Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  usgrexmpl2nb5 Structured version   Visualization version   GIF version

Theorem usgrexmpl2nb5 48011
Description: The neighborhood of the sixth vertex of graph 𝐺. (Contributed by AV, 10-Aug-2025.)
Hypotheses
Ref Expression
usgrexmpl2.v 𝑉 = (0...5)
usgrexmpl2.e 𝐸 = ⟨“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”⟩
usgrexmpl2.g 𝐺 = ⟨𝑉, 𝐸
Assertion
Ref Expression
usgrexmpl2nb5 (𝐺 NeighbVtx 5) = {0, 4}

Proof of Theorem usgrexmpl2nb5
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 5re 12233 . . . . . . 7 5 ∈ ℝ
21elexi 3461 . . . . . 6 5 ∈ V
32tpid3 4727 . . . . 5 5 ∈ {3, 4, 5}
43olci 866 . . . 4 (5 ∈ {0, 1, 2} ∨ 5 ∈ {3, 4, 5})
5 elun 4106 . . . 4 (5 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ↔ (5 ∈ {0, 1, 2} ∨ 5 ∈ {3, 4, 5}))
64, 5mpbir 231 . . 3 5 ∈ ({0, 1, 2} ∪ {3, 4, 5})
7 usgrexmpl2.v . . . 4 𝑉 = (0...5)
8 usgrexmpl2.e . . . 4 𝐸 = ⟨“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”⟩
9 usgrexmpl2.g . . . 4 𝐺 = ⟨𝑉, 𝐸
107, 8, 9usgrexmpl2nblem 48005 . . 3 (5 ∈ ({0, 1, 2} ∪ {3, 4, 5}) → (𝐺 NeighbVtx 5) = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∣ {5, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))})
116, 10ax-mp 5 . 2 (𝐺 NeighbVtx 5) = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∣ {5, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))}
12 c0ex 11128 . . . . . 6 0 ∈ V
1312tpid1 4722 . . . . 5 0 ∈ {0, 1, 2}
1413orci 865 . . . 4 (0 ∈ {0, 1, 2} ∨ 0 ∈ {3, 4, 5})
15 elun 4106 . . . 4 (0 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ↔ (0 ∈ {0, 1, 2} ∨ 0 ∈ {3, 4, 5}))
1614, 15mpbir 231 . . 3 0 ∈ ({0, 1, 2} ∪ {3, 4, 5})
17 4re 12230 . . . . . . 7 4 ∈ ℝ
1817elexi 3461 . . . . . 6 4 ∈ V
1918tpid2 4724 . . . . 5 4 ∈ {3, 4, 5}
2019olci 866 . . . 4 (4 ∈ {0, 1, 2} ∨ 4 ∈ {3, 4, 5})
21 elun 4106 . . . 4 (4 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ↔ (4 ∈ {0, 1, 2} ∨ 4 ∈ {3, 4, 5}))
2220, 21mpbir 231 . . 3 4 ∈ ({0, 1, 2} ∪ {3, 4, 5})
23 prssi 4775 . . . . 5 ((0 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 4 ∈ ({0, 1, 2} ∪ {3, 4, 5})) → {0, 4} ⊆ ({0, 1, 2} ∪ {3, 4, 5}))
24 vex 3442 . . . . . . . . . . . . . . 15 𝑛 ∈ V
251, 24pm3.2i 470 . . . . . . . . . . . . . 14 (5 ∈ ℝ ∧ 𝑛 ∈ V)
26 3re 12226 . . . . . . . . . . . . . . 15 3 ∈ ℝ
2726, 17pm3.2i 470 . . . . . . . . . . . . . 14 (3 ∈ ℝ ∧ 4 ∈ ℝ)
2825, 27pm3.2i 470 . . . . . . . . . . . . 13 ((5 ∈ ℝ ∧ 𝑛 ∈ V) ∧ (3 ∈ ℝ ∧ 4 ∈ ℝ))
29 3lt5 12319 . . . . . . . . . . . . . . . 16 3 < 5
3026, 29gtneii 11246 . . . . . . . . . . . . . . 15 5 ≠ 3
31 4lt5 12318 . . . . . . . . . . . . . . . 16 4 < 5
3217, 31gtneii 11246 . . . . . . . . . . . . . . 15 5 ≠ 4
3330, 32pm3.2i 470 . . . . . . . . . . . . . 14 (5 ≠ 3 ∧ 5 ≠ 4)
3433orci 865 . . . . . . . . . . . . 13 ((5 ≠ 3 ∧ 5 ≠ 4) ∨ (𝑛 ≠ 3 ∧ 𝑛 ≠ 4))
35 prneimg 4808 . . . . . . . . . . . . 13 (((5 ∈ ℝ ∧ 𝑛 ∈ V) ∧ (3 ∈ ℝ ∧ 4 ∈ ℝ)) → (((5 ≠ 3 ∧ 5 ≠ 4) ∨ (𝑛 ≠ 3 ∧ 𝑛 ≠ 4)) → {5, 𝑛} ≠ {3, 4}))
3628, 34, 35mp2 9 . . . . . . . . . . . 12 {5, 𝑛} ≠ {3, 4}
3736neii 2927 . . . . . . . . . . 11 ¬ {5, 𝑛} = {3, 4}
3837biorfi 938 . . . . . . . . . 10 (({5, 𝑛} = {4, 5} ∨ {5, 𝑛} = {0, 5}) ↔ ({5, 𝑛} = {3, 4} ∨ ({5, 𝑛} = {4, 5} ∨ {5, 𝑛} = {0, 5})))
39 orcom 870 . . . . . . . . . . 11 ((𝑛 = 0 ∨ 𝑛 = 4) ↔ (𝑛 = 4 ∨ 𝑛 = 0))
40 prcom 4686 . . . . . . . . . . . . . 14 {4, 5} = {5, 4}
4140eqeq2i 2742 . . . . . . . . . . . . 13 ({5, 𝑛} = {4, 5} ↔ {5, 𝑛} = {5, 4})
4224a1i 11 . . . . . . . . . . . . . . 15 (4 ∈ ℝ → 𝑛 ∈ V)
43 id 22 . . . . . . . . . . . . . . 15 (4 ∈ ℝ → 4 ∈ ℝ)
4442, 43preq2b 4801 . . . . . . . . . . . . . 14 (4 ∈ ℝ → ({5, 𝑛} = {5, 4} ↔ 𝑛 = 4))
4517, 44ax-mp 5 . . . . . . . . . . . . 13 ({5, 𝑛} = {5, 4} ↔ 𝑛 = 4)
4641, 45bitr2i 276 . . . . . . . . . . . 12 (𝑛 = 4 ↔ {5, 𝑛} = {4, 5})
47 prcom 4686 . . . . . . . . . . . . . 14 {0, 5} = {5, 0}
4847eqeq2i 2742 . . . . . . . . . . . . 13 ({5, 𝑛} = {0, 5} ↔ {5, 𝑛} = {5, 0})
4924a1i 11 . . . . . . . . . . . . . . 15 (0 ∈ V → 𝑛 ∈ V)
50 id 22 . . . . . . . . . . . . . . 15 (0 ∈ V → 0 ∈ V)
5149, 50preq2b 4801 . . . . . . . . . . . . . 14 (0 ∈ V → ({5, 𝑛} = {5, 0} ↔ 𝑛 = 0))
5212, 51ax-mp 5 . . . . . . . . . . . . 13 ({5, 𝑛} = {5, 0} ↔ 𝑛 = 0)
5348, 52bitr2i 276 . . . . . . . . . . . 12 (𝑛 = 0 ↔ {5, 𝑛} = {0, 5})
5446, 53orbi12i 914 . . . . . . . . . . 11 ((𝑛 = 4 ∨ 𝑛 = 0) ↔ ({5, 𝑛} = {4, 5} ∨ {5, 𝑛} = {0, 5}))
5539, 54bitri 275 . . . . . . . . . 10 ((𝑛 = 0 ∨ 𝑛 = 4) ↔ ({5, 𝑛} = {4, 5} ∨ {5, 𝑛} = {0, 5}))
56 3orass 1089 . . . . . . . . . 10 (({5, 𝑛} = {3, 4} ∨ {5, 𝑛} = {4, 5} ∨ {5, 𝑛} = {0, 5}) ↔ ({5, 𝑛} = {3, 4} ∨ ({5, 𝑛} = {4, 5} ∨ {5, 𝑛} = {0, 5})))
5738, 55, 563bitr4i 303 . . . . . . . . 9 ((𝑛 = 0 ∨ 𝑛 = 4) ↔ ({5, 𝑛} = {3, 4} ∨ {5, 𝑛} = {4, 5} ∨ {5, 𝑛} = {0, 5}))
58 0re 11136 . . . . . . . . . . . . . . 15 0 ∈ ℝ
59 1re 11134 . . . . . . . . . . . . . . 15 1 ∈ ℝ
6058, 59pm3.2i 470 . . . . . . . . . . . . . 14 (0 ∈ ℝ ∧ 1 ∈ ℝ)
6125, 60pm3.2i 470 . . . . . . . . . . . . 13 ((5 ∈ ℝ ∧ 𝑛 ∈ V) ∧ (0 ∈ ℝ ∧ 1 ∈ ℝ))
62 5pos 12255 . . . . . . . . . . . . . . . 16 0 < 5
6358, 62gtneii 11246 . . . . . . . . . . . . . . 15 5 ≠ 0
64 1lt5 12321 . . . . . . . . . . . . . . . 16 1 < 5
6559, 64gtneii 11246 . . . . . . . . . . . . . . 15 5 ≠ 1
6663, 65pm3.2i 470 . . . . . . . . . . . . . 14 (5 ≠ 0 ∧ 5 ≠ 1)
6766orci 865 . . . . . . . . . . . . 13 ((5 ≠ 0 ∧ 5 ≠ 1) ∨ (𝑛 ≠ 0 ∧ 𝑛 ≠ 1))
68 prneimg 4808 . . . . . . . . . . . . 13 (((5 ∈ ℝ ∧ 𝑛 ∈ V) ∧ (0 ∈ ℝ ∧ 1 ∈ ℝ)) → (((5 ≠ 0 ∧ 5 ≠ 1) ∨ (𝑛 ≠ 0 ∧ 𝑛 ≠ 1)) → {5, 𝑛} ≠ {0, 1}))
6961, 67, 68mp2 9 . . . . . . . . . . . 12 {5, 𝑛} ≠ {0, 1}
7069neii 2927 . . . . . . . . . . 11 ¬ {5, 𝑛} = {0, 1}
71 2re 12220 . . . . . . . . . . . . . . 15 2 ∈ ℝ
7259, 71pm3.2i 470 . . . . . . . . . . . . . 14 (1 ∈ ℝ ∧ 2 ∈ ℝ)
7325, 72pm3.2i 470 . . . . . . . . . . . . 13 ((5 ∈ ℝ ∧ 𝑛 ∈ V) ∧ (1 ∈ ℝ ∧ 2 ∈ ℝ))
74 2lt5 12320 . . . . . . . . . . . . . . . 16 2 < 5
7571, 74gtneii 11246 . . . . . . . . . . . . . . 15 5 ≠ 2
7665, 75pm3.2i 470 . . . . . . . . . . . . . 14 (5 ≠ 1 ∧ 5 ≠ 2)
7776orci 865 . . . . . . . . . . . . 13 ((5 ≠ 1 ∧ 5 ≠ 2) ∨ (𝑛 ≠ 1 ∧ 𝑛 ≠ 2))
78 prneimg 4808 . . . . . . . . . . . . 13 (((5 ∈ ℝ ∧ 𝑛 ∈ V) ∧ (1 ∈ ℝ ∧ 2 ∈ ℝ)) → (((5 ≠ 1 ∧ 5 ≠ 2) ∨ (𝑛 ≠ 1 ∧ 𝑛 ≠ 2)) → {5, 𝑛} ≠ {1, 2}))
7973, 77, 78mp2 9 . . . . . . . . . . . 12 {5, 𝑛} ≠ {1, 2}
8079neii 2927 . . . . . . . . . . 11 ¬ {5, 𝑛} = {1, 2}
8171, 26pm3.2i 470 . . . . . . . . . . . . . 14 (2 ∈ ℝ ∧ 3 ∈ ℝ)
8225, 81pm3.2i 470 . . . . . . . . . . . . 13 ((5 ∈ ℝ ∧ 𝑛 ∈ V) ∧ (2 ∈ ℝ ∧ 3 ∈ ℝ))
8375, 30pm3.2i 470 . . . . . . . . . . . . . 14 (5 ≠ 2 ∧ 5 ≠ 3)
8483orci 865 . . . . . . . . . . . . 13 ((5 ≠ 2 ∧ 5 ≠ 3) ∨ (𝑛 ≠ 2 ∧ 𝑛 ≠ 3))
85 prneimg 4808 . . . . . . . . . . . . 13 (((5 ∈ ℝ ∧ 𝑛 ∈ V) ∧ (2 ∈ ℝ ∧ 3 ∈ ℝ)) → (((5 ≠ 2 ∧ 5 ≠ 3) ∨ (𝑛 ≠ 2 ∧ 𝑛 ≠ 3)) → {5, 𝑛} ≠ {2, 3}))
8682, 84, 85mp2 9 . . . . . . . . . . . 12 {5, 𝑛} ≠ {2, 3}
8786neii 2927 . . . . . . . . . . 11 ¬ {5, 𝑛} = {2, 3}
8870, 80, 873pm3.2ni 1490 . . . . . . . . . 10 ¬ ({5, 𝑛} = {0, 1} ∨ {5, 𝑛} = {1, 2} ∨ {5, 𝑛} = {2, 3})
8988biorfi 938 . . . . . . . . 9 (({5, 𝑛} = {3, 4} ∨ {5, 𝑛} = {4, 5} ∨ {5, 𝑛} = {0, 5}) ↔ (({5, 𝑛} = {0, 1} ∨ {5, 𝑛} = {1, 2} ∨ {5, 𝑛} = {2, 3}) ∨ ({5, 𝑛} = {3, 4} ∨ {5, 𝑛} = {4, 5} ∨ {5, 𝑛} = {0, 5})))
9057, 89bitri 275 . . . . . . . 8 ((𝑛 = 0 ∨ 𝑛 = 4) ↔ (({5, 𝑛} = {0, 1} ∨ {5, 𝑛} = {1, 2} ∨ {5, 𝑛} = {2, 3}) ∨ ({5, 𝑛} = {3, 4} ∨ {5, 𝑛} = {4, 5} ∨ {5, 𝑛} = {0, 5})))
9158, 26pm3.2i 470 . . . . . . . . . . . 12 (0 ∈ ℝ ∧ 3 ∈ ℝ)
9225, 91pm3.2i 470 . . . . . . . . . . 11 ((5 ∈ ℝ ∧ 𝑛 ∈ V) ∧ (0 ∈ ℝ ∧ 3 ∈ ℝ))
9363, 30pm3.2i 470 . . . . . . . . . . . 12 (5 ≠ 0 ∧ 5 ≠ 3)
9493orci 865 . . . . . . . . . . 11 ((5 ≠ 0 ∧ 5 ≠ 3) ∨ (𝑛 ≠ 0 ∧ 𝑛 ≠ 3))
95 prneimg 4808 . . . . . . . . . . 11 (((5 ∈ ℝ ∧ 𝑛 ∈ V) ∧ (0 ∈ ℝ ∧ 3 ∈ ℝ)) → (((5 ≠ 0 ∧ 5 ≠ 3) ∨ (𝑛 ≠ 0 ∧ 𝑛 ≠ 3)) → {5, 𝑛} ≠ {0, 3}))
9692, 94, 95mp2 9 . . . . . . . . . 10 {5, 𝑛} ≠ {0, 3}
9796neii 2927 . . . . . . . . 9 ¬ {5, 𝑛} = {0, 3}
9897biorfi 938 . . . . . . . 8 ((({5, 𝑛} = {0, 1} ∨ {5, 𝑛} = {1, 2} ∨ {5, 𝑛} = {2, 3}) ∨ ({5, 𝑛} = {3, 4} ∨ {5, 𝑛} = {4, 5} ∨ {5, 𝑛} = {0, 5})) ↔ ({5, 𝑛} = {0, 3} ∨ (({5, 𝑛} = {0, 1} ∨ {5, 𝑛} = {1, 2} ∨ {5, 𝑛} = {2, 3}) ∨ ({5, 𝑛} = {3, 4} ∨ {5, 𝑛} = {4, 5} ∨ {5, 𝑛} = {0, 5}))))
9990, 98bitri 275 . . . . . . 7 ((𝑛 = 0 ∨ 𝑛 = 4) ↔ ({5, 𝑛} = {0, 3} ∨ (({5, 𝑛} = {0, 1} ∨ {5, 𝑛} = {1, 2} ∨ {5, 𝑛} = {2, 3}) ∨ ({5, 𝑛} = {3, 4} ∨ {5, 𝑛} = {4, 5} ∨ {5, 𝑛} = {0, 5}))))
10024elpr 4604 . . . . . . 7 (𝑛 ∈ {0, 4} ↔ (𝑛 = 0 ∨ 𝑛 = 4))
101 prex 5379 . . . . . . . 8 {5, 𝑛} ∈ V
102 el7g 4644 . . . . . . . 8 ({5, 𝑛} ∈ V → ({5, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ ({5, 𝑛} = {0, 3} ∨ (({5, 𝑛} = {0, 1} ∨ {5, 𝑛} = {1, 2} ∨ {5, 𝑛} = {2, 3}) ∨ ({5, 𝑛} = {3, 4} ∨ {5, 𝑛} = {4, 5} ∨ {5, 𝑛} = {0, 5})))))
103101, 102ax-mp 5 . . . . . . 7 ({5, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ ({5, 𝑛} = {0, 3} ∨ (({5, 𝑛} = {0, 1} ∨ {5, 𝑛} = {1, 2} ∨ {5, 𝑛} = {2, 3}) ∨ ({5, 𝑛} = {3, 4} ∨ {5, 𝑛} = {4, 5} ∨ {5, 𝑛} = {0, 5}))))
10499, 100, 1033bitr4i 303 . . . . . 6 (𝑛 ∈ {0, 4} ↔ {5, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})))
105104a1i 11 . . . . 5 (((0 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 4 ∈ ({0, 1, 2} ∪ {3, 4, 5})) ∧ 𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5})) → (𝑛 ∈ {0, 4} ↔ {5, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))))
10623, 105eqrrabd 4039 . . . 4 ((0 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 4 ∈ ({0, 1, 2} ∪ {3, 4, 5})) → {0, 4} = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∣ {5, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))})
107106eqcomd 2735 . . 3 ((0 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 4 ∈ ({0, 1, 2} ∪ {3, 4, 5})) → {𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∣ {5, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))} = {0, 4})
10816, 22, 107mp2an 692 . 2 {𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∣ {5, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))} = {0, 4}
10911, 108eqtri 2752 1 (𝐺 NeighbVtx 5) = {0, 4}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109  wne 2925  {crab 3396  Vcvv 3438  cun 3903  {csn 4579  {cpr 4581  {ctp 4583  cop 4585  (class class class)co 7353  cr 11027  0cc0 11028  1c1 11029  2c2 12201  3c3 12202  4c4 12203  5c5 12204  ...cfz 13428  ⟨“cs7 14771   NeighbVtx cnbgr 29295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-concat 14496  df-s1 14521  df-s2 14773  df-s3 14774  df-s4 14775  df-s5 14776  df-s6 14777  df-s7 14778  df-vtx 28961  df-iedg 28962  df-edg 29011  df-upgr 29045  df-umgr 29046  df-usgr 29114  df-nbgr 29296
This theorem is referenced by:  usgrexmpl2trifr  48012
  Copyright terms: Public domain W3C validator