| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringgrpd | Structured version Visualization version GIF version | ||
| Description: A ring is a group. (Contributed by SN, 16-May-2024.) |
| Ref | Expression |
|---|---|
| ringgrpd.1 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Ref | Expression |
|---|---|
| ringgrpd | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringgrpd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | ringgrp 20198 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Grpcgrp 18916 Ringcrg 20193 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-ring 20195 |
| This theorem is referenced by: crnggrpd 20207 ringcom 20240 lringuplu 20504 isdomn4 20676 drnggrpd 20698 lssvnegcl 20913 rngqiprngimfo 21262 rngqiprngfulem4 21275 asclmulg 21862 psrdi 21925 psrdir 21926 evlslem1 22040 mhplss 22093 psdmvr 22107 evls1addd 22309 evls1maprhm 22314 rhmcomulmpl 22320 rhmmpl 22321 r1pid2 26119 ringdi22 33226 elrgspnlem1 33237 elrgspnlem2 33238 elrgspnlem4 33240 elrgspn 33241 erler 33260 rlocmulval 33264 rloccring 33265 fracfld 33302 ofldchr 33336 znfermltl 33381 qsdrngilem 33509 qsdrngi 33510 qsdrnglem2 33511 qsdrng 33512 evls1subd 33585 q1pdir 33612 r1pcyc 33616 r1padd1 33617 r1pid2OLD 33618 r1plmhm 33619 r1pquslmic 33620 assalactf1o 33675 irredminply 33750 algextdeglem8 33758 rtelextdg2lem 33760 2sqr3minply 33814 cos9thpiminplylem6 33821 cos9thpiminply 33822 zrhcntr 34010 ellcsrspsn 35663 ply1divalg3 35664 r1peuqusdeg1 35665 fldhmf1 42103 aks6d1c1p2 42122 aks6d1c5lem3 42150 aks5lem2 42200 aks5lem5a 42204 rhmcomulpsr 42574 rhmpsr 42575 evlsmaprhm 42593 |
| Copyright terms: Public domain | W3C validator |