| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drngringd | Structured version Visualization version GIF version | ||
| Description: A division ring is a ring. (Contributed by SN, 16-May-2024.) |
| Ref | Expression |
|---|---|
| drngringd.1 | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| Ref | Expression |
|---|---|
| drngringd | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngringd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ DivRing) | |
| 2 | drngring 20639 | . 2 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Ringcrg 20136 DivRingcdr 20632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-drng 20634 |
| This theorem is referenced by: drnggrpd 20641 imadrhmcl 20700 frlmphl 21706 sdrgdvcl 33248 fldgensdrg 33263 primefldgen1 33270 ply1lvec 33504 m1pmeq 33528 ig1pnunit 33542 ig1pmindeg 33543 rlmdim 33581 ply1degltdimlem 33594 ply1degltdim 33595 fldgenfldext 33639 fldextrspunlsplem 33644 fldextrspunfld 33647 fldextrspunlem2 33648 fldextrspundgdvdslem 33651 fldextrspundgdvds 33652 irngnzply1lem 33661 minplyirredlem 33676 minplym1p 33679 minplynzm1p 33680 irredminply 33682 algextdeglem4 33686 algextdeglem7 33689 algextdeglem8 33690 constrsdrg 33741 2sqr3minply 33746 cos9thpiminplylem6 33753 cos9thpiminply 33754 drnginvmuld 42500 prjspner1 42599 |
| Copyright terms: Public domain | W3C validator |