| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringgrpd | Structured version Visualization version GIF version | ||
| Description: A ring is a group. (Contributed by SN, 16-May-2024.) |
| Ref | Expression |
|---|---|
| ringgrpd.1 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Ref | Expression |
|---|---|
| ringgrpd | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringgrpd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | ringgrp 20235 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Grpcgrp 18951 Ringcrg 20230 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-nul 5306 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-iota 6514 df-fv 6569 df-ov 7434 df-ring 20232 |
| This theorem is referenced by: crnggrpd 20244 ringcom 20277 lringuplu 20544 isdomn4 20716 drnggrpd 20738 lssvnegcl 20954 rngqiprngimfo 21311 rngqiprngfulem4 21324 asclmulg 21922 psrdi 21985 psrdir 21986 evlslem1 22106 mhplss 22159 psdmvr 22173 evls1addd 22375 evls1maprhm 22380 rhmcomulmpl 22386 rhmmpl 22387 r1pid2 26201 ringdi22 33235 elrgspnlem1 33246 elrgspnlem2 33247 elrgspnlem4 33249 elrgspn 33250 erler 33269 rlocmulval 33273 rloccring 33274 fracfld 33310 ofldchr 33344 znfermltl 33394 qsdrngilem 33522 qsdrngi 33523 qsdrnglem2 33524 qsdrng 33525 evls1subd 33597 q1pdir 33623 r1pcyc 33627 r1padd1 33628 r1pid2OLD 33629 r1plmhm 33630 r1pquslmic 33631 assalactf1o 33686 irredminply 33757 algextdeglem8 33765 rtelextdg2lem 33767 2sqr3minply 33791 zrhcntr 33980 ellcsrspsn 35646 ply1divalg3 35647 r1peuqusdeg1 35648 fldhmf1 42091 aks6d1c1p2 42110 aks6d1c5lem3 42138 aks5lem2 42188 aks5lem5a 42192 rhmcomulpsr 42561 rhmpsr 42562 evlsmaprhm 42580 |
| Copyright terms: Public domain | W3C validator |