![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringgrpd | Structured version Visualization version GIF version |
Description: A ring is a group. (Contributed by SN, 16-May-2024.) |
Ref | Expression |
---|---|
ringgrpd.1 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
Ref | Expression |
---|---|
ringgrpd | ⊢ (𝜑 → 𝑅 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringgrpd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | ringgrp 20139 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Grpcgrp 18861 Ringcrg 20134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7415 df-ring 20136 |
This theorem is referenced by: crnggrpd 20148 ringcom 20175 lringuplu 20440 drnggrpd 20592 lssvnegcl 20799 rngqiprngimfo 21149 rngqiprngfulem4 21162 isdomn4 21207 psrdi 21837 psrdir 21838 evlslem1 21956 ofldchr 32869 znfermltl 32920 qsdrngilem 33049 qsdrngi 33050 qsdrnglem2 33051 qsdrng 33052 asclmulg 33076 evls1addd 33089 q1pdir 33115 r1pcyc 33119 r1padd1 33120 r1pid2 33121 r1plmhm 33122 r1pquslmic 33123 evls1maprhm 33215 algextdeglem8 33236 fldhmf1 41424 rhmcomulmpl 41589 rhmmpl 41590 evlsmaprhm 41607 |
Copyright terms: Public domain | W3C validator |