| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringgrpd | Structured version Visualization version GIF version | ||
| Description: A ring is a group. (Contributed by SN, 16-May-2024.) |
| Ref | Expression |
|---|---|
| ringgrpd.1 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Ref | Expression |
|---|---|
| ringgrpd | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringgrpd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | ringgrp 20147 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Grpcgrp 18865 Ringcrg 20142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-ring 20144 |
| This theorem is referenced by: crnggrpd 20156 ringcom 20189 lringuplu 20453 isdomn4 20625 drnggrpd 20647 lssvnegcl 20862 rngqiprngimfo 21211 rngqiprngfulem4 21224 asclmulg 21811 psrdi 21874 psrdir 21875 evlslem1 21989 mhplss 22042 psdmvr 22056 evls1addd 22258 evls1maprhm 22263 rhmcomulmpl 22269 rhmmpl 22270 r1pid2 26067 ringdi22 33182 elrgspnlem1 33193 elrgspnlem2 33194 elrgspnlem4 33196 elrgspn 33197 erler 33216 rlocmulval 33220 rloccring 33221 fracfld 33258 ofldchr 33292 znfermltl 33337 qsdrngilem 33465 qsdrngi 33466 qsdrnglem2 33467 qsdrng 33468 evls1subd 33541 q1pdir 33568 r1pcyc 33572 r1padd1 33573 r1pid2OLD 33574 r1plmhm 33575 r1pquslmic 33576 assalactf1o 33631 irredminply 33706 algextdeglem8 33714 rtelextdg2lem 33716 2sqr3minply 33770 cos9thpiminplylem6 33777 cos9thpiminply 33778 zrhcntr 33969 ellcsrspsn 35628 ply1divalg3 35629 r1peuqusdeg1 35630 fldhmf1 42078 aks6d1c1p2 42097 aks6d1c5lem3 42125 aks5lem2 42175 aks5lem5a 42179 rhmcomulpsr 42539 rhmpsr 42540 evlsmaprhm 42558 |
| Copyright terms: Public domain | W3C validator |