| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drngringd | Structured version Visualization version GIF version | ||
| Description: A division ring is a ring. (Contributed by SN, 16-May-2024.) |
| Ref | Expression |
|---|---|
| drngringd.1 | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| Ref | Expression |
|---|---|
| drngringd | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngringd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ DivRing) | |
| 2 | drngring 20645 | . 2 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Ringcrg 20142 DivRingcdr 20638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-drng 20640 |
| This theorem is referenced by: drnggrpd 20647 imadrhmcl 20706 frlmphl 21690 sdrgdvcl 33249 fldgensdrg 33264 primefldgen1 33271 ply1lvec 33528 m1pmeq 33552 ig1pnunit 33566 ig1pmindeg 33567 rlmdim 33605 ply1degltdimlem 33618 ply1degltdim 33619 fldgenfldext 33663 fldextrspunlsplem 33668 fldextrspunfld 33671 fldextrspunlem2 33672 fldextrspundgdvdslem 33675 fldextrspundgdvds 33676 irngnzply1lem 33685 minplyirredlem 33700 minplym1p 33703 minplynzm1p 33704 irredminply 33706 algextdeglem4 33710 algextdeglem7 33713 algextdeglem8 33714 constrsdrg 33765 2sqr3minply 33770 cos9thpiminplylem6 33777 cos9thpiminply 33778 drnginvmuld 42515 prjspner1 42614 |
| Copyright terms: Public domain | W3C validator |