| Step | Hyp | Ref
| Expression |
| 1 | | 3ex 12331 |
. . . . . 6
⊢ 3 ∈
V |
| 2 | 1 | tpid1 4750 |
. . . . 5
⊢ 3 ∈
{3, 4, 5} |
| 3 | 2 | olci 866 |
. . . 4
⊢ (3 ∈
{0, 1, 2} ∨ 3 ∈ {3, 4, 5}) |
| 4 | | elun 4135 |
. . . 4
⊢ (3 ∈
({0, 1, 2} ∪ {3, 4, 5}) ↔ (3 ∈ {0, 1, 2} ∨ 3 ∈ {3, 4,
5})) |
| 5 | 3, 4 | mpbir 231 |
. . 3
⊢ 3 ∈
({0, 1, 2} ∪ {3, 4, 5}) |
| 6 | | usgrexmpl2.v |
. . . 4
⊢ 𝑉 = (0...5) |
| 7 | | usgrexmpl2.e |
. . . 4
⊢ 𝐸 = 〈“{0, 1} {1, 2}
{2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 |
| 8 | | usgrexmpl2.g |
. . . 4
⊢ 𝐺 = 〈𝑉, 𝐸〉 |
| 9 | 6, 7, 8 | usgrexmpl2nblem 47935 |
. . 3
⊢ (3 ∈
({0, 1, 2} ∪ {3, 4, 5}) → (𝐺 NeighbVtx 3) = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∣
{3, 𝑛} ∈ ({{0, 3}}
∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0,
5}}))}) |
| 10 | 5, 9 | ax-mp 5 |
. 2
⊢ (𝐺 NeighbVtx 3) = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4,
5}) ∣ {3, 𝑛} ∈
({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0,
5}}))} |
| 11 | | c0ex 11238 |
. . . . . 6
⊢ 0 ∈
V |
| 12 | 11 | tpid1 4750 |
. . . . 5
⊢ 0 ∈
{0, 1, 2} |
| 13 | 12 | orci 865 |
. . . 4
⊢ (0 ∈
{0, 1, 2} ∨ 0 ∈ {3, 4, 5}) |
| 14 | | elun 4135 |
. . . 4
⊢ (0 ∈
({0, 1, 2} ∪ {3, 4, 5}) ↔ (0 ∈ {0, 1, 2} ∨ 0 ∈ {3, 4,
5})) |
| 15 | 13, 14 | mpbir 231 |
. . 3
⊢ 0 ∈
({0, 1, 2} ∪ {3, 4, 5}) |
| 16 | | 2ex 12326 |
. . . . . 6
⊢ 2 ∈
V |
| 17 | 16 | tpid3 4755 |
. . . . 5
⊢ 2 ∈
{0, 1, 2} |
| 18 | 17 | orci 865 |
. . . 4
⊢ (2 ∈
{0, 1, 2} ∨ 2 ∈ {3, 4, 5}) |
| 19 | | elun 4135 |
. . . 4
⊢ (2 ∈
({0, 1, 2} ∪ {3, 4, 5}) ↔ (2 ∈ {0, 1, 2} ∨ 2 ∈ {3, 4,
5})) |
| 20 | 18, 19 | mpbir 231 |
. . 3
⊢ 2 ∈
({0, 1, 2} ∪ {3, 4, 5}) |
| 21 | | 4nn0 12529 |
. . . . . . 7
⊢ 4 ∈
ℕ0 |
| 22 | 21 | elexi 3487 |
. . . . . 6
⊢ 4 ∈
V |
| 23 | 22 | tpid2 4752 |
. . . . 5
⊢ 4 ∈
{3, 4, 5} |
| 24 | 23 | olci 866 |
. . . 4
⊢ (4 ∈
{0, 1, 2} ∨ 4 ∈ {3, 4, 5}) |
| 25 | | elun 4135 |
. . . 4
⊢ (4 ∈
({0, 1, 2} ∪ {3, 4, 5}) ↔ (4 ∈ {0, 1, 2} ∨ 4 ∈ {3, 4,
5})) |
| 26 | 24, 25 | mpbir 231 |
. . 3
⊢ 4 ∈
({0, 1, 2} ∪ {3, 4, 5}) |
| 27 | | tpssi 4820 |
. . . 4
⊢ ((0
∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 2 ∈ ({0, 1, 2} ∪ {3, 4, 5})
∧ 4 ∈ ({0, 1, 2} ∪ {3, 4, 5})) → {0, 2, 4} ⊆ ({0, 1, 2}
∪ {3, 4, 5})) |
| 28 | | 3orass 1089 |
. . . . . 6
⊢ ((𝑛 = 0 ∨ 𝑛 = 2 ∨ 𝑛 = 4) ↔ (𝑛 = 0 ∨ (𝑛 = 2 ∨ 𝑛 = 4))) |
| 29 | | vex 3468 |
. . . . . . 7
⊢ 𝑛 ∈ V |
| 30 | 29 | eltp 4671 |
. . . . . 6
⊢ (𝑛 ∈ {0, 2, 4} ↔ (𝑛 = 0 ∨ 𝑛 = 2 ∨ 𝑛 = 4)) |
| 31 | | prex 5419 |
. . . . . . . 8
⊢ {3, 𝑛} ∈ V |
| 32 | | el7g 4672 |
. . . . . . . 8
⊢ ({3,
𝑛} ∈ V → ({3,
𝑛} ∈ ({{0, 3}} ∪
({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ ({3, 𝑛} = {0, 3} ∨ (({3, 𝑛} = {0, 1} ∨ {3, 𝑛} = {1, 2} ∨ {3, 𝑛} = {2, 3}) ∨ ({3, 𝑛} = {3, 4} ∨ {3, 𝑛} = {4, 5} ∨ {3, 𝑛} = {0, 5}))))) |
| 33 | 31, 32 | ax-mp 5 |
. . . . . . 7
⊢ ({3,
𝑛} ∈ ({{0, 3}} ∪
({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ ({3, 𝑛} = {0, 3} ∨ (({3, 𝑛} = {0, 1} ∨ {3, 𝑛} = {1, 2} ∨ {3, 𝑛} = {2, 3}) ∨ ({3, 𝑛} = {3, 4} ∨ {3, 𝑛} = {4, 5} ∨ {3, 𝑛} = {0, 5})))) |
| 34 | | prcom 4714 |
. . . . . . . . . 10
⊢ {0, 3} =
{3, 0} |
| 35 | 34 | eqeq2i 2747 |
. . . . . . . . 9
⊢ ({3,
𝑛} = {0, 3} ↔ {3,
𝑛} = {3,
0}) |
| 36 | 29 | a1i 11 |
. . . . . . . . . . 11
⊢ (0 ∈
V → 𝑛 ∈
V) |
| 37 | | elex 3485 |
. . . . . . . . . . 11
⊢ (0 ∈
V → 0 ∈ V) |
| 38 | 36, 37 | preq2b 4829 |
. . . . . . . . . 10
⊢ (0 ∈
V → ({3, 𝑛} = {3, 0}
↔ 𝑛 =
0)) |
| 39 | 11, 38 | ax-mp 5 |
. . . . . . . . 9
⊢ ({3,
𝑛} = {3, 0} ↔ 𝑛 = 0) |
| 40 | 35, 39 | bitri 275 |
. . . . . . . 8
⊢ ({3,
𝑛} = {0, 3} ↔ 𝑛 = 0) |
| 41 | | 3orrot 1091 |
. . . . . . . . . 10
⊢ (({3,
𝑛} = {0, 1} ∨ {3, 𝑛} = {1, 2} ∨ {3, 𝑛} = {2, 3}) ↔ ({3, 𝑛} = {1, 2} ∨ {3, 𝑛} = {2, 3} ∨ {3, 𝑛} = {0, 1})) |
| 42 | 1, 29 | pm3.2i 470 |
. . . . . . . . . . . . . . 15
⊢ (3 ∈
V ∧ 𝑛 ∈
V) |
| 43 | | 1re 11244 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℝ |
| 44 | 43, 16 | pm3.2i 470 |
. . . . . . . . . . . . . . 15
⊢ (1 ∈
ℝ ∧ 2 ∈ V) |
| 45 | 42, 44 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ ((3
∈ V ∧ 𝑛 ∈ V)
∧ (1 ∈ ℝ ∧ 2 ∈ V)) |
| 46 | | 1lt3 12422 |
. . . . . . . . . . . . . . . . 17
⊢ 1 <
3 |
| 47 | 43, 46 | gtneii 11356 |
. . . . . . . . . . . . . . . 16
⊢ 3 ≠
1 |
| 48 | | 2re 12323 |
. . . . . . . . . . . . . . . . 17
⊢ 2 ∈
ℝ |
| 49 | | 2lt3 12421 |
. . . . . . . . . . . . . . . . 17
⊢ 2 <
3 |
| 50 | 48, 49 | gtneii 11356 |
. . . . . . . . . . . . . . . 16
⊢ 3 ≠
2 |
| 51 | 47, 50 | pm3.2i 470 |
. . . . . . . . . . . . . . 15
⊢ (3 ≠ 1
∧ 3 ≠ 2) |
| 52 | 51 | orci 865 |
. . . . . . . . . . . . . 14
⊢ ((3 ≠
1 ∧ 3 ≠ 2) ∨ (𝑛
≠ 1 ∧ 𝑛 ≠
2)) |
| 53 | | prneimg 4836 |
. . . . . . . . . . . . . 14
⊢ (((3
∈ V ∧ 𝑛 ∈ V)
∧ (1 ∈ ℝ ∧ 2 ∈ V)) → (((3 ≠ 1 ∧ 3 ≠ 2)
∨ (𝑛 ≠ 1 ∧ 𝑛 ≠ 2)) → {3, 𝑛} ≠ {1, 2})) |
| 54 | 45, 52, 53 | mp2 9 |
. . . . . . . . . . . . 13
⊢ {3, 𝑛} ≠ {1, 2} |
| 55 | 54 | neii 2933 |
. . . . . . . . . . . 12
⊢ ¬
{3, 𝑛} = {1,
2} |
| 56 | | id 22 |
. . . . . . . . . . . . 13
⊢ (¬
{3, 𝑛} = {1, 2} →
¬ {3, 𝑛} = {1,
2}) |
| 57 | 11, 43 | pm3.2i 470 |
. . . . . . . . . . . . . . . . 17
⊢ (0 ∈
V ∧ 1 ∈ ℝ) |
| 58 | 42, 57 | pm3.2i 470 |
. . . . . . . . . . . . . . . 16
⊢ ((3
∈ V ∧ 𝑛 ∈ V)
∧ (0 ∈ V ∧ 1 ∈ ℝ)) |
| 59 | | 3ne0 12355 |
. . . . . . . . . . . . . . . . . 18
⊢ 3 ≠
0 |
| 60 | 59, 47 | pm3.2i 470 |
. . . . . . . . . . . . . . . . 17
⊢ (3 ≠ 0
∧ 3 ≠ 1) |
| 61 | 60 | orci 865 |
. . . . . . . . . . . . . . . 16
⊢ ((3 ≠
0 ∧ 3 ≠ 1) ∨ (𝑛
≠ 0 ∧ 𝑛 ≠
1)) |
| 62 | | prneimg 4836 |
. . . . . . . . . . . . . . . 16
⊢ (((3
∈ V ∧ 𝑛 ∈ V)
∧ (0 ∈ V ∧ 1 ∈ ℝ)) → (((3 ≠ 0 ∧ 3 ≠ 1)
∨ (𝑛 ≠ 0 ∧ 𝑛 ≠ 1)) → {3, 𝑛} ≠ {0, 1})) |
| 63 | 58, 61, 62 | mp2 9 |
. . . . . . . . . . . . . . 15
⊢ {3, 𝑛} ≠ {0, 1} |
| 64 | 63 | neii 2933 |
. . . . . . . . . . . . . 14
⊢ ¬
{3, 𝑛} = {0,
1} |
| 65 | 64 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (¬
{3, 𝑛} = {1, 2} →
¬ {3, 𝑛} = {0,
1}) |
| 66 | 56, 65 | 3bior2fd 1478 |
. . . . . . . . . . . 12
⊢ (¬
{3, 𝑛} = {1, 2} → ({3,
𝑛} = {2, 3} ↔ ({3,
𝑛} = {1, 2} ∨ {3, 𝑛} = {0, 1} ∨ {3, 𝑛} = {2, 3}))) |
| 67 | 55, 66 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ({3,
𝑛} = {2, 3} ↔ ({3,
𝑛} = {1, 2} ∨ {3, 𝑛} = {0, 1} ∨ {3, 𝑛} = {2, 3})) |
| 68 | | 3orcomb 1093 |
. . . . . . . . . . 11
⊢ (({3,
𝑛} = {1, 2} ∨ {3, 𝑛} = {0, 1} ∨ {3, 𝑛} = {2, 3}) ↔ ({3, 𝑛} = {1, 2} ∨ {3, 𝑛} = {2, 3} ∨ {3, 𝑛} = {0, 1})) |
| 69 | 67, 68 | bitri 275 |
. . . . . . . . . 10
⊢ ({3,
𝑛} = {2, 3} ↔ ({3,
𝑛} = {1, 2} ∨ {3, 𝑛} = {2, 3} ∨ {3, 𝑛} = {0, 1})) |
| 70 | | prcom 4714 |
. . . . . . . . . . . 12
⊢ {2, 3} =
{3, 2} |
| 71 | 70 | eqeq2i 2747 |
. . . . . . . . . . 11
⊢ ({3,
𝑛} = {2, 3} ↔ {3,
𝑛} = {3,
2}) |
| 72 | 29 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (2 ∈
V → 𝑛 ∈
V) |
| 73 | | elex 3485 |
. . . . . . . . . . . . 13
⊢ (2 ∈
V → 2 ∈ V) |
| 74 | 72, 73 | preq2b 4829 |
. . . . . . . . . . . 12
⊢ (2 ∈
V → ({3, 𝑛} = {3, 2}
↔ 𝑛 =
2)) |
| 75 | 16, 74 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ({3,
𝑛} = {3, 2} ↔ 𝑛 = 2) |
| 76 | 71, 75 | bitri 275 |
. . . . . . . . . 10
⊢ ({3,
𝑛} = {2, 3} ↔ 𝑛 = 2) |
| 77 | 41, 69, 76 | 3bitr2i 299 |
. . . . . . . . 9
⊢ (({3,
𝑛} = {0, 1} ∨ {3, 𝑛} = {1, 2} ∨ {3, 𝑛} = {2, 3}) ↔ 𝑛 = 2) |
| 78 | | 3orrot 1091 |
. . . . . . . . . 10
⊢ (({3,
𝑛} = {3, 4} ∨ {3, 𝑛} = {4, 5} ∨ {3, 𝑛} = {0, 5}) ↔ ({3, 𝑛} = {4, 5} ∨ {3, 𝑛} = {0, 5} ∨ {3, 𝑛} = {3, 4})) |
| 79 | | 5nn0 12530 |
. . . . . . . . . . . . . . 15
⊢ 5 ∈
ℕ0 |
| 80 | 21, 79 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ (4 ∈
ℕ0 ∧ 5 ∈ ℕ0) |
| 81 | 42, 80 | pm3.2i 470 |
. . . . . . . . . . . . 13
⊢ ((3
∈ V ∧ 𝑛 ∈ V)
∧ (4 ∈ ℕ0 ∧ 5 ∈
ℕ0)) |
| 82 | | 3re 12329 |
. . . . . . . . . . . . . . . 16
⊢ 3 ∈
ℝ |
| 83 | | 3lt4 12423 |
. . . . . . . . . . . . . . . 16
⊢ 3 <
4 |
| 84 | 82, 83 | ltneii 11357 |
. . . . . . . . . . . . . . 15
⊢ 3 ≠
4 |
| 85 | | 3lt5 12427 |
. . . . . . . . . . . . . . . 16
⊢ 3 <
5 |
| 86 | 82, 85 | ltneii 11357 |
. . . . . . . . . . . . . . 15
⊢ 3 ≠
5 |
| 87 | 84, 86 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ (3 ≠ 4
∧ 3 ≠ 5) |
| 88 | 87 | orci 865 |
. . . . . . . . . . . . 13
⊢ ((3 ≠
4 ∧ 3 ≠ 5) ∨ (𝑛
≠ 4 ∧ 𝑛 ≠
5)) |
| 89 | | prneimg 4836 |
. . . . . . . . . . . . 13
⊢ (((3
∈ V ∧ 𝑛 ∈ V)
∧ (4 ∈ ℕ0 ∧ 5 ∈ ℕ0)) →
(((3 ≠ 4 ∧ 3 ≠ 5) ∨ (𝑛 ≠ 4 ∧ 𝑛 ≠ 5)) → {3, 𝑛} ≠ {4, 5})) |
| 90 | 81, 88, 89 | mp2 9 |
. . . . . . . . . . . 12
⊢ {3, 𝑛} ≠ {4, 5} |
| 91 | 90 | neii 2933 |
. . . . . . . . . . 11
⊢ ¬
{3, 𝑛} = {4,
5} |
| 92 | | id 22 |
. . . . . . . . . . . 12
⊢ (¬
{3, 𝑛} = {4, 5} →
¬ {3, 𝑛} = {4,
5}) |
| 93 | 11, 79 | pm3.2i 470 |
. . . . . . . . . . . . . . . 16
⊢ (0 ∈
V ∧ 5 ∈ ℕ0) |
| 94 | 42, 93 | pm3.2i 470 |
. . . . . . . . . . . . . . 15
⊢ ((3
∈ V ∧ 𝑛 ∈ V)
∧ (0 ∈ V ∧ 5 ∈ ℕ0)) |
| 95 | 59, 86 | pm3.2i 470 |
. . . . . . . . . . . . . . . 16
⊢ (3 ≠ 0
∧ 3 ≠ 5) |
| 96 | 95 | orci 865 |
. . . . . . . . . . . . . . 15
⊢ ((3 ≠
0 ∧ 3 ≠ 5) ∨ (𝑛
≠ 0 ∧ 𝑛 ≠
5)) |
| 97 | | prneimg 4836 |
. . . . . . . . . . . . . . 15
⊢ (((3
∈ V ∧ 𝑛 ∈ V)
∧ (0 ∈ V ∧ 5 ∈ ℕ0)) → (((3 ≠ 0 ∧
3 ≠ 5) ∨ (𝑛 ≠ 0
∧ 𝑛 ≠ 5)) → {3,
𝑛} ≠ {0,
5})) |
| 98 | 94, 96, 97 | mp2 9 |
. . . . . . . . . . . . . 14
⊢ {3, 𝑛} ≠ {0, 5} |
| 99 | 98 | neii 2933 |
. . . . . . . . . . . . 13
⊢ ¬
{3, 𝑛} = {0,
5} |
| 100 | 99 | a1i 11 |
. . . . . . . . . . . 12
⊢ (¬
{3, 𝑛} = {4, 5} →
¬ {3, 𝑛} = {0,
5}) |
| 101 | 92, 100 | 3bior2fd 1478 |
. . . . . . . . . . 11
⊢ (¬
{3, 𝑛} = {4, 5} → ({3,
𝑛} = {3, 4} ↔ ({3,
𝑛} = {4, 5} ∨ {3, 𝑛} = {0, 5} ∨ {3, 𝑛} = {3, 4}))) |
| 102 | 91, 101 | ax-mp 5 |
. . . . . . . . . 10
⊢ ({3,
𝑛} = {3, 4} ↔ ({3,
𝑛} = {4, 5} ∨ {3, 𝑛} = {0, 5} ∨ {3, 𝑛} = {3, 4})) |
| 103 | 29 | a1i 11 |
. . . . . . . . . . . 12
⊢ (4 ∈
ℕ0 → 𝑛 ∈ V) |
| 104 | | elex 3485 |
. . . . . . . . . . . 12
⊢ (4 ∈
ℕ0 → 4 ∈ V) |
| 105 | 103, 104 | preq2b 4829 |
. . . . . . . . . . 11
⊢ (4 ∈
ℕ0 → ({3, 𝑛} = {3, 4} ↔ 𝑛 = 4)) |
| 106 | 21, 105 | ax-mp 5 |
. . . . . . . . . 10
⊢ ({3,
𝑛} = {3, 4} ↔ 𝑛 = 4) |
| 107 | 78, 102, 106 | 3bitr2i 299 |
. . . . . . . . 9
⊢ (({3,
𝑛} = {3, 4} ∨ {3, 𝑛} = {4, 5} ∨ {3, 𝑛} = {0, 5}) ↔ 𝑛 = 4) |
| 108 | 77, 107 | orbi12i 914 |
. . . . . . . 8
⊢ ((({3,
𝑛} = {0, 1} ∨ {3, 𝑛} = {1, 2} ∨ {3, 𝑛} = {2, 3}) ∨ ({3, 𝑛} = {3, 4} ∨ {3, 𝑛} = {4, 5} ∨ {3, 𝑛} = {0, 5})) ↔ (𝑛 = 2 ∨ 𝑛 = 4)) |
| 109 | 40, 108 | orbi12i 914 |
. . . . . . 7
⊢ (({3,
𝑛} = {0, 3} ∨ (({3,
𝑛} = {0, 1} ∨ {3, 𝑛} = {1, 2} ∨ {3, 𝑛} = {2, 3}) ∨ ({3, 𝑛} = {3, 4} ∨ {3, 𝑛} = {4, 5} ∨ {3, 𝑛} = {0, 5}))) ↔ (𝑛 = 0 ∨ (𝑛 = 2 ∨ 𝑛 = 4))) |
| 110 | 33, 109 | bitri 275 |
. . . . . 6
⊢ ({3,
𝑛} ∈ ({{0, 3}} ∪
({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ (𝑛 = 0 ∨ (𝑛 = 2 ∨ 𝑛 = 4))) |
| 111 | 28, 30, 110 | 3bitr4i 303 |
. . . . 5
⊢ (𝑛 ∈ {0, 2, 4} ↔ {3,
𝑛} ∈ ({{0, 3}} ∪
({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))) |
| 112 | 111 | a1i 11 |
. . . 4
⊢ (((0
∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 2 ∈ ({0, 1, 2} ∪ {3, 4, 5})
∧ 4 ∈ ({0, 1, 2} ∪ {3, 4, 5})) ∧ 𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5})) →
(𝑛 ∈ {0, 2, 4} ↔
{3, 𝑛} ∈ ({{0, 3}}
∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0,
5}})))) |
| 113 | 27, 112 | eqrrabd 4068 |
. . 3
⊢ ((0
∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 2 ∈ ({0, 1, 2} ∪ {3, 4, 5})
∧ 4 ∈ ({0, 1, 2} ∪ {3, 4, 5})) → {0, 2, 4} = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4,
5}) ∣ {3, 𝑛} ∈
({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0,
5}}))}) |
| 114 | 15, 20, 26, 113 | mp3an 1462 |
. 2
⊢ {0, 2, 4}
= {𝑛 ∈ ({0, 1, 2}
∪ {3, 4, 5}) ∣ {3, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))} |
| 115 | 10, 114 | eqtr4i 2760 |
1
⊢ (𝐺 NeighbVtx 3) = {0, 2,
4} |