| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringgrpd | Structured version Visualization version GIF version | ||
| Description: A ring is a group. (Contributed by SN, 16-May-2024.) |
| Ref | Expression |
|---|---|
| ringgrpd.1 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Ref | Expression |
|---|---|
| ringgrpd | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringgrpd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | ringgrp 20157 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Grpcgrp 18846 Ringcrg 20152 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-ring 20154 |
| This theorem is referenced by: crnggrpd 20166 ringcom 20199 lringuplu 20460 isdomn4 20632 drnggrpd 20654 lssvnegcl 20890 rngqiprngimfo 21239 rngqiprngfulem4 21252 ofldchr 21514 asclmulg 21840 psrdi 21903 psrdir 21904 evlslem1 22018 mhplss 22071 psdmvr 22085 evls1addd 22287 evls1maprhm 22292 rhmcomulmpl 22298 rhmmpl 22299 r1pid2 26095 ringdi22 33196 elrgspnlem1 33207 elrgspnlem2 33208 elrgspnlem4 33210 elrgspn 33211 erler 33230 rlocmulval 33234 rloccring 33235 fracfld 33272 znfermltl 33329 qsdrngilem 33457 qsdrngi 33458 qsdrnglem2 33459 qsdrng 33460 evls1subd 33533 q1pdir 33561 r1pcyc 33565 r1padd1 33566 r1pid2OLD 33567 r1plmhm 33568 r1pquslmic 33569 mplvrpmmhm 33574 assalactf1o 33646 irredminply 33727 algextdeglem8 33735 rtelextdg2lem 33737 2sqr3minply 33791 cos9thpiminplylem6 33798 cos9thpiminply 33799 zrhcntr 33990 ellcsrspsn 35683 ply1divalg3 35684 r1peuqusdeg1 35685 fldhmf1 42129 aks6d1c1p2 42148 aks6d1c5lem3 42176 aks5lem2 42226 aks5lem5a 42230 rhmcomulpsr 42590 rhmpsr 42591 evlsmaprhm 42609 |
| Copyright terms: Public domain | W3C validator |