|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > drngringd | Structured version Visualization version GIF version | ||
| Description: A division ring is a ring. (Contributed by SN, 16-May-2024.) | 
| Ref | Expression | 
|---|---|
| drngringd.1 | ⊢ (𝜑 → 𝑅 ∈ DivRing) | 
| Ref | Expression | 
|---|---|
| drngringd | ⊢ (𝜑 → 𝑅 ∈ Ring) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | drngringd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ DivRing) | |
| 2 | drngring 20737 | . 2 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ Ring) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∈ wcel 2107 Ringcrg 20231 DivRingcdr 20730 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-iota 6513 df-fv 6568 df-drng 20732 | 
| This theorem is referenced by: drnggrpd 20739 imadrhmcl 20799 frlmphl 21802 sdrgdvcl 33302 fldgensdrg 33317 primefldgen1 33324 ply1lvec 33586 m1pmeq 33609 ig1pnunit 33622 ig1pmindeg 33623 rlmdim 33661 ply1degltdimlem 33674 ply1degltdim 33675 fldgenfldext 33719 fldextrspunlsplem 33724 fldextrspunfld 33727 fldextrspunlem2 33728 fldextrspundgdvdslem 33731 fldextrspundgdvds 33732 irngnzply1lem 33741 minplyirredlem 33754 minplym1p 33757 irredminply 33758 algextdeglem4 33762 algextdeglem7 33765 algextdeglem8 33766 2sqr3minply 33792 drnginvmuld 42542 prjspner1 42641 | 
| Copyright terms: Public domain | W3C validator |