![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drngringd | Structured version Visualization version GIF version |
Description: A division ring is a ring. (Contributed by SN, 16-May-2024.) |
Ref | Expression |
---|---|
drngringd.1 | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
Ref | Expression |
---|---|
drngringd | ⊢ (𝜑 → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngringd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ DivRing) | |
2 | drngring 20511 | . 2 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Ringcrg 20131 DivRingcdr 20504 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-drng 20506 |
This theorem is referenced by: drnggrpd 20513 imadrhmcl 20560 frlmphl 21559 sdrgdvcl 32682 fldgensdrg 32689 primefldgen1 32696 ply1lvec 32927 ig1pnunit 32961 ig1pmindeg 32962 rlmdim 32997 ply1degltdimlem 33010 ply1degltdim 33011 irngnzply1lem 33058 minplyirredlem 33073 minplym1p 33076 algextdeglem4 33080 algextdeglem7 33083 algextdeglem8 33084 drngmulcanad 41416 drngmulcan2ad 41417 drnginvmuld 41418 prjspner1 41683 |
Copyright terms: Public domain | W3C validator |