Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  usgrexmpl2nb3 Structured version   Visualization version   GIF version

Theorem usgrexmpl2nb3 47769
Description: The neighborhood of the forth vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.)
Hypotheses
Ref Expression
usgrexmpl2.v 𝑉 = (0...5)
usgrexmpl2.e 𝐸 = ⟨“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”⟩
usgrexmpl2.g 𝐺 = ⟨𝑉, 𝐸
Assertion
Ref Expression
usgrexmpl2nb3 (𝐺 NeighbVtx 3) = {0, 2, 4}

Proof of Theorem usgrexmpl2nb3
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 3ex 12371 . . . . . 6 3 ∈ V
21tpid1 4793 . . . . 5 3 ∈ {3, 4, 5}
32olci 865 . . . 4 (3 ∈ {0, 1, 2} ∨ 3 ∈ {3, 4, 5})
4 elun 4170 . . . 4 (3 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ↔ (3 ∈ {0, 1, 2} ∨ 3 ∈ {3, 4, 5}))
53, 4mpbir 231 . . 3 3 ∈ ({0, 1, 2} ∪ {3, 4, 5})
6 usgrexmpl2.v . . . 4 𝑉 = (0...5)
7 usgrexmpl2.e . . . 4 𝐸 = ⟨“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”⟩
8 usgrexmpl2.g . . . 4 𝐺 = ⟨𝑉, 𝐸
96, 7, 8usgrexmpl2nblem 47765 . . 3 (3 ∈ ({0, 1, 2} ∪ {3, 4, 5}) → (𝐺 NeighbVtx 3) = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∣ {3, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))})
105, 9ax-mp 5 . 2 (𝐺 NeighbVtx 3) = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∣ {3, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))}
11 c0ex 11280 . . . . . 6 0 ∈ V
1211tpid1 4793 . . . . 5 0 ∈ {0, 1, 2}
1312orci 864 . . . 4 (0 ∈ {0, 1, 2} ∨ 0 ∈ {3, 4, 5})
14 elun 4170 . . . 4 (0 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ↔ (0 ∈ {0, 1, 2} ∨ 0 ∈ {3, 4, 5}))
1513, 14mpbir 231 . . 3 0 ∈ ({0, 1, 2} ∪ {3, 4, 5})
16 2ex 12366 . . . . . 6 2 ∈ V
1716tpid3 4798 . . . . 5 2 ∈ {0, 1, 2}
1817orci 864 . . . 4 (2 ∈ {0, 1, 2} ∨ 2 ∈ {3, 4, 5})
19 elun 4170 . . . 4 (2 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ↔ (2 ∈ {0, 1, 2} ∨ 2 ∈ {3, 4, 5}))
2018, 19mpbir 231 . . 3 2 ∈ ({0, 1, 2} ∪ {3, 4, 5})
21 4nn0 12568 . . . . . . 7 4 ∈ ℕ0
2221elexi 3506 . . . . . 6 4 ∈ V
2322tpid2 4795 . . . . 5 4 ∈ {3, 4, 5}
2423olci 865 . . . 4 (4 ∈ {0, 1, 2} ∨ 4 ∈ {3, 4, 5})
25 elun 4170 . . . 4 (4 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ↔ (4 ∈ {0, 1, 2} ∨ 4 ∈ {3, 4, 5}))
2624, 25mpbir 231 . . 3 4 ∈ ({0, 1, 2} ∪ {3, 4, 5})
27 tpssi 4863 . . . 4 ((0 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 2 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 4 ∈ ({0, 1, 2} ∪ {3, 4, 5})) → {0, 2, 4} ⊆ ({0, 1, 2} ∪ {3, 4, 5}))
28 3orass 1090 . . . . . 6 ((𝑛 = 0 ∨ 𝑛 = 2 ∨ 𝑛 = 4) ↔ (𝑛 = 0 ∨ (𝑛 = 2 ∨ 𝑛 = 4)))
29 vex 3486 . . . . . . 7 𝑛 ∈ V
3029eltp 4712 . . . . . 6 (𝑛 ∈ {0, 2, 4} ↔ (𝑛 = 0 ∨ 𝑛 = 2 ∨ 𝑛 = 4))
31 prex 5455 . . . . . . . 8 {3, 𝑛} ∈ V
32 el7g 4713 . . . . . . . 8 ({3, 𝑛} ∈ V → ({3, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ ({3, 𝑛} = {0, 3} ∨ (({3, 𝑛} = {0, 1} ∨ {3, 𝑛} = {1, 2} ∨ {3, 𝑛} = {2, 3}) ∨ ({3, 𝑛} = {3, 4} ∨ {3, 𝑛} = {4, 5} ∨ {3, 𝑛} = {0, 5})))))
3331, 32ax-mp 5 . . . . . . 7 ({3, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ ({3, 𝑛} = {0, 3} ∨ (({3, 𝑛} = {0, 1} ∨ {3, 𝑛} = {1, 2} ∨ {3, 𝑛} = {2, 3}) ∨ ({3, 𝑛} = {3, 4} ∨ {3, 𝑛} = {4, 5} ∨ {3, 𝑛} = {0, 5}))))
34 prcom 4757 . . . . . . . . . 10 {0, 3} = {3, 0}
3534eqeq2i 2747 . . . . . . . . 9 ({3, 𝑛} = {0, 3} ↔ {3, 𝑛} = {3, 0})
3629a1i 11 . . . . . . . . . . 11 (0 ∈ V → 𝑛 ∈ V)
37 elex 3504 . . . . . . . . . . 11 (0 ∈ V → 0 ∈ V)
3836, 37preq2b 4872 . . . . . . . . . 10 (0 ∈ V → ({3, 𝑛} = {3, 0} ↔ 𝑛 = 0))
3911, 38ax-mp 5 . . . . . . . . 9 ({3, 𝑛} = {3, 0} ↔ 𝑛 = 0)
4035, 39bitri 275 . . . . . . . 8 ({3, 𝑛} = {0, 3} ↔ 𝑛 = 0)
41 3orrot 1092 . . . . . . . . . 10 (({3, 𝑛} = {0, 1} ∨ {3, 𝑛} = {1, 2} ∨ {3, 𝑛} = {2, 3}) ↔ ({3, 𝑛} = {1, 2} ∨ {3, 𝑛} = {2, 3} ∨ {3, 𝑛} = {0, 1}))
421, 29pm3.2i 470 . . . . . . . . . . . . . . 15 (3 ∈ V ∧ 𝑛 ∈ V)
43 1re 11286 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
4443, 16pm3.2i 470 . . . . . . . . . . . . . . 15 (1 ∈ ℝ ∧ 2 ∈ V)
4542, 44pm3.2i 470 . . . . . . . . . . . . . 14 ((3 ∈ V ∧ 𝑛 ∈ V) ∧ (1 ∈ ℝ ∧ 2 ∈ V))
46 1lt3 12462 . . . . . . . . . . . . . . . . 17 1 < 3
4743, 46gtneii 11398 . . . . . . . . . . . . . . . 16 3 ≠ 1
48 2re 12363 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
49 2lt3 12461 . . . . . . . . . . . . . . . . 17 2 < 3
5048, 49gtneii 11398 . . . . . . . . . . . . . . . 16 3 ≠ 2
5147, 50pm3.2i 470 . . . . . . . . . . . . . . 15 (3 ≠ 1 ∧ 3 ≠ 2)
5251orci 864 . . . . . . . . . . . . . 14 ((3 ≠ 1 ∧ 3 ≠ 2) ∨ (𝑛 ≠ 1 ∧ 𝑛 ≠ 2))
53 prneimg 4879 . . . . . . . . . . . . . 14 (((3 ∈ V ∧ 𝑛 ∈ V) ∧ (1 ∈ ℝ ∧ 2 ∈ V)) → (((3 ≠ 1 ∧ 3 ≠ 2) ∨ (𝑛 ≠ 1 ∧ 𝑛 ≠ 2)) → {3, 𝑛} ≠ {1, 2}))
5445, 52, 53mp2 9 . . . . . . . . . . . . 13 {3, 𝑛} ≠ {1, 2}
5554neii 2944 . . . . . . . . . . . 12 ¬ {3, 𝑛} = {1, 2}
56 id 22 . . . . . . . . . . . . 13 (¬ {3, 𝑛} = {1, 2} → ¬ {3, 𝑛} = {1, 2})
5711, 43pm3.2i 470 . . . . . . . . . . . . . . . . 17 (0 ∈ V ∧ 1 ∈ ℝ)
5842, 57pm3.2i 470 . . . . . . . . . . . . . . . 16 ((3 ∈ V ∧ 𝑛 ∈ V) ∧ (0 ∈ V ∧ 1 ∈ ℝ))
59 3ne0 12395 . . . . . . . . . . . . . . . . . 18 3 ≠ 0
6059, 47pm3.2i 470 . . . . . . . . . . . . . . . . 17 (3 ≠ 0 ∧ 3 ≠ 1)
6160orci 864 . . . . . . . . . . . . . . . 16 ((3 ≠ 0 ∧ 3 ≠ 1) ∨ (𝑛 ≠ 0 ∧ 𝑛 ≠ 1))
62 prneimg 4879 . . . . . . . . . . . . . . . 16 (((3 ∈ V ∧ 𝑛 ∈ V) ∧ (0 ∈ V ∧ 1 ∈ ℝ)) → (((3 ≠ 0 ∧ 3 ≠ 1) ∨ (𝑛 ≠ 0 ∧ 𝑛 ≠ 1)) → {3, 𝑛} ≠ {0, 1}))
6358, 61, 62mp2 9 . . . . . . . . . . . . . . 15 {3, 𝑛} ≠ {0, 1}
6463neii 2944 . . . . . . . . . . . . . 14 ¬ {3, 𝑛} = {0, 1}
6564a1i 11 . . . . . . . . . . . . 13 (¬ {3, 𝑛} = {1, 2} → ¬ {3, 𝑛} = {0, 1})
6656, 653bior2fd 1477 . . . . . . . . . . . 12 (¬ {3, 𝑛} = {1, 2} → ({3, 𝑛} = {2, 3} ↔ ({3, 𝑛} = {1, 2} ∨ {3, 𝑛} = {0, 1} ∨ {3, 𝑛} = {2, 3})))
6755, 66ax-mp 5 . . . . . . . . . . 11 ({3, 𝑛} = {2, 3} ↔ ({3, 𝑛} = {1, 2} ∨ {3, 𝑛} = {0, 1} ∨ {3, 𝑛} = {2, 3}))
68 3orcomb 1094 . . . . . . . . . . 11 (({3, 𝑛} = {1, 2} ∨ {3, 𝑛} = {0, 1} ∨ {3, 𝑛} = {2, 3}) ↔ ({3, 𝑛} = {1, 2} ∨ {3, 𝑛} = {2, 3} ∨ {3, 𝑛} = {0, 1}))
6967, 68bitri 275 . . . . . . . . . 10 ({3, 𝑛} = {2, 3} ↔ ({3, 𝑛} = {1, 2} ∨ {3, 𝑛} = {2, 3} ∨ {3, 𝑛} = {0, 1}))
70 prcom 4757 . . . . . . . . . . . 12 {2, 3} = {3, 2}
7170eqeq2i 2747 . . . . . . . . . . 11 ({3, 𝑛} = {2, 3} ↔ {3, 𝑛} = {3, 2})
7229a1i 11 . . . . . . . . . . . . 13 (2 ∈ V → 𝑛 ∈ V)
73 elex 3504 . . . . . . . . . . . . 13 (2 ∈ V → 2 ∈ V)
7472, 73preq2b 4872 . . . . . . . . . . . 12 (2 ∈ V → ({3, 𝑛} = {3, 2} ↔ 𝑛 = 2))
7516, 74ax-mp 5 . . . . . . . . . . 11 ({3, 𝑛} = {3, 2} ↔ 𝑛 = 2)
7671, 75bitri 275 . . . . . . . . . 10 ({3, 𝑛} = {2, 3} ↔ 𝑛 = 2)
7741, 69, 763bitr2i 299 . . . . . . . . 9 (({3, 𝑛} = {0, 1} ∨ {3, 𝑛} = {1, 2} ∨ {3, 𝑛} = {2, 3}) ↔ 𝑛 = 2)
78 3orrot 1092 . . . . . . . . . 10 (({3, 𝑛} = {3, 4} ∨ {3, 𝑛} = {4, 5} ∨ {3, 𝑛} = {0, 5}) ↔ ({3, 𝑛} = {4, 5} ∨ {3, 𝑛} = {0, 5} ∨ {3, 𝑛} = {3, 4}))
79 5nn0 12569 . . . . . . . . . . . . . . 15 5 ∈ ℕ0
8021, 79pm3.2i 470 . . . . . . . . . . . . . 14 (4 ∈ ℕ0 ∧ 5 ∈ ℕ0)
8142, 80pm3.2i 470 . . . . . . . . . . . . 13 ((3 ∈ V ∧ 𝑛 ∈ V) ∧ (4 ∈ ℕ0 ∧ 5 ∈ ℕ0))
82 3re 12369 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
83 3lt4 12463 . . . . . . . . . . . . . . . 16 3 < 4
8482, 83ltneii 11399 . . . . . . . . . . . . . . 15 3 ≠ 4
85 3lt5 12467 . . . . . . . . . . . . . . . 16 3 < 5
8682, 85ltneii 11399 . . . . . . . . . . . . . . 15 3 ≠ 5
8784, 86pm3.2i 470 . . . . . . . . . . . . . 14 (3 ≠ 4 ∧ 3 ≠ 5)
8887orci 864 . . . . . . . . . . . . 13 ((3 ≠ 4 ∧ 3 ≠ 5) ∨ (𝑛 ≠ 4 ∧ 𝑛 ≠ 5))
89 prneimg 4879 . . . . . . . . . . . . 13 (((3 ∈ V ∧ 𝑛 ∈ V) ∧ (4 ∈ ℕ0 ∧ 5 ∈ ℕ0)) → (((3 ≠ 4 ∧ 3 ≠ 5) ∨ (𝑛 ≠ 4 ∧ 𝑛 ≠ 5)) → {3, 𝑛} ≠ {4, 5}))
9081, 88, 89mp2 9 . . . . . . . . . . . 12 {3, 𝑛} ≠ {4, 5}
9190neii 2944 . . . . . . . . . . 11 ¬ {3, 𝑛} = {4, 5}
92 id 22 . . . . . . . . . . . 12 (¬ {3, 𝑛} = {4, 5} → ¬ {3, 𝑛} = {4, 5})
9311, 79pm3.2i 470 . . . . . . . . . . . . . . . 16 (0 ∈ V ∧ 5 ∈ ℕ0)
9442, 93pm3.2i 470 . . . . . . . . . . . . . . 15 ((3 ∈ V ∧ 𝑛 ∈ V) ∧ (0 ∈ V ∧ 5 ∈ ℕ0))
9559, 86pm3.2i 470 . . . . . . . . . . . . . . . 16 (3 ≠ 0 ∧ 3 ≠ 5)
9695orci 864 . . . . . . . . . . . . . . 15 ((3 ≠ 0 ∧ 3 ≠ 5) ∨ (𝑛 ≠ 0 ∧ 𝑛 ≠ 5))
97 prneimg 4879 . . . . . . . . . . . . . . 15 (((3 ∈ V ∧ 𝑛 ∈ V) ∧ (0 ∈ V ∧ 5 ∈ ℕ0)) → (((3 ≠ 0 ∧ 3 ≠ 5) ∨ (𝑛 ≠ 0 ∧ 𝑛 ≠ 5)) → {3, 𝑛} ≠ {0, 5}))
9894, 96, 97mp2 9 . . . . . . . . . . . . . 14 {3, 𝑛} ≠ {0, 5}
9998neii 2944 . . . . . . . . . . . . 13 ¬ {3, 𝑛} = {0, 5}
10099a1i 11 . . . . . . . . . . . 12 (¬ {3, 𝑛} = {4, 5} → ¬ {3, 𝑛} = {0, 5})
10192, 1003bior2fd 1477 . . . . . . . . . . 11 (¬ {3, 𝑛} = {4, 5} → ({3, 𝑛} = {3, 4} ↔ ({3, 𝑛} = {4, 5} ∨ {3, 𝑛} = {0, 5} ∨ {3, 𝑛} = {3, 4})))
10291, 101ax-mp 5 . . . . . . . . . 10 ({3, 𝑛} = {3, 4} ↔ ({3, 𝑛} = {4, 5} ∨ {3, 𝑛} = {0, 5} ∨ {3, 𝑛} = {3, 4}))
10329a1i 11 . . . . . . . . . . . 12 (4 ∈ ℕ0𝑛 ∈ V)
104 elex 3504 . . . . . . . . . . . 12 (4 ∈ ℕ0 → 4 ∈ V)
105103, 104preq2b 4872 . . . . . . . . . . 11 (4 ∈ ℕ0 → ({3, 𝑛} = {3, 4} ↔ 𝑛 = 4))
10621, 105ax-mp 5 . . . . . . . . . 10 ({3, 𝑛} = {3, 4} ↔ 𝑛 = 4)
10778, 102, 1063bitr2i 299 . . . . . . . . 9 (({3, 𝑛} = {3, 4} ∨ {3, 𝑛} = {4, 5} ∨ {3, 𝑛} = {0, 5}) ↔ 𝑛 = 4)
10877, 107orbi12i 913 . . . . . . . 8 ((({3, 𝑛} = {0, 1} ∨ {3, 𝑛} = {1, 2} ∨ {3, 𝑛} = {2, 3}) ∨ ({3, 𝑛} = {3, 4} ∨ {3, 𝑛} = {4, 5} ∨ {3, 𝑛} = {0, 5})) ↔ (𝑛 = 2 ∨ 𝑛 = 4))
10940, 108orbi12i 913 . . . . . . 7 (({3, 𝑛} = {0, 3} ∨ (({3, 𝑛} = {0, 1} ∨ {3, 𝑛} = {1, 2} ∨ {3, 𝑛} = {2, 3}) ∨ ({3, 𝑛} = {3, 4} ∨ {3, 𝑛} = {4, 5} ∨ {3, 𝑛} = {0, 5}))) ↔ (𝑛 = 0 ∨ (𝑛 = 2 ∨ 𝑛 = 4)))
11033, 109bitri 275 . . . . . 6 ({3, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ (𝑛 = 0 ∨ (𝑛 = 2 ∨ 𝑛 = 4)))
11128, 30, 1103bitr4i 303 . . . . 5 (𝑛 ∈ {0, 2, 4} ↔ {3, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})))
112111a1i 11 . . . 4 (((0 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 2 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 4 ∈ ({0, 1, 2} ∪ {3, 4, 5})) ∧ 𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5})) → (𝑛 ∈ {0, 2, 4} ↔ {3, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))))
11327, 112eqrrabd 4103 . . 3 ((0 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 2 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 4 ∈ ({0, 1, 2} ∪ {3, 4, 5})) → {0, 2, 4} = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∣ {3, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))})
11415, 20, 26, 113mp3an 1461 . 2 {0, 2, 4} = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∣ {3, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))}
11510, 114eqtr4i 2765 1 (𝐺 NeighbVtx 3) = {0, 2, 4}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 846  w3o 1086  w3a 1087   = wceq 1537  wcel 2103  wne 2942  {crab 3438  Vcvv 3482  cun 3968  {csn 4648  {cpr 4650  {ctp 4652  cop 4654  (class class class)co 7445  cr 11179  0cc0 11180  1c1 11181  2c2 12344  3c3 12345  4c4 12346  5c5 12347  0cn0 12549  ...cfz 13563  ⟨“cs7 14891   NeighbVtx cnbgr 29358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4973  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-om 7900  df-1st 8026  df-2nd 8027  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-1o 8518  df-2o 8519  df-oadd 8522  df-er 8759  df-en 9000  df-dom 9001  df-sdom 9002  df-fin 9003  df-dju 9966  df-card 10004  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-nn 12290  df-2 12352  df-3 12353  df-4 12354  df-5 12355  df-6 12356  df-7 12357  df-n0 12550  df-xnn0 12622  df-z 12636  df-uz 12900  df-fz 13564  df-fzo 13708  df-hash 14376  df-word 14559  df-concat 14615  df-s1 14640  df-s2 14893  df-s3 14894  df-s4 14895  df-s5 14896  df-s6 14897  df-s7 14898  df-vtx 29024  df-iedg 29025  df-edg 29074  df-upgr 29108  df-umgr 29109  df-usgr 29177  df-nbgr 29359
This theorem is referenced by:  usgrexmpl2trifr  47772
  Copyright terms: Public domain W3C validator