| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drngringd | Structured version Visualization version GIF version | ||
| Description: A division ring is a ring. (Contributed by SN, 16-May-2024.) |
| Ref | Expression |
|---|---|
| drngringd.1 | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| Ref | Expression |
|---|---|
| drngringd | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngringd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ DivRing) | |
| 2 | drngring 20655 | . 2 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Ringcrg 20155 DivRingcdr 20648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6444 df-fv 6496 df-drng 20650 |
| This theorem is referenced by: drnggrpd 20657 imadrhmcl 20716 frlmphl 21722 sdrgdvcl 33274 fldgensdrg 33289 primefldgen1 33296 ply1lvec 33531 m1pmeq 33556 ig1pnunit 33570 ig1pmindeg 33571 rlmdim 33645 ply1degltdimlem 33658 ply1degltdim 33659 fldgenfldext 33704 fldextrspunlsplem 33709 fldextrspunfld 33712 fldextrspunlem2 33713 fldextrspundgdvdslem 33716 fldextrspundgdvds 33717 irngnzply1lem 33726 minplyirredlem 33746 minplym1p 33749 minplynzm1p 33750 irredminply 33752 algextdeglem4 33756 algextdeglem7 33759 algextdeglem8 33760 constrsdrg 33811 2sqr3minply 33816 cos9thpiminplylem6 33823 cos9thpiminply 33824 drnginvmuld 42648 prjspner1 42747 |
| Copyright terms: Public domain | W3C validator |