| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drngringd | Structured version Visualization version GIF version | ||
| Description: A division ring is a ring. (Contributed by SN, 16-May-2024.) |
| Ref | Expression |
|---|---|
| drngringd.1 | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| Ref | Expression |
|---|---|
| drngringd | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngringd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ DivRing) | |
| 2 | drngring 20652 | . 2 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Ringcrg 20152 DivRingcdr 20645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-drng 20647 |
| This theorem is referenced by: drnggrpd 20654 imadrhmcl 20713 frlmphl 21719 sdrgdvcl 33263 fldgensdrg 33278 primefldgen1 33285 ply1lvec 33520 m1pmeq 33545 ig1pnunit 33559 ig1pmindeg 33560 rlmdim 33620 ply1degltdimlem 33633 ply1degltdim 33634 fldgenfldext 33679 fldextrspunlsplem 33684 fldextrspunfld 33687 fldextrspunlem2 33688 fldextrspundgdvdslem 33691 fldextrspundgdvds 33692 irngnzply1lem 33701 minplyirredlem 33721 minplym1p 33724 minplynzm1p 33725 irredminply 33727 algextdeglem4 33731 algextdeglem7 33734 algextdeglem8 33735 constrsdrg 33786 2sqr3minply 33791 cos9thpiminplylem6 33798 cos9thpiminply 33799 drnginvmuld 42566 prjspner1 42665 |
| Copyright terms: Public domain | W3C validator |