| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringgrpd | Structured version Visualization version GIF version | ||
| Description: A ring is a group. (Contributed by SN, 16-May-2024.) |
| Ref | Expression |
|---|---|
| ringgrpd.1 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Ref | Expression |
|---|---|
| ringgrpd | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringgrpd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | ringgrp 20141 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Grpcgrp 18830 Ringcrg 20136 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-ring 20138 |
| This theorem is referenced by: crnggrpd 20150 ringcom 20183 lringuplu 20447 isdomn4 20619 drnggrpd 20641 lssvnegcl 20877 rngqiprngimfo 21226 rngqiprngfulem4 21239 ofldchr 21501 asclmulg 21827 psrdi 21890 psrdir 21891 evlslem1 22005 mhplss 22058 psdmvr 22072 evls1addd 22274 evls1maprhm 22279 rhmcomulmpl 22285 rhmmpl 22286 r1pid2 26083 ringdi22 33184 elrgspnlem1 33195 elrgspnlem2 33196 elrgspnlem4 33198 elrgspn 33199 erler 33218 rlocmulval 33222 rloccring 33223 fracfld 33260 znfermltl 33316 qsdrngilem 33444 qsdrngi 33445 qsdrnglem2 33446 qsdrng 33447 evls1subd 33520 q1pdir 33547 r1pcyc 33551 r1padd1 33552 r1pid2OLD 33553 r1plmhm 33554 r1pquslmic 33555 assalactf1o 33610 irredminply 33685 algextdeglem8 33693 rtelextdg2lem 33695 2sqr3minply 33749 cos9thpiminplylem6 33756 cos9thpiminply 33757 zrhcntr 33948 ellcsrspsn 35616 ply1divalg3 35617 r1peuqusdeg1 35618 fldhmf1 42066 aks6d1c1p2 42085 aks6d1c5lem3 42113 aks5lem2 42163 aks5lem5a 42167 rhmcomulpsr 42527 rhmpsr 42528 evlsmaprhm 42546 |
| Copyright terms: Public domain | W3C validator |