![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringgrpd | Structured version Visualization version GIF version |
Description: A ring is a group. (Contributed by SN, 16-May-2024.) |
Ref | Expression |
---|---|
ringgrpd.1 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
Ref | Expression |
---|---|
ringgrpd | ⊢ (𝜑 → 𝑅 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringgrpd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | ringgrp 20255 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Grpcgrp 18963 Ringcrg 20250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-nul 5311 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rab 3433 df-v 3479 df-sbc 3791 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-ov 7433 df-ring 20252 |
This theorem is referenced by: crnggrpd 20264 ringcom 20293 lringuplu 20560 isdomn4 20732 drnggrpd 20754 lssvnegcl 20971 rngqiprngimfo 21328 rngqiprngfulem4 21341 asclmulg 21939 psrdi 22002 psrdir 22003 evlslem1 22123 mhplss 22176 evls1addd 22390 evls1maprhm 22395 rhmcomulmpl 22401 rhmmpl 22402 r1pid2 26215 ringdi22 33220 elrgspnlem1 33231 elrgspnlem2 33232 elrgspnlem4 33234 erler 33251 rlocmulval 33255 rloccring 33256 fracfld 33289 ofldchr 33323 znfermltl 33373 qsdrngilem 33501 qsdrngi 33502 qsdrnglem2 33503 qsdrng 33504 evls1subd 33576 q1pdir 33602 r1pcyc 33606 r1padd1 33607 r1pid2OLD 33608 r1plmhm 33609 r1pquslmic 33610 assalactf1o 33662 irredminply 33721 algextdeglem8 33729 rtelextdg2lem 33731 2sqr3minply 33752 zrhcntr 33941 ellcsrspsn 35625 ply1divalg3 35626 r1peuqusdeg1 35627 fldhmf1 42071 aks6d1c1p2 42090 aks6d1c5lem3 42118 aks5lem2 42168 aks5lem5a 42172 rhmcomulpsr 42537 rhmpsr 42538 evlsmaprhm 42556 |
Copyright terms: Public domain | W3C validator |