| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > el7g | Structured version Visualization version GIF version | ||
| Description: Members of a set with seven elements. Lemma for usgrexmpl2nb0 48015 etc. (Contributed by AV, 9-Aug-2025.) |
| Ref | Expression |
|---|---|
| el7g | ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ ({𝐴} ∪ ({𝐵, 𝐶, 𝐷} ∪ {𝐸, 𝐹, 𝐺})) ↔ (𝑋 = 𝐴 ∨ ((𝑋 = 𝐵 ∨ 𝑋 = 𝐶 ∨ 𝑋 = 𝐷) ∨ (𝑋 = 𝐸 ∨ 𝑋 = 𝐹 ∨ 𝑋 = 𝐺))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun 4133 | . 2 ⊢ (𝑋 ∈ ({𝐴} ∪ ({𝐵, 𝐶, 𝐷} ∪ {𝐸, 𝐹, 𝐺})) ↔ (𝑋 ∈ {𝐴} ∨ 𝑋 ∈ ({𝐵, 𝐶, 𝐷} ∪ {𝐸, 𝐹, 𝐺}))) | |
| 2 | elsng 4620 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ {𝐴} ↔ 𝑋 = 𝐴)) | |
| 3 | elun 4133 | . . . 4 ⊢ (𝑋 ∈ ({𝐵, 𝐶, 𝐷} ∪ {𝐸, 𝐹, 𝐺}) ↔ (𝑋 ∈ {𝐵, 𝐶, 𝐷} ∨ 𝑋 ∈ {𝐸, 𝐹, 𝐺})) | |
| 4 | eltpg 4667 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝑋 = 𝐵 ∨ 𝑋 = 𝐶 ∨ 𝑋 = 𝐷))) | |
| 5 | eltpg 4667 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ {𝐸, 𝐹, 𝐺} ↔ (𝑋 = 𝐸 ∨ 𝑋 = 𝐹 ∨ 𝑋 = 𝐺))) | |
| 6 | 4, 5 | orbi12d 918 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ((𝑋 ∈ {𝐵, 𝐶, 𝐷} ∨ 𝑋 ∈ {𝐸, 𝐹, 𝐺}) ↔ ((𝑋 = 𝐵 ∨ 𝑋 = 𝐶 ∨ 𝑋 = 𝐷) ∨ (𝑋 = 𝐸 ∨ 𝑋 = 𝐹 ∨ 𝑋 = 𝐺)))) |
| 7 | 3, 6 | bitrid 283 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ ({𝐵, 𝐶, 𝐷} ∪ {𝐸, 𝐹, 𝐺}) ↔ ((𝑋 = 𝐵 ∨ 𝑋 = 𝐶 ∨ 𝑋 = 𝐷) ∨ (𝑋 = 𝐸 ∨ 𝑋 = 𝐹 ∨ 𝑋 = 𝐺)))) |
| 8 | 2, 7 | orbi12d 918 | . 2 ⊢ (𝑋 ∈ 𝑉 → ((𝑋 ∈ {𝐴} ∨ 𝑋 ∈ ({𝐵, 𝐶, 𝐷} ∪ {𝐸, 𝐹, 𝐺})) ↔ (𝑋 = 𝐴 ∨ ((𝑋 = 𝐵 ∨ 𝑋 = 𝐶 ∨ 𝑋 = 𝐷) ∨ (𝑋 = 𝐸 ∨ 𝑋 = 𝐹 ∨ 𝑋 = 𝐺))))) |
| 9 | 1, 8 | bitrid 283 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ ({𝐴} ∪ ({𝐵, 𝐶, 𝐷} ∪ {𝐸, 𝐹, 𝐺})) ↔ (𝑋 = 𝐴 ∨ ((𝑋 = 𝐵 ∨ 𝑋 = 𝐶 ∨ 𝑋 = 𝐷) ∨ (𝑋 = 𝐸 ∨ 𝑋 = 𝐹 ∨ 𝑋 = 𝐺))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ∪ cun 3929 {csn 4606 {ctp 4610 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-sn 4607 df-pr 4609 df-tp 4611 |
| This theorem is referenced by: usgrexmpl2nb0 48015 usgrexmpl2nb1 48016 usgrexmpl2nb2 48017 usgrexmpl2nb3 48018 usgrexmpl2nb4 48019 usgrexmpl2nb5 48020 |
| Copyright terms: Public domain | W3C validator |