| Step | Hyp | Ref
| Expression |
| 1 | | 5re 12336 |
. . . . . . 7
⊢ 5 ∈
ℝ |
| 2 | 1 | elexi 3487 |
. . . . . 6
⊢ 5 ∈
V |
| 3 | 2 | tpid3 4755 |
. . . . 5
⊢ 5 ∈
{3, 4, 5} |
| 4 | 3 | olci 866 |
. . . 4
⊢ (5 ∈
{0, 1, 2} ∨ 5 ∈ {3, 4, 5}) |
| 5 | | elun 4135 |
. . . 4
⊢ (5 ∈
({0, 1, 2} ∪ {3, 4, 5}) ↔ (5 ∈ {0, 1, 2} ∨ 5 ∈ {3, 4,
5})) |
| 6 | 4, 5 | mpbir 231 |
. . 3
⊢ 5 ∈
({0, 1, 2} ∪ {3, 4, 5}) |
| 7 | | usgrexmpl2.v |
. . . 4
⊢ 𝑉 = (0...5) |
| 8 | | usgrexmpl2.e |
. . . 4
⊢ 𝐸 = 〈“{0, 1} {1, 2}
{2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 |
| 9 | | usgrexmpl2.g |
. . . 4
⊢ 𝐺 = 〈𝑉, 𝐸〉 |
| 10 | 7, 8, 9 | usgrexmpl2nblem 47935 |
. . 3
⊢ (5 ∈
({0, 1, 2} ∪ {3, 4, 5}) → (𝐺 NeighbVtx 5) = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∣
{5, 𝑛} ∈ ({{0, 3}}
∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0,
5}}))}) |
| 11 | 6, 10 | ax-mp 5 |
. 2
⊢ (𝐺 NeighbVtx 5) = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4,
5}) ∣ {5, 𝑛} ∈
({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0,
5}}))} |
| 12 | | c0ex 11238 |
. . . . . 6
⊢ 0 ∈
V |
| 13 | 12 | tpid1 4750 |
. . . . 5
⊢ 0 ∈
{0, 1, 2} |
| 14 | 13 | orci 865 |
. . . 4
⊢ (0 ∈
{0, 1, 2} ∨ 0 ∈ {3, 4, 5}) |
| 15 | | elun 4135 |
. . . 4
⊢ (0 ∈
({0, 1, 2} ∪ {3, 4, 5}) ↔ (0 ∈ {0, 1, 2} ∨ 0 ∈ {3, 4,
5})) |
| 16 | 14, 15 | mpbir 231 |
. . 3
⊢ 0 ∈
({0, 1, 2} ∪ {3, 4, 5}) |
| 17 | | 4re 12333 |
. . . . . . 7
⊢ 4 ∈
ℝ |
| 18 | 17 | elexi 3487 |
. . . . . 6
⊢ 4 ∈
V |
| 19 | 18 | tpid2 4752 |
. . . . 5
⊢ 4 ∈
{3, 4, 5} |
| 20 | 19 | olci 866 |
. . . 4
⊢ (4 ∈
{0, 1, 2} ∨ 4 ∈ {3, 4, 5}) |
| 21 | | elun 4135 |
. . . 4
⊢ (4 ∈
({0, 1, 2} ∪ {3, 4, 5}) ↔ (4 ∈ {0, 1, 2} ∨ 4 ∈ {3, 4,
5})) |
| 22 | 20, 21 | mpbir 231 |
. . 3
⊢ 4 ∈
({0, 1, 2} ∪ {3, 4, 5}) |
| 23 | | prssi 4803 |
. . . . 5
⊢ ((0
∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 4 ∈ ({0, 1, 2} ∪ {3, 4, 5}))
→ {0, 4} ⊆ ({0, 1, 2} ∪ {3, 4, 5})) |
| 24 | | vex 3468 |
. . . . . . . . . . . . . . 15
⊢ 𝑛 ∈ V |
| 25 | 1, 24 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ (5 ∈
ℝ ∧ 𝑛 ∈
V) |
| 26 | | 3re 12329 |
. . . . . . . . . . . . . . 15
⊢ 3 ∈
ℝ |
| 27 | 26, 17 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ (3 ∈
ℝ ∧ 4 ∈ ℝ) |
| 28 | 25, 27 | pm3.2i 470 |
. . . . . . . . . . . . 13
⊢ ((5
∈ ℝ ∧ 𝑛
∈ V) ∧ (3 ∈ ℝ ∧ 4 ∈ ℝ)) |
| 29 | | 3lt5 12427 |
. . . . . . . . . . . . . . . 16
⊢ 3 <
5 |
| 30 | 26, 29 | gtneii 11356 |
. . . . . . . . . . . . . . 15
⊢ 5 ≠
3 |
| 31 | | 4lt5 12426 |
. . . . . . . . . . . . . . . 16
⊢ 4 <
5 |
| 32 | 17, 31 | gtneii 11356 |
. . . . . . . . . . . . . . 15
⊢ 5 ≠
4 |
| 33 | 30, 32 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ (5 ≠ 3
∧ 5 ≠ 4) |
| 34 | 33 | orci 865 |
. . . . . . . . . . . . 13
⊢ ((5 ≠
3 ∧ 5 ≠ 4) ∨ (𝑛
≠ 3 ∧ 𝑛 ≠
4)) |
| 35 | | prneimg 4836 |
. . . . . . . . . . . . 13
⊢ (((5
∈ ℝ ∧ 𝑛
∈ V) ∧ (3 ∈ ℝ ∧ 4 ∈ ℝ)) → (((5 ≠ 3
∧ 5 ≠ 4) ∨ (𝑛
≠ 3 ∧ 𝑛 ≠ 4))
→ {5, 𝑛} ≠ {3,
4})) |
| 36 | 28, 34, 35 | mp2 9 |
. . . . . . . . . . . 12
⊢ {5, 𝑛} ≠ {3, 4} |
| 37 | 36 | neii 2933 |
. . . . . . . . . . 11
⊢ ¬
{5, 𝑛} = {3,
4} |
| 38 | 37 | biorfi 938 |
. . . . . . . . . 10
⊢ (({5,
𝑛} = {4, 5} ∨ {5, 𝑛} = {0, 5}) ↔ ({5, 𝑛} = {3, 4} ∨ ({5, 𝑛} = {4, 5} ∨ {5, 𝑛} = {0, 5}))) |
| 39 | | orcom 870 |
. . . . . . . . . . 11
⊢ ((𝑛 = 0 ∨ 𝑛 = 4) ↔ (𝑛 = 4 ∨ 𝑛 = 0)) |
| 40 | | prcom 4714 |
. . . . . . . . . . . . . 14
⊢ {4, 5} =
{5, 4} |
| 41 | 40 | eqeq2i 2747 |
. . . . . . . . . . . . 13
⊢ ({5,
𝑛} = {4, 5} ↔ {5,
𝑛} = {5,
4}) |
| 42 | 24 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (4 ∈
ℝ → 𝑛 ∈
V) |
| 43 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (4 ∈
ℝ → 4 ∈ ℝ) |
| 44 | 42, 43 | preq2b 4829 |
. . . . . . . . . . . . . 14
⊢ (4 ∈
ℝ → ({5, 𝑛} =
{5, 4} ↔ 𝑛 =
4)) |
| 45 | 17, 44 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ ({5,
𝑛} = {5, 4} ↔ 𝑛 = 4) |
| 46 | 41, 45 | bitr2i 276 |
. . . . . . . . . . . 12
⊢ (𝑛 = 4 ↔ {5, 𝑛} = {4, 5}) |
| 47 | | prcom 4714 |
. . . . . . . . . . . . . 14
⊢ {0, 5} =
{5, 0} |
| 48 | 47 | eqeq2i 2747 |
. . . . . . . . . . . . 13
⊢ ({5,
𝑛} = {0, 5} ↔ {5,
𝑛} = {5,
0}) |
| 49 | 24 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (0 ∈
V → 𝑛 ∈
V) |
| 50 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (0 ∈
V → 0 ∈ V) |
| 51 | 49, 50 | preq2b 4829 |
. . . . . . . . . . . . . 14
⊢ (0 ∈
V → ({5, 𝑛} = {5, 0}
↔ 𝑛 =
0)) |
| 52 | 12, 51 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ ({5,
𝑛} = {5, 0} ↔ 𝑛 = 0) |
| 53 | 48, 52 | bitr2i 276 |
. . . . . . . . . . . 12
⊢ (𝑛 = 0 ↔ {5, 𝑛} = {0, 5}) |
| 54 | 46, 53 | orbi12i 914 |
. . . . . . . . . . 11
⊢ ((𝑛 = 4 ∨ 𝑛 = 0) ↔ ({5, 𝑛} = {4, 5} ∨ {5, 𝑛} = {0, 5})) |
| 55 | 39, 54 | bitri 275 |
. . . . . . . . . 10
⊢ ((𝑛 = 0 ∨ 𝑛 = 4) ↔ ({5, 𝑛} = {4, 5} ∨ {5, 𝑛} = {0, 5})) |
| 56 | | 3orass 1089 |
. . . . . . . . . 10
⊢ (({5,
𝑛} = {3, 4} ∨ {5, 𝑛} = {4, 5} ∨ {5, 𝑛} = {0, 5}) ↔ ({5, 𝑛} = {3, 4} ∨ ({5, 𝑛} = {4, 5} ∨ {5, 𝑛} = {0, 5}))) |
| 57 | 38, 55, 56 | 3bitr4i 303 |
. . . . . . . . 9
⊢ ((𝑛 = 0 ∨ 𝑛 = 4) ↔ ({5, 𝑛} = {3, 4} ∨ {5, 𝑛} = {4, 5} ∨ {5, 𝑛} = {0, 5})) |
| 58 | | 0re 11246 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
ℝ |
| 59 | | 1re 11244 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℝ |
| 60 | 58, 59 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ (0 ∈
ℝ ∧ 1 ∈ ℝ) |
| 61 | 25, 60 | pm3.2i 470 |
. . . . . . . . . . . . 13
⊢ ((5
∈ ℝ ∧ 𝑛
∈ V) ∧ (0 ∈ ℝ ∧ 1 ∈ ℝ)) |
| 62 | | 5pos 12358 |
. . . . . . . . . . . . . . . 16
⊢ 0 <
5 |
| 63 | 58, 62 | gtneii 11356 |
. . . . . . . . . . . . . . 15
⊢ 5 ≠
0 |
| 64 | | 1lt5 12429 |
. . . . . . . . . . . . . . . 16
⊢ 1 <
5 |
| 65 | 59, 64 | gtneii 11356 |
. . . . . . . . . . . . . . 15
⊢ 5 ≠
1 |
| 66 | 63, 65 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ (5 ≠ 0
∧ 5 ≠ 1) |
| 67 | 66 | orci 865 |
. . . . . . . . . . . . 13
⊢ ((5 ≠
0 ∧ 5 ≠ 1) ∨ (𝑛
≠ 0 ∧ 𝑛 ≠
1)) |
| 68 | | prneimg 4836 |
. . . . . . . . . . . . 13
⊢ (((5
∈ ℝ ∧ 𝑛
∈ V) ∧ (0 ∈ ℝ ∧ 1 ∈ ℝ)) → (((5 ≠ 0
∧ 5 ≠ 1) ∨ (𝑛
≠ 0 ∧ 𝑛 ≠ 1))
→ {5, 𝑛} ≠ {0,
1})) |
| 69 | 61, 67, 68 | mp2 9 |
. . . . . . . . . . . 12
⊢ {5, 𝑛} ≠ {0, 1} |
| 70 | 69 | neii 2933 |
. . . . . . . . . . 11
⊢ ¬
{5, 𝑛} = {0,
1} |
| 71 | | 2re 12323 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℝ |
| 72 | 59, 71 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ (1 ∈
ℝ ∧ 2 ∈ ℝ) |
| 73 | 25, 72 | pm3.2i 470 |
. . . . . . . . . . . . 13
⊢ ((5
∈ ℝ ∧ 𝑛
∈ V) ∧ (1 ∈ ℝ ∧ 2 ∈ ℝ)) |
| 74 | | 2lt5 12428 |
. . . . . . . . . . . . . . . 16
⊢ 2 <
5 |
| 75 | 71, 74 | gtneii 11356 |
. . . . . . . . . . . . . . 15
⊢ 5 ≠
2 |
| 76 | 65, 75 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ (5 ≠ 1
∧ 5 ≠ 2) |
| 77 | 76 | orci 865 |
. . . . . . . . . . . . 13
⊢ ((5 ≠
1 ∧ 5 ≠ 2) ∨ (𝑛
≠ 1 ∧ 𝑛 ≠
2)) |
| 78 | | prneimg 4836 |
. . . . . . . . . . . . 13
⊢ (((5
∈ ℝ ∧ 𝑛
∈ V) ∧ (1 ∈ ℝ ∧ 2 ∈ ℝ)) → (((5 ≠ 1
∧ 5 ≠ 2) ∨ (𝑛
≠ 1 ∧ 𝑛 ≠ 2))
→ {5, 𝑛} ≠ {1,
2})) |
| 79 | 73, 77, 78 | mp2 9 |
. . . . . . . . . . . 12
⊢ {5, 𝑛} ≠ {1, 2} |
| 80 | 79 | neii 2933 |
. . . . . . . . . . 11
⊢ ¬
{5, 𝑛} = {1,
2} |
| 81 | 71, 26 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ (2 ∈
ℝ ∧ 3 ∈ ℝ) |
| 82 | 25, 81 | pm3.2i 470 |
. . . . . . . . . . . . 13
⊢ ((5
∈ ℝ ∧ 𝑛
∈ V) ∧ (2 ∈ ℝ ∧ 3 ∈ ℝ)) |
| 83 | 75, 30 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ (5 ≠ 2
∧ 5 ≠ 3) |
| 84 | 83 | orci 865 |
. . . . . . . . . . . . 13
⊢ ((5 ≠
2 ∧ 5 ≠ 3) ∨ (𝑛
≠ 2 ∧ 𝑛 ≠
3)) |
| 85 | | prneimg 4836 |
. . . . . . . . . . . . 13
⊢ (((5
∈ ℝ ∧ 𝑛
∈ V) ∧ (2 ∈ ℝ ∧ 3 ∈ ℝ)) → (((5 ≠ 2
∧ 5 ≠ 3) ∨ (𝑛
≠ 2 ∧ 𝑛 ≠ 3))
→ {5, 𝑛} ≠ {2,
3})) |
| 86 | 82, 84, 85 | mp2 9 |
. . . . . . . . . . . 12
⊢ {5, 𝑛} ≠ {2, 3} |
| 87 | 86 | neii 2933 |
. . . . . . . . . . 11
⊢ ¬
{5, 𝑛} = {2,
3} |
| 88 | 70, 80, 87 | 3pm3.2ni 1489 |
. . . . . . . . . 10
⊢ ¬
({5, 𝑛} = {0, 1} ∨ {5,
𝑛} = {1, 2} ∨ {5, 𝑛} = {2, 3}) |
| 89 | 88 | biorfi 938 |
. . . . . . . . 9
⊢ (({5,
𝑛} = {3, 4} ∨ {5, 𝑛} = {4, 5} ∨ {5, 𝑛} = {0, 5}) ↔ (({5, 𝑛} = {0, 1} ∨ {5, 𝑛} = {1, 2} ∨ {5, 𝑛} = {2, 3}) ∨ ({5, 𝑛} = {3, 4} ∨ {5, 𝑛} = {4, 5} ∨ {5, 𝑛} = {0, 5}))) |
| 90 | 57, 89 | bitri 275 |
. . . . . . . 8
⊢ ((𝑛 = 0 ∨ 𝑛 = 4) ↔ (({5, 𝑛} = {0, 1} ∨ {5, 𝑛} = {1, 2} ∨ {5, 𝑛} = {2, 3}) ∨ ({5, 𝑛} = {3, 4} ∨ {5, 𝑛} = {4, 5} ∨ {5, 𝑛} = {0, 5}))) |
| 91 | 58, 26 | pm3.2i 470 |
. . . . . . . . . . . 12
⊢ (0 ∈
ℝ ∧ 3 ∈ ℝ) |
| 92 | 25, 91 | pm3.2i 470 |
. . . . . . . . . . 11
⊢ ((5
∈ ℝ ∧ 𝑛
∈ V) ∧ (0 ∈ ℝ ∧ 3 ∈ ℝ)) |
| 93 | 63, 30 | pm3.2i 470 |
. . . . . . . . . . . 12
⊢ (5 ≠ 0
∧ 5 ≠ 3) |
| 94 | 93 | orci 865 |
. . . . . . . . . . 11
⊢ ((5 ≠
0 ∧ 5 ≠ 3) ∨ (𝑛
≠ 0 ∧ 𝑛 ≠
3)) |
| 95 | | prneimg 4836 |
. . . . . . . . . . 11
⊢ (((5
∈ ℝ ∧ 𝑛
∈ V) ∧ (0 ∈ ℝ ∧ 3 ∈ ℝ)) → (((5 ≠ 0
∧ 5 ≠ 3) ∨ (𝑛
≠ 0 ∧ 𝑛 ≠ 3))
→ {5, 𝑛} ≠ {0,
3})) |
| 96 | 92, 94, 95 | mp2 9 |
. . . . . . . . . 10
⊢ {5, 𝑛} ≠ {0, 3} |
| 97 | 96 | neii 2933 |
. . . . . . . . 9
⊢ ¬
{5, 𝑛} = {0,
3} |
| 98 | 97 | biorfi 938 |
. . . . . . . 8
⊢ ((({5,
𝑛} = {0, 1} ∨ {5, 𝑛} = {1, 2} ∨ {5, 𝑛} = {2, 3}) ∨ ({5, 𝑛} = {3, 4} ∨ {5, 𝑛} = {4, 5} ∨ {5, 𝑛} = {0, 5})) ↔ ({5, 𝑛} = {0, 3} ∨ (({5, 𝑛} = {0, 1} ∨ {5, 𝑛} = {1, 2} ∨ {5, 𝑛} = {2, 3}) ∨ ({5, 𝑛} = {3, 4} ∨ {5, 𝑛} = {4, 5} ∨ {5, 𝑛} = {0, 5})))) |
| 99 | 90, 98 | bitri 275 |
. . . . . . 7
⊢ ((𝑛 = 0 ∨ 𝑛 = 4) ↔ ({5, 𝑛} = {0, 3} ∨ (({5, 𝑛} = {0, 1} ∨ {5, 𝑛} = {1, 2} ∨ {5, 𝑛} = {2, 3}) ∨ ({5, 𝑛} = {3, 4} ∨ {5, 𝑛} = {4, 5} ∨ {5, 𝑛} = {0, 5})))) |
| 100 | 24 | elpr 4632 |
. . . . . . 7
⊢ (𝑛 ∈ {0, 4} ↔ (𝑛 = 0 ∨ 𝑛 = 4)) |
| 101 | | prex 5419 |
. . . . . . . 8
⊢ {5, 𝑛} ∈ V |
| 102 | | el7g 4672 |
. . . . . . . 8
⊢ ({5,
𝑛} ∈ V → ({5,
𝑛} ∈ ({{0, 3}} ∪
({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ ({5, 𝑛} = {0, 3} ∨ (({5, 𝑛} = {0, 1} ∨ {5, 𝑛} = {1, 2} ∨ {5, 𝑛} = {2, 3}) ∨ ({5, 𝑛} = {3, 4} ∨ {5, 𝑛} = {4, 5} ∨ {5, 𝑛} = {0, 5}))))) |
| 103 | 101, 102 | ax-mp 5 |
. . . . . . 7
⊢ ({5,
𝑛} ∈ ({{0, 3}} ∪
({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ ({5, 𝑛} = {0, 3} ∨ (({5, 𝑛} = {0, 1} ∨ {5, 𝑛} = {1, 2} ∨ {5, 𝑛} = {2, 3}) ∨ ({5, 𝑛} = {3, 4} ∨ {5, 𝑛} = {4, 5} ∨ {5, 𝑛} = {0, 5})))) |
| 104 | 99, 100, 103 | 3bitr4i 303 |
. . . . . 6
⊢ (𝑛 ∈ {0, 4} ↔ {5, 𝑛} ∈ ({{0, 3}} ∪ ({{0,
1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))) |
| 105 | 104 | a1i 11 |
. . . . 5
⊢ (((0
∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 4 ∈ ({0, 1, 2} ∪ {3, 4, 5}))
∧ 𝑛 ∈ ({0, 1, 2}
∪ {3, 4, 5})) → (𝑛
∈ {0, 4} ↔ {5, 𝑛}
∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0,
5}})))) |
| 106 | 23, 105 | eqrrabd 4068 |
. . . 4
⊢ ((0
∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 4 ∈ ({0, 1, 2} ∪ {3, 4, 5}))
→ {0, 4} = {𝑛 ∈
({0, 1, 2} ∪ {3, 4, 5}) ∣ {5, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))}) |
| 107 | 106 | eqcomd 2740 |
. . 3
⊢ ((0
∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 4 ∈ ({0, 1, 2} ∪ {3, 4, 5}))
→ {𝑛 ∈ ({0, 1, 2}
∪ {3, 4, 5}) ∣ {5, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))} = {0, 4}) |
| 108 | 16, 22, 107 | mp2an 692 |
. 2
⊢ {𝑛 ∈ ({0, 1, 2} ∪ {3, 4,
5}) ∣ {5, 𝑛} ∈
({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))} =
{0, 4} |
| 109 | 11, 108 | eqtri 2757 |
1
⊢ (𝐺 NeighbVtx 5) = {0,
4} |