| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringgrpd | Structured version Visualization version GIF version | ||
| Description: A ring is a group. (Contributed by SN, 16-May-2024.) |
| Ref | Expression |
|---|---|
| ringgrpd.1 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Ref | Expression |
|---|---|
| ringgrpd | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringgrpd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | ringgrp 20154 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Grpcgrp 18872 Ringcrg 20149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-ring 20151 |
| This theorem is referenced by: crnggrpd 20163 ringcom 20196 lringuplu 20460 isdomn4 20632 drnggrpd 20654 lssvnegcl 20869 rngqiprngimfo 21218 rngqiprngfulem4 21231 asclmulg 21818 psrdi 21881 psrdir 21882 evlslem1 21996 mhplss 22049 psdmvr 22063 evls1addd 22265 evls1maprhm 22270 rhmcomulmpl 22276 rhmmpl 22277 r1pid2 26074 ringdi22 33189 elrgspnlem1 33200 elrgspnlem2 33201 elrgspnlem4 33203 elrgspn 33204 erler 33223 rlocmulval 33227 rloccring 33228 fracfld 33265 ofldchr 33299 znfermltl 33344 qsdrngilem 33472 qsdrngi 33473 qsdrnglem2 33474 qsdrng 33475 evls1subd 33548 q1pdir 33575 r1pcyc 33579 r1padd1 33580 r1pid2OLD 33581 r1plmhm 33582 r1pquslmic 33583 assalactf1o 33638 irredminply 33713 algextdeglem8 33721 rtelextdg2lem 33723 2sqr3minply 33777 cos9thpiminplylem6 33784 cos9thpiminply 33785 zrhcntr 33976 ellcsrspsn 35635 ply1divalg3 35636 r1peuqusdeg1 35637 fldhmf1 42085 aks6d1c1p2 42104 aks6d1c5lem3 42132 aks5lem2 42182 aks5lem5a 42186 rhmcomulpsr 42546 rhmpsr 42547 evlsmaprhm 42565 |
| Copyright terms: Public domain | W3C validator |