Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  usgrexmpl2nb0 Structured version   Visualization version   GIF version

Theorem usgrexmpl2nb0 48022
Description: The neighborhood of the first vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.)
Hypotheses
Ref Expression
usgrexmpl2.v 𝑉 = (0...5)
usgrexmpl2.e 𝐸 = ⟨“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”⟩
usgrexmpl2.g 𝐺 = ⟨𝑉, 𝐸
Assertion
Ref Expression
usgrexmpl2nb0 (𝐺 NeighbVtx 0) = {1, 3, 5}

Proof of Theorem usgrexmpl2nb0
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 c0ex 11168 . . . . . 6 0 ∈ V
21tpid1 4732 . . . . 5 0 ∈ {0, 1, 2}
32orci 865 . . . 4 (0 ∈ {0, 1, 2} ∨ 0 ∈ {3, 4, 5})
4 elun 4116 . . . 4 (0 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ↔ (0 ∈ {0, 1, 2} ∨ 0 ∈ {3, 4, 5}))
53, 4mpbir 231 . . 3 0 ∈ ({0, 1, 2} ∪ {3, 4, 5})
6 usgrexmpl2.v . . . 4 𝑉 = (0...5)
7 usgrexmpl2.e . . . 4 𝐸 = ⟨“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”⟩
8 usgrexmpl2.g . . . 4 𝐺 = ⟨𝑉, 𝐸
96, 7, 8usgrexmpl2nblem 48021 . . 3 (0 ∈ ({0, 1, 2} ∪ {3, 4, 5}) → (𝐺 NeighbVtx 0) = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∣ {0, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))})
105, 9ax-mp 5 . 2 (𝐺 NeighbVtx 0) = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∣ {0, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))}
11 1ex 11170 . . . . . 6 1 ∈ V
1211tpid2 4734 . . . . 5 1 ∈ {0, 1, 2}
1312orci 865 . . . 4 (1 ∈ {0, 1, 2} ∨ 1 ∈ {3, 4, 5})
14 elun 4116 . . . 4 (1 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ↔ (1 ∈ {0, 1, 2} ∨ 1 ∈ {3, 4, 5}))
1513, 14mpbir 231 . . 3 1 ∈ ({0, 1, 2} ∪ {3, 4, 5})
16 3ex 12268 . . . . . 6 3 ∈ V
1716tpid1 4732 . . . . 5 3 ∈ {3, 4, 5}
1817olci 866 . . . 4 (3 ∈ {0, 1, 2} ∨ 3 ∈ {3, 4, 5})
19 elun 4116 . . . 4 (3 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ↔ (3 ∈ {0, 1, 2} ∨ 3 ∈ {3, 4, 5}))
2018, 19mpbir 231 . . 3 3 ∈ ({0, 1, 2} ∪ {3, 4, 5})
21 5nn0 12462 . . . . . . 7 5 ∈ ℕ0
2221elexi 3470 . . . . . 6 5 ∈ V
2322tpid3 4737 . . . . 5 5 ∈ {3, 4, 5}
2423olci 866 . . . 4 (5 ∈ {0, 1, 2} ∨ 5 ∈ {3, 4, 5})
25 elun 4116 . . . 4 (5 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ↔ (5 ∈ {0, 1, 2} ∨ 5 ∈ {3, 4, 5}))
2624, 25mpbir 231 . . 3 5 ∈ ({0, 1, 2} ∪ {3, 4, 5})
27 tpssi 4802 . . . 4 ((1 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 3 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 5 ∈ ({0, 1, 2} ∪ {3, 4, 5})) → {1, 3, 5} ⊆ ({0, 1, 2} ∪ {3, 4, 5}))
28 3orcoma 1092 . . . . . . 7 ((𝑛 = 3 ∨ 𝑛 = 1 ∨ 𝑛 = 5) ↔ (𝑛 = 1 ∨ 𝑛 = 3 ∨ 𝑛 = 5))
29 3orass 1089 . . . . . . 7 ((𝑛 = 3 ∨ 𝑛 = 1 ∨ 𝑛 = 5) ↔ (𝑛 = 3 ∨ (𝑛 = 1 ∨ 𝑛 = 5)))
3028, 29bitr3i 277 . . . . . 6 ((𝑛 = 1 ∨ 𝑛 = 3 ∨ 𝑛 = 5) ↔ (𝑛 = 3 ∨ (𝑛 = 1 ∨ 𝑛 = 5)))
31 vex 3451 . . . . . . 7 𝑛 ∈ V
3231eltp 4653 . . . . . 6 (𝑛 ∈ {1, 3, 5} ↔ (𝑛 = 1 ∨ 𝑛 = 3 ∨ 𝑛 = 5))
33 prex 5392 . . . . . . . 8 {0, 𝑛} ∈ V
34 el7g 4654 . . . . . . . 8 ({0, 𝑛} ∈ V → ({0, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ ({0, 𝑛} = {0, 3} ∨ (({0, 𝑛} = {0, 1} ∨ {0, 𝑛} = {1, 2} ∨ {0, 𝑛} = {2, 3}) ∨ ({0, 𝑛} = {3, 4} ∨ {0, 𝑛} = {4, 5} ∨ {0, 𝑛} = {0, 5})))))
3533, 34ax-mp 5 . . . . . . 7 ({0, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ ({0, 𝑛} = {0, 3} ∨ (({0, 𝑛} = {0, 1} ∨ {0, 𝑛} = {1, 2} ∨ {0, 𝑛} = {2, 3}) ∨ ({0, 𝑛} = {3, 4} ∨ {0, 𝑛} = {4, 5} ∨ {0, 𝑛} = {0, 5}))))
3631a1i 11 . . . . . . . . . 10 (3 ∈ V → 𝑛 ∈ V)
37 elex 3468 . . . . . . . . . 10 (3 ∈ V → 3 ∈ V)
3836, 37preq2b 4811 . . . . . . . . 9 (3 ∈ V → ({0, 𝑛} = {0, 3} ↔ 𝑛 = 3))
3916, 38ax-mp 5 . . . . . . . 8 ({0, 𝑛} = {0, 3} ↔ 𝑛 = 3)
40 3orrot 1091 . . . . . . . . . 10 (({0, 𝑛} = {0, 1} ∨ {0, 𝑛} = {1, 2} ∨ {0, 𝑛} = {2, 3}) ↔ ({0, 𝑛} = {1, 2} ∨ {0, 𝑛} = {2, 3} ∨ {0, 𝑛} = {0, 1}))
411, 31pm3.2i 470 . . . . . . . . . . . . . . 15 (0 ∈ V ∧ 𝑛 ∈ V)
42 2ex 12263 . . . . . . . . . . . . . . . 16 2 ∈ V
4311, 42pm3.2i 470 . . . . . . . . . . . . . . 15 (1 ∈ V ∧ 2 ∈ V)
4441, 43pm3.2i 470 . . . . . . . . . . . . . 14 ((0 ∈ V ∧ 𝑛 ∈ V) ∧ (1 ∈ V ∧ 2 ∈ V))
45 0ne1 12257 . . . . . . . . . . . . . . . 16 0 ≠ 1
46 0ne2 12388 . . . . . . . . . . . . . . . 16 0 ≠ 2
4745, 46pm3.2i 470 . . . . . . . . . . . . . . 15 (0 ≠ 1 ∧ 0 ≠ 2)
4847orci 865 . . . . . . . . . . . . . 14 ((0 ≠ 1 ∧ 0 ≠ 2) ∨ (𝑛 ≠ 1 ∧ 𝑛 ≠ 2))
49 prneimg 4818 . . . . . . . . . . . . . 14 (((0 ∈ V ∧ 𝑛 ∈ V) ∧ (1 ∈ V ∧ 2 ∈ V)) → (((0 ≠ 1 ∧ 0 ≠ 2) ∨ (𝑛 ≠ 1 ∧ 𝑛 ≠ 2)) → {0, 𝑛} ≠ {1, 2}))
5044, 48, 49mp2 9 . . . . . . . . . . . . 13 {0, 𝑛} ≠ {1, 2}
5150neii 2927 . . . . . . . . . . . 12 ¬ {0, 𝑛} = {1, 2}
52 id 22 . . . . . . . . . . . . 13 (¬ {0, 𝑛} = {1, 2} → ¬ {0, 𝑛} = {1, 2})
5342, 16pm3.2i 470 . . . . . . . . . . . . . . . . 17 (2 ∈ V ∧ 3 ∈ V)
5441, 53pm3.2i 470 . . . . . . . . . . . . . . . 16 ((0 ∈ V ∧ 𝑛 ∈ V) ∧ (2 ∈ V ∧ 3 ∈ V))
55 0re 11176 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
56 3pos 12291 . . . . . . . . . . . . . . . . . . 19 0 < 3
5755, 56ltneii 11287 . . . . . . . . . . . . . . . . . 18 0 ≠ 3
5846, 57pm3.2i 470 . . . . . . . . . . . . . . . . 17 (0 ≠ 2 ∧ 0 ≠ 3)
5958orci 865 . . . . . . . . . . . . . . . 16 ((0 ≠ 2 ∧ 0 ≠ 3) ∨ (𝑛 ≠ 2 ∧ 𝑛 ≠ 3))
60 prneimg 4818 . . . . . . . . . . . . . . . 16 (((0 ∈ V ∧ 𝑛 ∈ V) ∧ (2 ∈ V ∧ 3 ∈ V)) → (((0 ≠ 2 ∧ 0 ≠ 3) ∨ (𝑛 ≠ 2 ∧ 𝑛 ≠ 3)) → {0, 𝑛} ≠ {2, 3}))
6154, 59, 60mp2 9 . . . . . . . . . . . . . . 15 {0, 𝑛} ≠ {2, 3}
6261neii 2927 . . . . . . . . . . . . . 14 ¬ {0, 𝑛} = {2, 3}
6362a1i 11 . . . . . . . . . . . . 13 (¬ {0, 𝑛} = {1, 2} → ¬ {0, 𝑛} = {2, 3})
6452, 633bior2fd 1479 . . . . . . . . . . . 12 (¬ {0, 𝑛} = {1, 2} → ({0, 𝑛} = {0, 1} ↔ ({0, 𝑛} = {1, 2} ∨ {0, 𝑛} = {2, 3} ∨ {0, 𝑛} = {0, 1})))
6551, 64ax-mp 5 . . . . . . . . . . 11 ({0, 𝑛} = {0, 1} ↔ ({0, 𝑛} = {1, 2} ∨ {0, 𝑛} = {2, 3} ∨ {0, 𝑛} = {0, 1}))
6631a1i 11 . . . . . . . . . . . . 13 (1 ∈ V → 𝑛 ∈ V)
67 elex 3468 . . . . . . . . . . . . 13 (1 ∈ V → 1 ∈ V)
6866, 67preq2b 4811 . . . . . . . . . . . 12 (1 ∈ V → ({0, 𝑛} = {0, 1} ↔ 𝑛 = 1))
6911, 68ax-mp 5 . . . . . . . . . . 11 ({0, 𝑛} = {0, 1} ↔ 𝑛 = 1)
7065, 69bitr3i 277 . . . . . . . . . 10 (({0, 𝑛} = {1, 2} ∨ {0, 𝑛} = {2, 3} ∨ {0, 𝑛} = {0, 1}) ↔ 𝑛 = 1)
7140, 70bitri 275 . . . . . . . . 9 (({0, 𝑛} = {0, 1} ∨ {0, 𝑛} = {1, 2} ∨ {0, 𝑛} = {2, 3}) ↔ 𝑛 = 1)
72 4nn0 12461 . . . . . . . . . . . . . . 15 4 ∈ ℕ0
7316, 72pm3.2i 470 . . . . . . . . . . . . . 14 (3 ∈ V ∧ 4 ∈ ℕ0)
7441, 73pm3.2i 470 . . . . . . . . . . . . 13 ((0 ∈ V ∧ 𝑛 ∈ V) ∧ (3 ∈ V ∧ 4 ∈ ℕ0))
75 4pos 12293 . . . . . . . . . . . . . . . 16 0 < 4
7655, 75ltneii 11287 . . . . . . . . . . . . . . 15 0 ≠ 4
7757, 76pm3.2i 470 . . . . . . . . . . . . . 14 (0 ≠ 3 ∧ 0 ≠ 4)
7877orci 865 . . . . . . . . . . . . 13 ((0 ≠ 3 ∧ 0 ≠ 4) ∨ (𝑛 ≠ 3 ∧ 𝑛 ≠ 4))
79 prneimg 4818 . . . . . . . . . . . . 13 (((0 ∈ V ∧ 𝑛 ∈ V) ∧ (3 ∈ V ∧ 4 ∈ ℕ0)) → (((0 ≠ 3 ∧ 0 ≠ 4) ∨ (𝑛 ≠ 3 ∧ 𝑛 ≠ 4)) → {0, 𝑛} ≠ {3, 4}))
8074, 78, 79mp2 9 . . . . . . . . . . . 12 {0, 𝑛} ≠ {3, 4}
8180neii 2927 . . . . . . . . . . 11 ¬ {0, 𝑛} = {3, 4}
82 id 22 . . . . . . . . . . . 12 (¬ {0, 𝑛} = {3, 4} → ¬ {0, 𝑛} = {3, 4})
8372, 21pm3.2i 470 . . . . . . . . . . . . . . . 16 (4 ∈ ℕ0 ∧ 5 ∈ ℕ0)
8441, 83pm3.2i 470 . . . . . . . . . . . . . . 15 ((0 ∈ V ∧ 𝑛 ∈ V) ∧ (4 ∈ ℕ0 ∧ 5 ∈ ℕ0))
85 5pos 12295 . . . . . . . . . . . . . . . . . 18 0 < 5
8655, 85ltneii 11287 . . . . . . . . . . . . . . . . 17 0 ≠ 5
8776, 86pm3.2i 470 . . . . . . . . . . . . . . . 16 (0 ≠ 4 ∧ 0 ≠ 5)
8887orci 865 . . . . . . . . . . . . . . 15 ((0 ≠ 4 ∧ 0 ≠ 5) ∨ (𝑛 ≠ 4 ∧ 𝑛 ≠ 5))
89 prneimg 4818 . . . . . . . . . . . . . . 15 (((0 ∈ V ∧ 𝑛 ∈ V) ∧ (4 ∈ ℕ0 ∧ 5 ∈ ℕ0)) → (((0 ≠ 4 ∧ 0 ≠ 5) ∨ (𝑛 ≠ 4 ∧ 𝑛 ≠ 5)) → {0, 𝑛} ≠ {4, 5}))
9084, 88, 89mp2 9 . . . . . . . . . . . . . 14 {0, 𝑛} ≠ {4, 5}
9190neii 2927 . . . . . . . . . . . . 13 ¬ {0, 𝑛} = {4, 5}
9291a1i 11 . . . . . . . . . . . 12 (¬ {0, 𝑛} = {3, 4} → ¬ {0, 𝑛} = {4, 5})
9382, 923bior2fd 1479 . . . . . . . . . . 11 (¬ {0, 𝑛} = {3, 4} → ({0, 𝑛} = {0, 5} ↔ ({0, 𝑛} = {3, 4} ∨ {0, 𝑛} = {4, 5} ∨ {0, 𝑛} = {0, 5})))
9481, 93ax-mp 5 . . . . . . . . . 10 ({0, 𝑛} = {0, 5} ↔ ({0, 𝑛} = {3, 4} ∨ {0, 𝑛} = {4, 5} ∨ {0, 𝑛} = {0, 5}))
9531a1i 11 . . . . . . . . . . . 12 (5 ∈ ℕ0𝑛 ∈ V)
96 elex 3468 . . . . . . . . . . . 12 (5 ∈ ℕ0 → 5 ∈ V)
9795, 96preq2b 4811 . . . . . . . . . . 11 (5 ∈ ℕ0 → ({0, 𝑛} = {0, 5} ↔ 𝑛 = 5))
9821, 97ax-mp 5 . . . . . . . . . 10 ({0, 𝑛} = {0, 5} ↔ 𝑛 = 5)
9994, 98bitr3i 277 . . . . . . . . 9 (({0, 𝑛} = {3, 4} ∨ {0, 𝑛} = {4, 5} ∨ {0, 𝑛} = {0, 5}) ↔ 𝑛 = 5)
10071, 99orbi12i 914 . . . . . . . 8 ((({0, 𝑛} = {0, 1} ∨ {0, 𝑛} = {1, 2} ∨ {0, 𝑛} = {2, 3}) ∨ ({0, 𝑛} = {3, 4} ∨ {0, 𝑛} = {4, 5} ∨ {0, 𝑛} = {0, 5})) ↔ (𝑛 = 1 ∨ 𝑛 = 5))
10139, 100orbi12i 914 . . . . . . 7 (({0, 𝑛} = {0, 3} ∨ (({0, 𝑛} = {0, 1} ∨ {0, 𝑛} = {1, 2} ∨ {0, 𝑛} = {2, 3}) ∨ ({0, 𝑛} = {3, 4} ∨ {0, 𝑛} = {4, 5} ∨ {0, 𝑛} = {0, 5}))) ↔ (𝑛 = 3 ∨ (𝑛 = 1 ∨ 𝑛 = 5)))
10235, 101bitri 275 . . . . . 6 ({0, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ (𝑛 = 3 ∨ (𝑛 = 1 ∨ 𝑛 = 5)))
10330, 32, 1023bitr4i 303 . . . . 5 (𝑛 ∈ {1, 3, 5} ↔ {0, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})))
104103a1i 11 . . . 4 (((1 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 3 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 5 ∈ ({0, 1, 2} ∪ {3, 4, 5})) ∧ 𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5})) → (𝑛 ∈ {1, 3, 5} ↔ {0, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))))
10527, 104eqrrabd 4049 . . 3 ((1 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 3 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 5 ∈ ({0, 1, 2} ∪ {3, 4, 5})) → {1, 3, 5} = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∣ {0, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))})
10615, 20, 26, 105mp3an 1463 . 2 {1, 3, 5} = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∣ {0, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))}
10710, 106eqtr4i 2755 1 (𝐺 NeighbVtx 0) = {1, 3, 5}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2925  {crab 3405  Vcvv 3447  cun 3912  {csn 4589  {cpr 4591  {ctp 4593  cop 4595  (class class class)co 7387  0cc0 11068  1c1 11069  2c2 12241  3c3 12242  4c4 12243  5c5 12244  0cn0 12442  ...cfz 13468  ⟨“cs7 14812   NeighbVtx cnbgr 29259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-concat 14536  df-s1 14561  df-s2 14814  df-s3 14815  df-s4 14816  df-s5 14817  df-s6 14818  df-s7 14819  df-vtx 28925  df-iedg 28926  df-edg 28975  df-upgr 29009  df-umgr 29010  df-usgr 29078  df-nbgr 29260
This theorem is referenced by:  usgrexmpl2trifr  48028
  Copyright terms: Public domain W3C validator