Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  usgrexmpl2nb3 Structured version   Visualization version   GIF version

Theorem usgrexmpl2nb3 48148
Description: The neighborhood of the forth vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.)
Hypotheses
Ref Expression
usgrexmpl2.v 𝑉 = (0...5)
usgrexmpl2.e 𝐸 = ⟨“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”⟩
usgrexmpl2.g 𝐺 = ⟨𝑉, 𝐸
Assertion
Ref Expression
usgrexmpl2nb3 (𝐺 NeighbVtx 3) = {0, 2, 4}

Proof of Theorem usgrexmpl2nb3
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 3ex 12217 . . . . . 6 3 ∈ V
21tpid1 4722 . . . . 5 3 ∈ {3, 4, 5}
32olci 866 . . . 4 (3 ∈ {0, 1, 2} ∨ 3 ∈ {3, 4, 5})
4 elun 4104 . . . 4 (3 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ↔ (3 ∈ {0, 1, 2} ∨ 3 ∈ {3, 4, 5}))
53, 4mpbir 231 . . 3 3 ∈ ({0, 1, 2} ∪ {3, 4, 5})
6 usgrexmpl2.v . . . 4 𝑉 = (0...5)
7 usgrexmpl2.e . . . 4 𝐸 = ⟨“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”⟩
8 usgrexmpl2.g . . . 4 𝐺 = ⟨𝑉, 𝐸
96, 7, 8usgrexmpl2nblem 48144 . . 3 (3 ∈ ({0, 1, 2} ∪ {3, 4, 5}) → (𝐺 NeighbVtx 3) = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∣ {3, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))})
105, 9ax-mp 5 . 2 (𝐺 NeighbVtx 3) = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∣ {3, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))}
11 c0ex 11116 . . . . . 6 0 ∈ V
1211tpid1 4722 . . . . 5 0 ∈ {0, 1, 2}
1312orci 865 . . . 4 (0 ∈ {0, 1, 2} ∨ 0 ∈ {3, 4, 5})
14 elun 4104 . . . 4 (0 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ↔ (0 ∈ {0, 1, 2} ∨ 0 ∈ {3, 4, 5}))
1513, 14mpbir 231 . . 3 0 ∈ ({0, 1, 2} ∪ {3, 4, 5})
16 2ex 12212 . . . . . 6 2 ∈ V
1716tpid3 4727 . . . . 5 2 ∈ {0, 1, 2}
1817orci 865 . . . 4 (2 ∈ {0, 1, 2} ∨ 2 ∈ {3, 4, 5})
19 elun 4104 . . . 4 (2 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ↔ (2 ∈ {0, 1, 2} ∨ 2 ∈ {3, 4, 5}))
2018, 19mpbir 231 . . 3 2 ∈ ({0, 1, 2} ∪ {3, 4, 5})
21 4nn0 12410 . . . . . . 7 4 ∈ ℕ0
2221elexi 3461 . . . . . 6 4 ∈ V
2322tpid2 4724 . . . . 5 4 ∈ {3, 4, 5}
2423olci 866 . . . 4 (4 ∈ {0, 1, 2} ∨ 4 ∈ {3, 4, 5})
25 elun 4104 . . . 4 (4 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ↔ (4 ∈ {0, 1, 2} ∨ 4 ∈ {3, 4, 5}))
2624, 25mpbir 231 . . 3 4 ∈ ({0, 1, 2} ∪ {3, 4, 5})
27 tpssi 4791 . . . 4 ((0 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 2 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 4 ∈ ({0, 1, 2} ∪ {3, 4, 5})) → {0, 2, 4} ⊆ ({0, 1, 2} ∪ {3, 4, 5}))
28 3orass 1089 . . . . . 6 ((𝑛 = 0 ∨ 𝑛 = 2 ∨ 𝑛 = 4) ↔ (𝑛 = 0 ∨ (𝑛 = 2 ∨ 𝑛 = 4)))
29 vex 3442 . . . . . . 7 𝑛 ∈ V
3029eltp 4643 . . . . . 6 (𝑛 ∈ {0, 2, 4} ↔ (𝑛 = 0 ∨ 𝑛 = 2 ∨ 𝑛 = 4))
31 prex 5379 . . . . . . . 8 {3, 𝑛} ∈ V
32 el7g 4644 . . . . . . . 8 ({3, 𝑛} ∈ V → ({3, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ ({3, 𝑛} = {0, 3} ∨ (({3, 𝑛} = {0, 1} ∨ {3, 𝑛} = {1, 2} ∨ {3, 𝑛} = {2, 3}) ∨ ({3, 𝑛} = {3, 4} ∨ {3, 𝑛} = {4, 5} ∨ {3, 𝑛} = {0, 5})))))
3331, 32ax-mp 5 . . . . . . 7 ({3, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ ({3, 𝑛} = {0, 3} ∨ (({3, 𝑛} = {0, 1} ∨ {3, 𝑛} = {1, 2} ∨ {3, 𝑛} = {2, 3}) ∨ ({3, 𝑛} = {3, 4} ∨ {3, 𝑛} = {4, 5} ∨ {3, 𝑛} = {0, 5}))))
34 prcom 4686 . . . . . . . . . 10 {0, 3} = {3, 0}
3534eqeq2i 2746 . . . . . . . . 9 ({3, 𝑛} = {0, 3} ↔ {3, 𝑛} = {3, 0})
3629a1i 11 . . . . . . . . . . 11 (0 ∈ V → 𝑛 ∈ V)
37 elex 3459 . . . . . . . . . . 11 (0 ∈ V → 0 ∈ V)
3836, 37preq2b 4800 . . . . . . . . . 10 (0 ∈ V → ({3, 𝑛} = {3, 0} ↔ 𝑛 = 0))
3911, 38ax-mp 5 . . . . . . . . 9 ({3, 𝑛} = {3, 0} ↔ 𝑛 = 0)
4035, 39bitri 275 . . . . . . . 8 ({3, 𝑛} = {0, 3} ↔ 𝑛 = 0)
41 3orrot 1091 . . . . . . . . . 10 (({3, 𝑛} = {0, 1} ∨ {3, 𝑛} = {1, 2} ∨ {3, 𝑛} = {2, 3}) ↔ ({3, 𝑛} = {1, 2} ∨ {3, 𝑛} = {2, 3} ∨ {3, 𝑛} = {0, 1}))
421, 29pm3.2i 470 . . . . . . . . . . . . . . 15 (3 ∈ V ∧ 𝑛 ∈ V)
43 1re 11122 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
4443, 16pm3.2i 470 . . . . . . . . . . . . . . 15 (1 ∈ ℝ ∧ 2 ∈ V)
4542, 44pm3.2i 470 . . . . . . . . . . . . . 14 ((3 ∈ V ∧ 𝑛 ∈ V) ∧ (1 ∈ ℝ ∧ 2 ∈ V))
46 1lt3 12303 . . . . . . . . . . . . . . . . 17 1 < 3
4743, 46gtneii 11235 . . . . . . . . . . . . . . . 16 3 ≠ 1
48 2re 12209 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
49 2lt3 12302 . . . . . . . . . . . . . . . . 17 2 < 3
5048, 49gtneii 11235 . . . . . . . . . . . . . . . 16 3 ≠ 2
5147, 50pm3.2i 470 . . . . . . . . . . . . . . 15 (3 ≠ 1 ∧ 3 ≠ 2)
5251orci 865 . . . . . . . . . . . . . 14 ((3 ≠ 1 ∧ 3 ≠ 2) ∨ (𝑛 ≠ 1 ∧ 𝑛 ≠ 2))
53 prneimg 4807 . . . . . . . . . . . . . 14 (((3 ∈ V ∧ 𝑛 ∈ V) ∧ (1 ∈ ℝ ∧ 2 ∈ V)) → (((3 ≠ 1 ∧ 3 ≠ 2) ∨ (𝑛 ≠ 1 ∧ 𝑛 ≠ 2)) → {3, 𝑛} ≠ {1, 2}))
5445, 52, 53mp2 9 . . . . . . . . . . . . 13 {3, 𝑛} ≠ {1, 2}
5554neii 2932 . . . . . . . . . . . 12 ¬ {3, 𝑛} = {1, 2}
56 id 22 . . . . . . . . . . . . 13 (¬ {3, 𝑛} = {1, 2} → ¬ {3, 𝑛} = {1, 2})
5711, 43pm3.2i 470 . . . . . . . . . . . . . . . . 17 (0 ∈ V ∧ 1 ∈ ℝ)
5842, 57pm3.2i 470 . . . . . . . . . . . . . . . 16 ((3 ∈ V ∧ 𝑛 ∈ V) ∧ (0 ∈ V ∧ 1 ∈ ℝ))
59 3ne0 12241 . . . . . . . . . . . . . . . . . 18 3 ≠ 0
6059, 47pm3.2i 470 . . . . . . . . . . . . . . . . 17 (3 ≠ 0 ∧ 3 ≠ 1)
6160orci 865 . . . . . . . . . . . . . . . 16 ((3 ≠ 0 ∧ 3 ≠ 1) ∨ (𝑛 ≠ 0 ∧ 𝑛 ≠ 1))
62 prneimg 4807 . . . . . . . . . . . . . . . 16 (((3 ∈ V ∧ 𝑛 ∈ V) ∧ (0 ∈ V ∧ 1 ∈ ℝ)) → (((3 ≠ 0 ∧ 3 ≠ 1) ∨ (𝑛 ≠ 0 ∧ 𝑛 ≠ 1)) → {3, 𝑛} ≠ {0, 1}))
6358, 61, 62mp2 9 . . . . . . . . . . . . . . 15 {3, 𝑛} ≠ {0, 1}
6463neii 2932 . . . . . . . . . . . . . 14 ¬ {3, 𝑛} = {0, 1}
6564a1i 11 . . . . . . . . . . . . 13 (¬ {3, 𝑛} = {1, 2} → ¬ {3, 𝑛} = {0, 1})
6656, 653bior2fd 1479 . . . . . . . . . . . 12 (¬ {3, 𝑛} = {1, 2} → ({3, 𝑛} = {2, 3} ↔ ({3, 𝑛} = {1, 2} ∨ {3, 𝑛} = {0, 1} ∨ {3, 𝑛} = {2, 3})))
6755, 66ax-mp 5 . . . . . . . . . . 11 ({3, 𝑛} = {2, 3} ↔ ({3, 𝑛} = {1, 2} ∨ {3, 𝑛} = {0, 1} ∨ {3, 𝑛} = {2, 3}))
68 3orcomb 1093 . . . . . . . . . . 11 (({3, 𝑛} = {1, 2} ∨ {3, 𝑛} = {0, 1} ∨ {3, 𝑛} = {2, 3}) ↔ ({3, 𝑛} = {1, 2} ∨ {3, 𝑛} = {2, 3} ∨ {3, 𝑛} = {0, 1}))
6967, 68bitri 275 . . . . . . . . . 10 ({3, 𝑛} = {2, 3} ↔ ({3, 𝑛} = {1, 2} ∨ {3, 𝑛} = {2, 3} ∨ {3, 𝑛} = {0, 1}))
70 prcom 4686 . . . . . . . . . . . 12 {2, 3} = {3, 2}
7170eqeq2i 2746 . . . . . . . . . . 11 ({3, 𝑛} = {2, 3} ↔ {3, 𝑛} = {3, 2})
7229a1i 11 . . . . . . . . . . . . 13 (2 ∈ V → 𝑛 ∈ V)
73 elex 3459 . . . . . . . . . . . . 13 (2 ∈ V → 2 ∈ V)
7472, 73preq2b 4800 . . . . . . . . . . . 12 (2 ∈ V → ({3, 𝑛} = {3, 2} ↔ 𝑛 = 2))
7516, 74ax-mp 5 . . . . . . . . . . 11 ({3, 𝑛} = {3, 2} ↔ 𝑛 = 2)
7671, 75bitri 275 . . . . . . . . . 10 ({3, 𝑛} = {2, 3} ↔ 𝑛 = 2)
7741, 69, 763bitr2i 299 . . . . . . . . 9 (({3, 𝑛} = {0, 1} ∨ {3, 𝑛} = {1, 2} ∨ {3, 𝑛} = {2, 3}) ↔ 𝑛 = 2)
78 3orrot 1091 . . . . . . . . . 10 (({3, 𝑛} = {3, 4} ∨ {3, 𝑛} = {4, 5} ∨ {3, 𝑛} = {0, 5}) ↔ ({3, 𝑛} = {4, 5} ∨ {3, 𝑛} = {0, 5} ∨ {3, 𝑛} = {3, 4}))
79 5nn0 12411 . . . . . . . . . . . . . . 15 5 ∈ ℕ0
8021, 79pm3.2i 470 . . . . . . . . . . . . . 14 (4 ∈ ℕ0 ∧ 5 ∈ ℕ0)
8142, 80pm3.2i 470 . . . . . . . . . . . . 13 ((3 ∈ V ∧ 𝑛 ∈ V) ∧ (4 ∈ ℕ0 ∧ 5 ∈ ℕ0))
82 3re 12215 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
83 3lt4 12304 . . . . . . . . . . . . . . . 16 3 < 4
8482, 83ltneii 11236 . . . . . . . . . . . . . . 15 3 ≠ 4
85 3lt5 12308 . . . . . . . . . . . . . . . 16 3 < 5
8682, 85ltneii 11236 . . . . . . . . . . . . . . 15 3 ≠ 5
8784, 86pm3.2i 470 . . . . . . . . . . . . . 14 (3 ≠ 4 ∧ 3 ≠ 5)
8887orci 865 . . . . . . . . . . . . 13 ((3 ≠ 4 ∧ 3 ≠ 5) ∨ (𝑛 ≠ 4 ∧ 𝑛 ≠ 5))
89 prneimg 4807 . . . . . . . . . . . . 13 (((3 ∈ V ∧ 𝑛 ∈ V) ∧ (4 ∈ ℕ0 ∧ 5 ∈ ℕ0)) → (((3 ≠ 4 ∧ 3 ≠ 5) ∨ (𝑛 ≠ 4 ∧ 𝑛 ≠ 5)) → {3, 𝑛} ≠ {4, 5}))
9081, 88, 89mp2 9 . . . . . . . . . . . 12 {3, 𝑛} ≠ {4, 5}
9190neii 2932 . . . . . . . . . . 11 ¬ {3, 𝑛} = {4, 5}
92 id 22 . . . . . . . . . . . 12 (¬ {3, 𝑛} = {4, 5} → ¬ {3, 𝑛} = {4, 5})
9311, 79pm3.2i 470 . . . . . . . . . . . . . . . 16 (0 ∈ V ∧ 5 ∈ ℕ0)
9442, 93pm3.2i 470 . . . . . . . . . . . . . . 15 ((3 ∈ V ∧ 𝑛 ∈ V) ∧ (0 ∈ V ∧ 5 ∈ ℕ0))
9559, 86pm3.2i 470 . . . . . . . . . . . . . . . 16 (3 ≠ 0 ∧ 3 ≠ 5)
9695orci 865 . . . . . . . . . . . . . . 15 ((3 ≠ 0 ∧ 3 ≠ 5) ∨ (𝑛 ≠ 0 ∧ 𝑛 ≠ 5))
97 prneimg 4807 . . . . . . . . . . . . . . 15 (((3 ∈ V ∧ 𝑛 ∈ V) ∧ (0 ∈ V ∧ 5 ∈ ℕ0)) → (((3 ≠ 0 ∧ 3 ≠ 5) ∨ (𝑛 ≠ 0 ∧ 𝑛 ≠ 5)) → {3, 𝑛} ≠ {0, 5}))
9894, 96, 97mp2 9 . . . . . . . . . . . . . 14 {3, 𝑛} ≠ {0, 5}
9998neii 2932 . . . . . . . . . . . . 13 ¬ {3, 𝑛} = {0, 5}
10099a1i 11 . . . . . . . . . . . 12 (¬ {3, 𝑛} = {4, 5} → ¬ {3, 𝑛} = {0, 5})
10192, 1003bior2fd 1479 . . . . . . . . . . 11 (¬ {3, 𝑛} = {4, 5} → ({3, 𝑛} = {3, 4} ↔ ({3, 𝑛} = {4, 5} ∨ {3, 𝑛} = {0, 5} ∨ {3, 𝑛} = {3, 4})))
10291, 101ax-mp 5 . . . . . . . . . 10 ({3, 𝑛} = {3, 4} ↔ ({3, 𝑛} = {4, 5} ∨ {3, 𝑛} = {0, 5} ∨ {3, 𝑛} = {3, 4}))
10329a1i 11 . . . . . . . . . . . 12 (4 ∈ ℕ0𝑛 ∈ V)
104 elex 3459 . . . . . . . . . . . 12 (4 ∈ ℕ0 → 4 ∈ V)
105103, 104preq2b 4800 . . . . . . . . . . 11 (4 ∈ ℕ0 → ({3, 𝑛} = {3, 4} ↔ 𝑛 = 4))
10621, 105ax-mp 5 . . . . . . . . . 10 ({3, 𝑛} = {3, 4} ↔ 𝑛 = 4)
10778, 102, 1063bitr2i 299 . . . . . . . . 9 (({3, 𝑛} = {3, 4} ∨ {3, 𝑛} = {4, 5} ∨ {3, 𝑛} = {0, 5}) ↔ 𝑛 = 4)
10877, 107orbi12i 914 . . . . . . . 8 ((({3, 𝑛} = {0, 1} ∨ {3, 𝑛} = {1, 2} ∨ {3, 𝑛} = {2, 3}) ∨ ({3, 𝑛} = {3, 4} ∨ {3, 𝑛} = {4, 5} ∨ {3, 𝑛} = {0, 5})) ↔ (𝑛 = 2 ∨ 𝑛 = 4))
10940, 108orbi12i 914 . . . . . . 7 (({3, 𝑛} = {0, 3} ∨ (({3, 𝑛} = {0, 1} ∨ {3, 𝑛} = {1, 2} ∨ {3, 𝑛} = {2, 3}) ∨ ({3, 𝑛} = {3, 4} ∨ {3, 𝑛} = {4, 5} ∨ {3, 𝑛} = {0, 5}))) ↔ (𝑛 = 0 ∨ (𝑛 = 2 ∨ 𝑛 = 4)))
11033, 109bitri 275 . . . . . 6 ({3, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ (𝑛 = 0 ∨ (𝑛 = 2 ∨ 𝑛 = 4)))
11128, 30, 1103bitr4i 303 . . . . 5 (𝑛 ∈ {0, 2, 4} ↔ {3, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})))
112111a1i 11 . . . 4 (((0 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 2 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 4 ∈ ({0, 1, 2} ∪ {3, 4, 5})) ∧ 𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5})) → (𝑛 ∈ {0, 2, 4} ↔ {3, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))))
11327, 112eqrrabd 4037 . . 3 ((0 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 2 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 4 ∈ ({0, 1, 2} ∪ {3, 4, 5})) → {0, 2, 4} = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∣ {3, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))})
11415, 20, 26, 113mp3an 1463 . 2 {0, 2, 4} = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∣ {3, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))}
11510, 114eqtr4i 2759 1 (𝐺 NeighbVtx 3) = {0, 2, 4}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1541  wcel 2113  wne 2930  {crab 3397  Vcvv 3438  cun 3897  {csn 4577  {cpr 4579  {ctp 4581  cop 4583  (class class class)co 7355  cr 11015  0cc0 11016  1c1 11017  2c2 12190  3c3 12191  4c4 12192  5c5 12193  0cn0 12391  ...cfz 13417  ⟨“cs7 14763   NeighbVtx cnbgr 29321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-dju 9804  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-n0 12392  df-xnn0 12465  df-z 12479  df-uz 12743  df-fz 13418  df-fzo 13565  df-hash 14248  df-word 14431  df-concat 14488  df-s1 14514  df-s2 14765  df-s3 14766  df-s4 14767  df-s5 14768  df-s6 14769  df-s7 14770  df-vtx 28987  df-iedg 28988  df-edg 29037  df-upgr 29071  df-umgr 29072  df-usgr 29140  df-nbgr 29322
This theorem is referenced by:  usgrexmpl2trifr  48151
  Copyright terms: Public domain W3C validator