| Step | Hyp | Ref
| Expression |
| 1 | | c0ex 11238 |
. . . . . 6
⊢ 0 ∈
V |
| 2 | 1 | tpid1 4750 |
. . . . 5
⊢ 0 ∈
{0, 1, 2} |
| 3 | 2 | orci 865 |
. . . 4
⊢ (0 ∈
{0, 1, 2} ∨ 0 ∈ {3, 4, 5}) |
| 4 | | elun 4135 |
. . . 4
⊢ (0 ∈
({0, 1, 2} ∪ {3, 4, 5}) ↔ (0 ∈ {0, 1, 2} ∨ 0 ∈ {3, 4,
5})) |
| 5 | 3, 4 | mpbir 231 |
. . 3
⊢ 0 ∈
({0, 1, 2} ∪ {3, 4, 5}) |
| 6 | | usgrexmpl2.v |
. . . 4
⊢ 𝑉 = (0...5) |
| 7 | | usgrexmpl2.e |
. . . 4
⊢ 𝐸 = 〈“{0, 1} {1, 2}
{2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 |
| 8 | | usgrexmpl2.g |
. . . 4
⊢ 𝐺 = 〈𝑉, 𝐸〉 |
| 9 | 6, 7, 8 | usgrexmpl2nblem 47935 |
. . 3
⊢ (0 ∈
({0, 1, 2} ∪ {3, 4, 5}) → (𝐺 NeighbVtx 0) = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∣
{0, 𝑛} ∈ ({{0, 3}}
∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0,
5}}))}) |
| 10 | 5, 9 | ax-mp 5 |
. 2
⊢ (𝐺 NeighbVtx 0) = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4,
5}) ∣ {0, 𝑛} ∈
({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0,
5}}))} |
| 11 | | 1ex 11240 |
. . . . . 6
⊢ 1 ∈
V |
| 12 | 11 | tpid2 4752 |
. . . . 5
⊢ 1 ∈
{0, 1, 2} |
| 13 | 12 | orci 865 |
. . . 4
⊢ (1 ∈
{0, 1, 2} ∨ 1 ∈ {3, 4, 5}) |
| 14 | | elun 4135 |
. . . 4
⊢ (1 ∈
({0, 1, 2} ∪ {3, 4, 5}) ↔ (1 ∈ {0, 1, 2} ∨ 1 ∈ {3, 4,
5})) |
| 15 | 13, 14 | mpbir 231 |
. . 3
⊢ 1 ∈
({0, 1, 2} ∪ {3, 4, 5}) |
| 16 | | 3ex 12331 |
. . . . . 6
⊢ 3 ∈
V |
| 17 | 16 | tpid1 4750 |
. . . . 5
⊢ 3 ∈
{3, 4, 5} |
| 18 | 17 | olci 866 |
. . . 4
⊢ (3 ∈
{0, 1, 2} ∨ 3 ∈ {3, 4, 5}) |
| 19 | | elun 4135 |
. . . 4
⊢ (3 ∈
({0, 1, 2} ∪ {3, 4, 5}) ↔ (3 ∈ {0, 1, 2} ∨ 3 ∈ {3, 4,
5})) |
| 20 | 18, 19 | mpbir 231 |
. . 3
⊢ 3 ∈
({0, 1, 2} ∪ {3, 4, 5}) |
| 21 | | 5nn0 12530 |
. . . . . . 7
⊢ 5 ∈
ℕ0 |
| 22 | 21 | elexi 3487 |
. . . . . 6
⊢ 5 ∈
V |
| 23 | 22 | tpid3 4755 |
. . . . 5
⊢ 5 ∈
{3, 4, 5} |
| 24 | 23 | olci 866 |
. . . 4
⊢ (5 ∈
{0, 1, 2} ∨ 5 ∈ {3, 4, 5}) |
| 25 | | elun 4135 |
. . . 4
⊢ (5 ∈
({0, 1, 2} ∪ {3, 4, 5}) ↔ (5 ∈ {0, 1, 2} ∨ 5 ∈ {3, 4,
5})) |
| 26 | 24, 25 | mpbir 231 |
. . 3
⊢ 5 ∈
({0, 1, 2} ∪ {3, 4, 5}) |
| 27 | | tpssi 4820 |
. . . 4
⊢ ((1
∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 3 ∈ ({0, 1, 2} ∪ {3, 4, 5})
∧ 5 ∈ ({0, 1, 2} ∪ {3, 4, 5})) → {1, 3, 5} ⊆ ({0, 1, 2}
∪ {3, 4, 5})) |
| 28 | | 3orcoma 1092 |
. . . . . . 7
⊢ ((𝑛 = 3 ∨ 𝑛 = 1 ∨ 𝑛 = 5) ↔ (𝑛 = 1 ∨ 𝑛 = 3 ∨ 𝑛 = 5)) |
| 29 | | 3orass 1089 |
. . . . . . 7
⊢ ((𝑛 = 3 ∨ 𝑛 = 1 ∨ 𝑛 = 5) ↔ (𝑛 = 3 ∨ (𝑛 = 1 ∨ 𝑛 = 5))) |
| 30 | 28, 29 | bitr3i 277 |
. . . . . 6
⊢ ((𝑛 = 1 ∨ 𝑛 = 3 ∨ 𝑛 = 5) ↔ (𝑛 = 3 ∨ (𝑛 = 1 ∨ 𝑛 = 5))) |
| 31 | | vex 3468 |
. . . . . . 7
⊢ 𝑛 ∈ V |
| 32 | 31 | eltp 4671 |
. . . . . 6
⊢ (𝑛 ∈ {1, 3, 5} ↔ (𝑛 = 1 ∨ 𝑛 = 3 ∨ 𝑛 = 5)) |
| 33 | | prex 5419 |
. . . . . . . 8
⊢ {0, 𝑛} ∈ V |
| 34 | | el7g 4672 |
. . . . . . . 8
⊢ ({0,
𝑛} ∈ V → ({0,
𝑛} ∈ ({{0, 3}} ∪
({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ ({0, 𝑛} = {0, 3} ∨ (({0, 𝑛} = {0, 1} ∨ {0, 𝑛} = {1, 2} ∨ {0, 𝑛} = {2, 3}) ∨ ({0, 𝑛} = {3, 4} ∨ {0, 𝑛} = {4, 5} ∨ {0, 𝑛} = {0, 5}))))) |
| 35 | 33, 34 | ax-mp 5 |
. . . . . . 7
⊢ ({0,
𝑛} ∈ ({{0, 3}} ∪
({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ ({0, 𝑛} = {0, 3} ∨ (({0, 𝑛} = {0, 1} ∨ {0, 𝑛} = {1, 2} ∨ {0, 𝑛} = {2, 3}) ∨ ({0, 𝑛} = {3, 4} ∨ {0, 𝑛} = {4, 5} ∨ {0, 𝑛} = {0, 5})))) |
| 36 | 31 | a1i 11 |
. . . . . . . . . 10
⊢ (3 ∈
V → 𝑛 ∈
V) |
| 37 | | elex 3485 |
. . . . . . . . . 10
⊢ (3 ∈
V → 3 ∈ V) |
| 38 | 36, 37 | preq2b 4829 |
. . . . . . . . 9
⊢ (3 ∈
V → ({0, 𝑛} = {0, 3}
↔ 𝑛 =
3)) |
| 39 | 16, 38 | ax-mp 5 |
. . . . . . . 8
⊢ ({0,
𝑛} = {0, 3} ↔ 𝑛 = 3) |
| 40 | | 3orrot 1091 |
. . . . . . . . . 10
⊢ (({0,
𝑛} = {0, 1} ∨ {0, 𝑛} = {1, 2} ∨ {0, 𝑛} = {2, 3}) ↔ ({0, 𝑛} = {1, 2} ∨ {0, 𝑛} = {2, 3} ∨ {0, 𝑛} = {0, 1})) |
| 41 | 1, 31 | pm3.2i 470 |
. . . . . . . . . . . . . . 15
⊢ (0 ∈
V ∧ 𝑛 ∈
V) |
| 42 | | 2ex 12326 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
V |
| 43 | 11, 42 | pm3.2i 470 |
. . . . . . . . . . . . . . 15
⊢ (1 ∈
V ∧ 2 ∈ V) |
| 44 | 41, 43 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ V ∧ 𝑛 ∈ V)
∧ (1 ∈ V ∧ 2 ∈ V)) |
| 45 | | 0ne1 12320 |
. . . . . . . . . . . . . . . 16
⊢ 0 ≠
1 |
| 46 | | 0ne2 12456 |
. . . . . . . . . . . . . . . 16
⊢ 0 ≠
2 |
| 47 | 45, 46 | pm3.2i 470 |
. . . . . . . . . . . . . . 15
⊢ (0 ≠ 1
∧ 0 ≠ 2) |
| 48 | 47 | orci 865 |
. . . . . . . . . . . . . 14
⊢ ((0 ≠
1 ∧ 0 ≠ 2) ∨ (𝑛
≠ 1 ∧ 𝑛 ≠
2)) |
| 49 | | prneimg 4836 |
. . . . . . . . . . . . . 14
⊢ (((0
∈ V ∧ 𝑛 ∈ V)
∧ (1 ∈ V ∧ 2 ∈ V)) → (((0 ≠ 1 ∧ 0 ≠ 2) ∨
(𝑛 ≠ 1 ∧ 𝑛 ≠ 2)) → {0, 𝑛} ≠ {1, 2})) |
| 50 | 44, 48, 49 | mp2 9 |
. . . . . . . . . . . . 13
⊢ {0, 𝑛} ≠ {1, 2} |
| 51 | 50 | neii 2933 |
. . . . . . . . . . . 12
⊢ ¬
{0, 𝑛} = {1,
2} |
| 52 | | id 22 |
. . . . . . . . . . . . 13
⊢ (¬
{0, 𝑛} = {1, 2} →
¬ {0, 𝑛} = {1,
2}) |
| 53 | 42, 16 | pm3.2i 470 |
. . . . . . . . . . . . . . . . 17
⊢ (2 ∈
V ∧ 3 ∈ V) |
| 54 | 41, 53 | pm3.2i 470 |
. . . . . . . . . . . . . . . 16
⊢ ((0
∈ V ∧ 𝑛 ∈ V)
∧ (2 ∈ V ∧ 3 ∈ V)) |
| 55 | | 0re 11246 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
ℝ |
| 56 | | 3pos 12354 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 <
3 |
| 57 | 55, 56 | ltneii 11357 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ≠
3 |
| 58 | 46, 57 | pm3.2i 470 |
. . . . . . . . . . . . . . . . 17
⊢ (0 ≠ 2
∧ 0 ≠ 3) |
| 59 | 58 | orci 865 |
. . . . . . . . . . . . . . . 16
⊢ ((0 ≠
2 ∧ 0 ≠ 3) ∨ (𝑛
≠ 2 ∧ 𝑛 ≠
3)) |
| 60 | | prneimg 4836 |
. . . . . . . . . . . . . . . 16
⊢ (((0
∈ V ∧ 𝑛 ∈ V)
∧ (2 ∈ V ∧ 3 ∈ V)) → (((0 ≠ 2 ∧ 0 ≠ 3) ∨
(𝑛 ≠ 2 ∧ 𝑛 ≠ 3)) → {0, 𝑛} ≠ {2, 3})) |
| 61 | 54, 59, 60 | mp2 9 |
. . . . . . . . . . . . . . 15
⊢ {0, 𝑛} ≠ {2, 3} |
| 62 | 61 | neii 2933 |
. . . . . . . . . . . . . 14
⊢ ¬
{0, 𝑛} = {2,
3} |
| 63 | 62 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (¬
{0, 𝑛} = {1, 2} →
¬ {0, 𝑛} = {2,
3}) |
| 64 | 52, 63 | 3bior2fd 1478 |
. . . . . . . . . . . 12
⊢ (¬
{0, 𝑛} = {1, 2} → ({0,
𝑛} = {0, 1} ↔ ({0,
𝑛} = {1, 2} ∨ {0, 𝑛} = {2, 3} ∨ {0, 𝑛} = {0, 1}))) |
| 65 | 51, 64 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ({0,
𝑛} = {0, 1} ↔ ({0,
𝑛} = {1, 2} ∨ {0, 𝑛} = {2, 3} ∨ {0, 𝑛} = {0, 1})) |
| 66 | 31 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (1 ∈
V → 𝑛 ∈
V) |
| 67 | | elex 3485 |
. . . . . . . . . . . . 13
⊢ (1 ∈
V → 1 ∈ V) |
| 68 | 66, 67 | preq2b 4829 |
. . . . . . . . . . . 12
⊢ (1 ∈
V → ({0, 𝑛} = {0, 1}
↔ 𝑛 =
1)) |
| 69 | 11, 68 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ({0,
𝑛} = {0, 1} ↔ 𝑛 = 1) |
| 70 | 65, 69 | bitr3i 277 |
. . . . . . . . . 10
⊢ (({0,
𝑛} = {1, 2} ∨ {0, 𝑛} = {2, 3} ∨ {0, 𝑛} = {0, 1}) ↔ 𝑛 = 1) |
| 71 | 40, 70 | bitri 275 |
. . . . . . . . 9
⊢ (({0,
𝑛} = {0, 1} ∨ {0, 𝑛} = {1, 2} ∨ {0, 𝑛} = {2, 3}) ↔ 𝑛 = 1) |
| 72 | | 4nn0 12529 |
. . . . . . . . . . . . . . 15
⊢ 4 ∈
ℕ0 |
| 73 | 16, 72 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ (3 ∈
V ∧ 4 ∈ ℕ0) |
| 74 | 41, 73 | pm3.2i 470 |
. . . . . . . . . . . . 13
⊢ ((0
∈ V ∧ 𝑛 ∈ V)
∧ (3 ∈ V ∧ 4 ∈ ℕ0)) |
| 75 | | 4pos 12356 |
. . . . . . . . . . . . . . . 16
⊢ 0 <
4 |
| 76 | 55, 75 | ltneii 11357 |
. . . . . . . . . . . . . . 15
⊢ 0 ≠
4 |
| 77 | 57, 76 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ (0 ≠ 3
∧ 0 ≠ 4) |
| 78 | 77 | orci 865 |
. . . . . . . . . . . . 13
⊢ ((0 ≠
3 ∧ 0 ≠ 4) ∨ (𝑛
≠ 3 ∧ 𝑛 ≠
4)) |
| 79 | | prneimg 4836 |
. . . . . . . . . . . . 13
⊢ (((0
∈ V ∧ 𝑛 ∈ V)
∧ (3 ∈ V ∧ 4 ∈ ℕ0)) → (((0 ≠ 3 ∧
0 ≠ 4) ∨ (𝑛 ≠ 3
∧ 𝑛 ≠ 4)) → {0,
𝑛} ≠ {3,
4})) |
| 80 | 74, 78, 79 | mp2 9 |
. . . . . . . . . . . 12
⊢ {0, 𝑛} ≠ {3, 4} |
| 81 | 80 | neii 2933 |
. . . . . . . . . . 11
⊢ ¬
{0, 𝑛} = {3,
4} |
| 82 | | id 22 |
. . . . . . . . . . . 12
⊢ (¬
{0, 𝑛} = {3, 4} →
¬ {0, 𝑛} = {3,
4}) |
| 83 | 72, 21 | pm3.2i 470 |
. . . . . . . . . . . . . . . 16
⊢ (4 ∈
ℕ0 ∧ 5 ∈ ℕ0) |
| 84 | 41, 83 | pm3.2i 470 |
. . . . . . . . . . . . . . 15
⊢ ((0
∈ V ∧ 𝑛 ∈ V)
∧ (4 ∈ ℕ0 ∧ 5 ∈
ℕ0)) |
| 85 | | 5pos 12358 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 <
5 |
| 86 | 55, 85 | ltneii 11357 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ≠
5 |
| 87 | 76, 86 | pm3.2i 470 |
. . . . . . . . . . . . . . . 16
⊢ (0 ≠ 4
∧ 0 ≠ 5) |
| 88 | 87 | orci 865 |
. . . . . . . . . . . . . . 15
⊢ ((0 ≠
4 ∧ 0 ≠ 5) ∨ (𝑛
≠ 4 ∧ 𝑛 ≠
5)) |
| 89 | | prneimg 4836 |
. . . . . . . . . . . . . . 15
⊢ (((0
∈ V ∧ 𝑛 ∈ V)
∧ (4 ∈ ℕ0 ∧ 5 ∈ ℕ0)) →
(((0 ≠ 4 ∧ 0 ≠ 5) ∨ (𝑛 ≠ 4 ∧ 𝑛 ≠ 5)) → {0, 𝑛} ≠ {4, 5})) |
| 90 | 84, 88, 89 | mp2 9 |
. . . . . . . . . . . . . 14
⊢ {0, 𝑛} ≠ {4, 5} |
| 91 | 90 | neii 2933 |
. . . . . . . . . . . . 13
⊢ ¬
{0, 𝑛} = {4,
5} |
| 92 | 91 | a1i 11 |
. . . . . . . . . . . 12
⊢ (¬
{0, 𝑛} = {3, 4} →
¬ {0, 𝑛} = {4,
5}) |
| 93 | 82, 92 | 3bior2fd 1478 |
. . . . . . . . . . 11
⊢ (¬
{0, 𝑛} = {3, 4} → ({0,
𝑛} = {0, 5} ↔ ({0,
𝑛} = {3, 4} ∨ {0, 𝑛} = {4, 5} ∨ {0, 𝑛} = {0, 5}))) |
| 94 | 81, 93 | ax-mp 5 |
. . . . . . . . . 10
⊢ ({0,
𝑛} = {0, 5} ↔ ({0,
𝑛} = {3, 4} ∨ {0, 𝑛} = {4, 5} ∨ {0, 𝑛} = {0, 5})) |
| 95 | 31 | a1i 11 |
. . . . . . . . . . . 12
⊢ (5 ∈
ℕ0 → 𝑛 ∈ V) |
| 96 | | elex 3485 |
. . . . . . . . . . . 12
⊢ (5 ∈
ℕ0 → 5 ∈ V) |
| 97 | 95, 96 | preq2b 4829 |
. . . . . . . . . . 11
⊢ (5 ∈
ℕ0 → ({0, 𝑛} = {0, 5} ↔ 𝑛 = 5)) |
| 98 | 21, 97 | ax-mp 5 |
. . . . . . . . . 10
⊢ ({0,
𝑛} = {0, 5} ↔ 𝑛 = 5) |
| 99 | 94, 98 | bitr3i 277 |
. . . . . . . . 9
⊢ (({0,
𝑛} = {3, 4} ∨ {0, 𝑛} = {4, 5} ∨ {0, 𝑛} = {0, 5}) ↔ 𝑛 = 5) |
| 100 | 71, 99 | orbi12i 914 |
. . . . . . . 8
⊢ ((({0,
𝑛} = {0, 1} ∨ {0, 𝑛} = {1, 2} ∨ {0, 𝑛} = {2, 3}) ∨ ({0, 𝑛} = {3, 4} ∨ {0, 𝑛} = {4, 5} ∨ {0, 𝑛} = {0, 5})) ↔ (𝑛 = 1 ∨ 𝑛 = 5)) |
| 101 | 39, 100 | orbi12i 914 |
. . . . . . 7
⊢ (({0,
𝑛} = {0, 3} ∨ (({0,
𝑛} = {0, 1} ∨ {0, 𝑛} = {1, 2} ∨ {0, 𝑛} = {2, 3}) ∨ ({0, 𝑛} = {3, 4} ∨ {0, 𝑛} = {4, 5} ∨ {0, 𝑛} = {0, 5}))) ↔ (𝑛 = 3 ∨ (𝑛 = 1 ∨ 𝑛 = 5))) |
| 102 | 35, 101 | bitri 275 |
. . . . . 6
⊢ ({0,
𝑛} ∈ ({{0, 3}} ∪
({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ (𝑛 = 3 ∨ (𝑛 = 1 ∨ 𝑛 = 5))) |
| 103 | 30, 32, 102 | 3bitr4i 303 |
. . . . 5
⊢ (𝑛 ∈ {1, 3, 5} ↔ {0,
𝑛} ∈ ({{0, 3}} ∪
({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))) |
| 104 | 103 | a1i 11 |
. . . 4
⊢ (((1
∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 3 ∈ ({0, 1, 2} ∪ {3, 4, 5})
∧ 5 ∈ ({0, 1, 2} ∪ {3, 4, 5})) ∧ 𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5})) →
(𝑛 ∈ {1, 3, 5} ↔
{0, 𝑛} ∈ ({{0, 3}}
∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0,
5}})))) |
| 105 | 27, 104 | eqrrabd 4068 |
. . 3
⊢ ((1
∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 3 ∈ ({0, 1, 2} ∪ {3, 4, 5})
∧ 5 ∈ ({0, 1, 2} ∪ {3, 4, 5})) → {1, 3, 5} = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4,
5}) ∣ {0, 𝑛} ∈
({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0,
5}}))}) |
| 106 | 15, 20, 26, 105 | mp3an 1462 |
. 2
⊢ {1, 3, 5}
= {𝑛 ∈ ({0, 1, 2}
∪ {3, 4, 5}) ∣ {0, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))} |
| 107 | 10, 106 | eqtr4i 2760 |
1
⊢ (𝐺 NeighbVtx 0) = {1, 3,
5} |