![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > el7g | Structured version Visualization version GIF version |
Description: Members of a set with seven elements. Lemma for usgrexmpl2nb0 47939 etc. (Contributed by AV, 9-Aug-2025.) |
Ref | Expression |
---|---|
el7g | ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ ({𝐴} ∪ ({𝐵, 𝐶, 𝐷} ∪ {𝐸, 𝐹, 𝐺})) ↔ (𝑋 = 𝐴 ∨ ((𝑋 = 𝐵 ∨ 𝑋 = 𝐶 ∨ 𝑋 = 𝐷) ∨ (𝑋 = 𝐸 ∨ 𝑋 = 𝐹 ∨ 𝑋 = 𝐺))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 4164 | . 2 ⊢ (𝑋 ∈ ({𝐴} ∪ ({𝐵, 𝐶, 𝐷} ∪ {𝐸, 𝐹, 𝐺})) ↔ (𝑋 ∈ {𝐴} ∨ 𝑋 ∈ ({𝐵, 𝐶, 𝐷} ∪ {𝐸, 𝐹, 𝐺}))) | |
2 | elsng 4646 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ {𝐴} ↔ 𝑋 = 𝐴)) | |
3 | elun 4164 | . . . 4 ⊢ (𝑋 ∈ ({𝐵, 𝐶, 𝐷} ∪ {𝐸, 𝐹, 𝐺}) ↔ (𝑋 ∈ {𝐵, 𝐶, 𝐷} ∨ 𝑋 ∈ {𝐸, 𝐹, 𝐺})) | |
4 | eltpg 4692 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝑋 = 𝐵 ∨ 𝑋 = 𝐶 ∨ 𝑋 = 𝐷))) | |
5 | eltpg 4692 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ {𝐸, 𝐹, 𝐺} ↔ (𝑋 = 𝐸 ∨ 𝑋 = 𝐹 ∨ 𝑋 = 𝐺))) | |
6 | 4, 5 | orbi12d 918 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ((𝑋 ∈ {𝐵, 𝐶, 𝐷} ∨ 𝑋 ∈ {𝐸, 𝐹, 𝐺}) ↔ ((𝑋 = 𝐵 ∨ 𝑋 = 𝐶 ∨ 𝑋 = 𝐷) ∨ (𝑋 = 𝐸 ∨ 𝑋 = 𝐹 ∨ 𝑋 = 𝐺)))) |
7 | 3, 6 | bitrid 283 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ ({𝐵, 𝐶, 𝐷} ∪ {𝐸, 𝐹, 𝐺}) ↔ ((𝑋 = 𝐵 ∨ 𝑋 = 𝐶 ∨ 𝑋 = 𝐷) ∨ (𝑋 = 𝐸 ∨ 𝑋 = 𝐹 ∨ 𝑋 = 𝐺)))) |
8 | 2, 7 | orbi12d 918 | . 2 ⊢ (𝑋 ∈ 𝑉 → ((𝑋 ∈ {𝐴} ∨ 𝑋 ∈ ({𝐵, 𝐶, 𝐷} ∪ {𝐸, 𝐹, 𝐺})) ↔ (𝑋 = 𝐴 ∨ ((𝑋 = 𝐵 ∨ 𝑋 = 𝐶 ∨ 𝑋 = 𝐷) ∨ (𝑋 = 𝐸 ∨ 𝑋 = 𝐹 ∨ 𝑋 = 𝐺))))) |
9 | 1, 8 | bitrid 283 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ ({𝐴} ∪ ({𝐵, 𝐶, 𝐷} ∪ {𝐸, 𝐹, 𝐺})) ↔ (𝑋 = 𝐴 ∨ ((𝑋 = 𝐵 ∨ 𝑋 = 𝐶 ∨ 𝑋 = 𝐷) ∨ (𝑋 = 𝐸 ∨ 𝑋 = 𝐹 ∨ 𝑋 = 𝐺))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 ∨ w3o 1085 = wceq 1538 ∈ wcel 2107 ∪ cun 3962 {csn 4632 {ctp 4636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1541 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-un 3969 df-sn 4633 df-pr 4635 df-tp 4637 |
This theorem is referenced by: usgrexmpl2nb0 47939 usgrexmpl2nb1 47940 usgrexmpl2nb2 47941 usgrexmpl2nb3 47942 usgrexmpl2nb4 47943 usgrexmpl2nb5 47944 |
Copyright terms: Public domain | W3C validator |