Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > drngringd | Structured version Visualization version GIF version |
Description: A division ring is a ring. (Contributed by SN, 16-May-2024.) |
Ref | Expression |
---|---|
drngringd.1 | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
Ref | Expression |
---|---|
drngringd | ⊢ (𝜑 → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngringd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ DivRing) | |
2 | drngring 19913 | . 2 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Ringcrg 19698 DivRingcdr 19906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-drng 19908 |
This theorem is referenced by: drnggrpd 40173 drngmulcanad 40178 drngmulcan2ad 40179 drnginvmuld 40180 prjspner1 40384 |
Copyright terms: Public domain | W3C validator |