| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drngringd | Structured version Visualization version GIF version | ||
| Description: A division ring is a ring. (Contributed by SN, 16-May-2024.) |
| Ref | Expression |
|---|---|
| drngringd.1 | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| Ref | Expression |
|---|---|
| drngringd | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngringd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ DivRing) | |
| 2 | drngring 20704 | . 2 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 Ringcrg 20198 DivRingcdr 20697 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 df-drng 20699 |
| This theorem is referenced by: drnggrpd 20706 imadrhmcl 20766 frlmphl 21755 sdrgdvcl 33241 fldgensdrg 33256 primefldgen1 33263 ply1lvec 33520 m1pmeq 33543 ig1pnunit 33556 ig1pmindeg 33557 rlmdim 33595 ply1degltdimlem 33608 ply1degltdim 33609 fldgenfldext 33655 fldextrspunlsplem 33660 fldextrspunfld 33663 fldextrspunlem2 33664 fldextrspundgdvdslem 33667 fldextrspundgdvds 33668 irngnzply1lem 33677 minplyirredlem 33690 minplym1p 33693 minplynzm1p 33694 irredminply 33696 algextdeglem4 33700 algextdeglem7 33703 algextdeglem8 33704 2sqr3minply 33749 drnginvmuld 42500 prjspner1 42599 |
| Copyright terms: Public domain | W3C validator |