| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drngringd | Structured version Visualization version GIF version | ||
| Description: A division ring is a ring. (Contributed by SN, 16-May-2024.) |
| Ref | Expression |
|---|---|
| drngringd.1 | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| Ref | Expression |
|---|---|
| drngringd | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngringd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ DivRing) | |
| 2 | drngring 20652 | . 2 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Ringcrg 20149 DivRingcdr 20645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-drng 20647 |
| This theorem is referenced by: drnggrpd 20654 imadrhmcl 20713 frlmphl 21697 sdrgdvcl 33256 fldgensdrg 33271 primefldgen1 33278 ply1lvec 33535 m1pmeq 33559 ig1pnunit 33573 ig1pmindeg 33574 rlmdim 33612 ply1degltdimlem 33625 ply1degltdim 33626 fldgenfldext 33670 fldextrspunlsplem 33675 fldextrspunfld 33678 fldextrspunlem2 33679 fldextrspundgdvdslem 33682 fldextrspundgdvds 33683 irngnzply1lem 33692 minplyirredlem 33707 minplym1p 33710 minplynzm1p 33711 irredminply 33713 algextdeglem4 33717 algextdeglem7 33720 algextdeglem8 33721 constrsdrg 33772 2sqr3minply 33777 cos9thpiminplylem6 33784 cos9thpiminply 33785 drnginvmuld 42522 prjspner1 42621 |
| Copyright terms: Public domain | W3C validator |