngfulem4 21255 ofldchr 21517 asclmulg 21843 psrdi 21905 psrdir 21906 evlslem1 22020 mhplss 22073 psdmvr 22087 evls1addd 22289 evls1maprhm 22294 rhmcomulmpl 22300 rhmmpl 22301 r1pid2 26097 ringdi22 33207 elrgspnlem1 33218 elrgspnlem2 33219 elrgspnlem4 33221 elrgspn 33222 erler 33241 rlocmulval 33245 rloccring 33246 fracfld 33283 znfermltl 33340 qsdrngilem 33468 qsdrngi 33469 qsdrnglem2 33470 qsdrng 33471 evls1subd 33544 q1pdir 33572 r1pcyc 33576 r1padd1 33577 r1pid2OLD 33578 r1plmhm 33579 r1pquslmic 33580 mplmulmvr 33592 mplvrpmmhm 33596 esplyfval2 33607 esplyfval3 33614 esplyind 33615 assalactf1o 33671 irredminply 33752 algextdeglem8 33760 rtelextdg2lem 33762 2sqr3minply 33816 cos9thpiminplylem6 33823 cos9thpiminply 33824 zrhcntr 34015 ellcsrspsn 35708 ply1divalg3 35709 r1peuqusdeg1 35710 fldhmf1 42206 aks6d1c1p2 42225 aks6d1c5lem3 42253 aks5lem2 42303 aks5lem5a 42307 rhmcomulpsr 42672 rhmpsr 42673 evlsmaprhm 42691 |
| Copyright terms: Public domain | W3C validator |