![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drngringd | Structured version Visualization version GIF version |
Description: A division ring is a ring. (Contributed by SN, 16-May-2024.) |
Ref | Expression |
---|---|
drngringd.1 | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
Ref | Expression |
---|---|
drngringd | ⊢ (𝜑 → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngringd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ DivRing) | |
2 | drngring 20758 | . 2 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Ringcrg 20260 DivRingcdr 20751 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-drng 20753 |
This theorem is referenced by: drnggrpd 20760 imadrhmcl 20820 frlmphl 21824 sdrgdvcl 33266 fldgensdrg 33281 primefldgen1 33288 ply1lvec 33550 m1pmeq 33573 ig1pnunit 33586 ig1pmindeg 33587 rlmdim 33622 ply1degltdimlem 33635 ply1degltdim 33636 fldgenfldext 33678 irngnzply1lem 33690 minplyirredlem 33703 minplym1p 33706 irredminply 33707 algextdeglem4 33711 algextdeglem7 33714 algextdeglem8 33715 2sqr3minply 33738 drnginvmuld 42482 prjspner1 42581 |
Copyright terms: Public domain | W3C validator |