MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringgrpd Structured version   Visualization version   GIF version

Theorem ringgrpd 20239
Description: A ring is a group. (Contributed by SN, 16-May-2024.)
Hypothesis
Ref Expression
ringgrpd.1 (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
ringgrpd (𝜑𝑅 ∈ Grp)

Proof of Theorem ringgrpd
StepHypRef Expression
1 ringgrpd.1 . 2 (𝜑𝑅 ∈ Ring)
2 ringgrp 20235 . 2 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
31, 2syl 17 1 (𝜑𝑅 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Grpcgrp 18951  Ringcrg 20230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-nul 5306
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-iota 6514  df-fv 6569  df-ov 7434  df-ring 20232
This theorem is referenced by:  crnggrpd  20244  ringcom  20277  lringuplu  20544  isdomn4  20716  drnggrpd  20738  lssvnegcl  20954  rngqiprngimfo  21311  rngqiprngfulem4  21324  asclmulg  21922  psrdi  21985  psrdir  21986  evlslem1  22106  mhplss  22159  psdmvr  22173  evls1addd  22375  evls1maprhm  22380  rhmcomulmpl  22386  rhmmpl  22387  r1pid2  26201  ringdi22  33235  elrgspnlem1  33246  elrgspnlem2  33247  elrgspnlem4  33249  elrgspn  33250  erler  33269  rlocmulval  33273  rloccring  33274  fracfld  33310  ofldchr  33344  znfermltl  33394  qsdrngilem  33522  qsdrngi  33523  qsdrnglem2  33524  qsdrng  33525  evls1subd  33597  q1pdir  33623  r1pcyc  33627  r1padd1  33628  r1pid2OLD  33629  r1plmhm  33630  r1pquslmic  33631  assalactf1o  33686  irredminply  33757  algextdeglem8  33765  rtelextdg2lem  33767  2sqr3minply  33791  zrhcntr  33980  ellcsrspsn  35646  ply1divalg3  35647  r1peuqusdeg1  35648  fldhmf1  42091  aks6d1c1p2  42110  aks6d1c5lem3  42138  aks5lem2  42188  aks5lem5a  42192  rhmcomulpsr  42561  rhmpsr  42562  evlsmaprhm  42580
  Copyright terms: Public domain W3C validator