![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringgrpd | Structured version Visualization version GIF version |
Description: A ring is a group. (Contributed by SN, 16-May-2024.) |
Ref | Expression |
---|---|
ringgrpd.1 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
Ref | Expression |
---|---|
ringgrpd | ⊢ (𝜑 → 𝑅 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringgrpd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | ringgrp 20265 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Grpcgrp 18973 Ringcrg 20260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-ring 20262 |
This theorem is referenced by: crnggrpd 20274 ringcom 20303 lringuplu 20570 isdomn4 20738 drnggrpd 20760 lssvnegcl 20977 rngqiprngimfo 21334 rngqiprngfulem4 21347 asclmulg 21945 psrdi 22008 psrdir 22009 evlslem1 22129 mhplss 22182 evls1addd 22396 evls1maprhm 22401 rhmcomulmpl 22407 rhmmpl 22408 r1pid2 26221 ringdi22 33211 erler 33237 rlocmulval 33241 rloccring 33242 fracfld 33275 ofldchr 33309 znfermltl 33359 qsdrngilem 33487 qsdrngi 33488 qsdrnglem2 33489 qsdrng 33490 evls1subd 33562 q1pdir 33588 r1pcyc 33592 r1padd1 33593 r1pid2OLD 33594 r1plmhm 33595 r1pquslmic 33596 assalactf1o 33648 irredminply 33707 algextdeglem8 33715 rtelextdg2lem 33717 2sqr3minply 33738 ellcsrspsn 35609 ply1divalg3 35610 r1peuqusdeg1 35611 fldhmf1 42047 aks6d1c1p2 42066 aks6d1c5lem3 42094 aks5lem2 42144 aks5lem5a 42148 rhmcomulpsr 42506 rhmpsr 42507 evlsmaprhm 42525 |
Copyright terms: Public domain | W3C validator |