| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drngringd | Structured version Visualization version GIF version | ||
| Description: A division ring is a ring. (Contributed by SN, 16-May-2024.) |
| Ref | Expression |
|---|---|
| drngringd.1 | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| Ref | Expression |
|---|---|
| drngringd | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngringd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ DivRing) | |
| 2 | drngring 20701 | . 2 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Ringcrg 20198 DivRingcdr 20694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-drng 20696 |
| This theorem is referenced by: drnggrpd 20703 imadrhmcl 20762 frlmphl 21746 sdrgdvcl 33298 fldgensdrg 33313 primefldgen1 33320 ply1lvec 33577 m1pmeq 33601 ig1pnunit 33615 ig1pmindeg 33616 rlmdim 33654 ply1degltdimlem 33667 ply1degltdim 33668 fldgenfldext 33714 fldextrspunlsplem 33719 fldextrspunfld 33722 fldextrspunlem2 33723 fldextrspundgdvdslem 33726 fldextrspundgdvds 33727 irngnzply1lem 33736 minplyirredlem 33749 minplym1p 33752 minplynzm1p 33753 irredminply 33755 algextdeglem4 33759 algextdeglem7 33762 algextdeglem8 33763 constrsdrg 33814 2sqr3minply 33819 cos9thpiminplylem6 33826 cos9thpiminply 33827 drnginvmuld 42517 prjspner1 42616 |
| Copyright terms: Public domain | W3C validator |