Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsummpt2co Structured version   Visualization version   GIF version

Theorem gsummpt2co 32241
Description: Split a finite sum into a sum of a collection of sums over disjoint subsets. (Contributed by Thierry Arnoux, 27-Mar-2018.)
Hypotheses
Ref Expression
gsummpt2co.b 𝐵 = (Base‘𝑊)
gsummpt2co.z 0 = (0g𝑊)
gsummpt2co.w (𝜑𝑊 ∈ CMnd)
gsummpt2co.a (𝜑𝐴 ∈ Fin)
gsummpt2co.e (𝜑𝐸𝑉)
gsummpt2co.1 ((𝜑𝑥𝐴) → 𝐶𝐵)
gsummpt2co.2 ((𝜑𝑥𝐴) → 𝐷𝐸)
gsummpt2co.3 𝐹 = (𝑥𝐴𝐷)
Assertion
Ref Expression
gsummpt2co (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑦𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶)))))
Distinct variable groups:   𝑥, 0 ,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐸,𝑦   𝑥,𝐹,𝑦   𝑦,𝑉   𝑥,𝑊,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐶(𝑥)   𝐷(𝑥,𝑦)   𝑉(𝑥)

Proof of Theorem gsummpt2co
Dummy variables 𝑧 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcsb1v 3918 . . . 4 𝑥(2nd𝑝) / 𝑥𝐶
2 gsummpt2co.b . . . 4 𝐵 = (Base‘𝑊)
3 gsummpt2co.z . . . 4 0 = (0g𝑊)
4 csbeq1a 3907 . . . 4 (𝑥 = (2nd𝑝) → 𝐶 = (2nd𝑝) / 𝑥𝐶)
5 gsummpt2co.w . . . 4 (𝜑𝑊 ∈ CMnd)
6 gsummpt2co.a . . . 4 (𝜑𝐴 ∈ Fin)
7 ssidd 4005 . . . 4 (𝜑𝐵𝐵)
8 gsummpt2co.1 . . . 4 ((𝜑𝑥𝐴) → 𝐶𝐵)
9 elcnv 5876 . . . . . 6 (𝑝𝐹 ↔ ∃𝑧𝑥(𝑝 = ⟨𝑧, 𝑥⟩ ∧ 𝑥𝐹𝑧))
10 vex 3478 . . . . . . . . . 10 𝑧 ∈ V
11 vex 3478 . . . . . . . . . 10 𝑥 ∈ V
1210, 11op2ndd 7988 . . . . . . . . 9 (𝑝 = ⟨𝑧, 𝑥⟩ → (2nd𝑝) = 𝑥)
1312adantr 481 . . . . . . . 8 ((𝑝 = ⟨𝑧, 𝑥⟩ ∧ 𝑥𝐹𝑧) → (2nd𝑝) = 𝑥)
14 gsummpt2co.3 . . . . . . . . . . 11 𝐹 = (𝑥𝐴𝐷)
1514dmmptss 6240 . . . . . . . . . 10 dom 𝐹𝐴
1611, 10breldm 5908 . . . . . . . . . 10 (𝑥𝐹𝑧𝑥 ∈ dom 𝐹)
1715, 16sselid 3980 . . . . . . . . 9 (𝑥𝐹𝑧𝑥𝐴)
1817adantl 482 . . . . . . . 8 ((𝑝 = ⟨𝑧, 𝑥⟩ ∧ 𝑥𝐹𝑧) → 𝑥𝐴)
1913, 18eqeltrd 2833 . . . . . . 7 ((𝑝 = ⟨𝑧, 𝑥⟩ ∧ 𝑥𝐹𝑧) → (2nd𝑝) ∈ 𝐴)
2019exlimivv 1935 . . . . . 6 (∃𝑧𝑥(𝑝 = ⟨𝑧, 𝑥⟩ ∧ 𝑥𝐹𝑧) → (2nd𝑝) ∈ 𝐴)
219, 20sylbi 216 . . . . 5 (𝑝𝐹 → (2nd𝑝) ∈ 𝐴)
2221adantl 482 . . . 4 ((𝜑𝑝𝐹) → (2nd𝑝) ∈ 𝐴)
2314funmpt2 6587 . . . . . . 7 Fun 𝐹
24 funcnvcnv 6615 . . . . . . 7 (Fun 𝐹 → Fun 𝐹)
2523, 24ax-mp 5 . . . . . 6 Fun 𝐹
2625a1i 11 . . . . 5 ((𝜑𝑥𝐴) → Fun 𝐹)
27 dfdm4 5895 . . . . . . . 8 dom 𝐹 = ran 𝐹
2814dmeqi 5904 . . . . . . . . 9 dom 𝐹 = dom (𝑥𝐴𝐷)
29 gsummpt2co.2 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐷𝐸)
3029ralrimiva 3146 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴 𝐷𝐸)
31 dmmptg 6241 . . . . . . . . . 10 (∀𝑥𝐴 𝐷𝐸 → dom (𝑥𝐴𝐷) = 𝐴)
3230, 31syl 17 . . . . . . . . 9 (𝜑 → dom (𝑥𝐴𝐷) = 𝐴)
3328, 32eqtrid 2784 . . . . . . . 8 (𝜑 → dom 𝐹 = 𝐴)
3427, 33eqtr3id 2786 . . . . . . 7 (𝜑 → ran 𝐹 = 𝐴)
3534eleq2d 2819 . . . . . 6 (𝜑 → (𝑥 ∈ ran 𝐹𝑥𝐴))
3635biimpar 478 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ ran 𝐹)
37 relcnv 6103 . . . . . 6 Rel 𝐹
38 fcnvgreu 31936 . . . . . 6 (((Rel 𝐹 ∧ Fun 𝐹) ∧ 𝑥 ∈ ran 𝐹) → ∃!𝑝 𝐹𝑥 = (2nd𝑝))
3937, 38mpanl1 698 . . . . 5 ((Fun 𝐹𝑥 ∈ ran 𝐹) → ∃!𝑝 𝐹𝑥 = (2nd𝑝))
4026, 36, 39syl2anc 584 . . . 4 ((𝜑𝑥𝐴) → ∃!𝑝 𝐹𝑥 = (2nd𝑝))
411, 2, 3, 4, 5, 6, 7, 8, 22, 40gsummptf1o 19833 . . 3 (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑝𝐹(2nd𝑝) / 𝑥𝐶)))
4214rnmptss 7124 . . . . . . . 8 (∀𝑥𝐴 𝐷𝐸 → ran 𝐹𝐸)
4330, 42syl 17 . . . . . . 7 (𝜑 → ran 𝐹𝐸)
44 dfcnv2 31939 . . . . . . 7 (ran 𝐹𝐸𝐹 = 𝑧𝐸 ({𝑧} × (𝐹 “ {𝑧})))
4543, 44syl 17 . . . . . 6 (𝜑𝐹 = 𝑧𝐸 ({𝑧} × (𝐹 “ {𝑧})))
4645mpteq1d 5243 . . . . 5 (𝜑 → (𝑝𝐹(2nd𝑝) / 𝑥𝐶) = (𝑝 𝑧𝐸 ({𝑧} × (𝐹 “ {𝑧})) ↦ (2nd𝑝) / 𝑥𝐶))
47 nfcv 2903 . . . . . 6 𝑧(2nd𝑝) / 𝑥𝐶
48 csbeq1 3896 . . . . . . . 8 ((2nd𝑝) = 𝑥(2nd𝑝) / 𝑥𝐶 = 𝑥 / 𝑥𝐶)
4912, 48syl 17 . . . . . . 7 (𝑝 = ⟨𝑧, 𝑥⟩ → (2nd𝑝) / 𝑥𝐶 = 𝑥 / 𝑥𝐶)
50 csbid 3906 . . . . . . 7 𝑥 / 𝑥𝐶 = 𝐶
5149, 50eqtrdi 2788 . . . . . 6 (𝑝 = ⟨𝑧, 𝑥⟩ → (2nd𝑝) / 𝑥𝐶 = 𝐶)
5247, 1, 51mpomptxf 31943 . . . . 5 (𝑝 𝑧𝐸 ({𝑧} × (𝐹 “ {𝑧})) ↦ (2nd𝑝) / 𝑥𝐶) = (𝑧𝐸, 𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)
5346, 52eqtrdi 2788 . . . 4 (𝜑 → (𝑝𝐹(2nd𝑝) / 𝑥𝐶) = (𝑧𝐸, 𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶))
5453oveq2d 7427 . . 3 (𝜑 → (𝑊 Σg (𝑝𝐹(2nd𝑝) / 𝑥𝐶)) = (𝑊 Σg (𝑧𝐸, 𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)))
55 gsummpt2co.e . . . 4 (𝜑𝐸𝑉)
56 mptfi 9353 . . . . . . . 8 (𝐴 ∈ Fin → (𝑥𝐴𝐷) ∈ Fin)
5714, 56eqeltrid 2837 . . . . . . 7 (𝐴 ∈ Fin → 𝐹 ∈ Fin)
58 cnvfi 9182 . . . . . . 7 (𝐹 ∈ Fin → 𝐹 ∈ Fin)
596, 57, 583syl 18 . . . . . 6 (𝜑𝐹 ∈ Fin)
60 imaexg 7908 . . . . . 6 (𝐹 ∈ Fin → (𝐹 “ {𝑧}) ∈ V)
6159, 60syl 17 . . . . 5 (𝜑 → (𝐹 “ {𝑧}) ∈ V)
6261adantr 481 . . . 4 ((𝜑𝑧𝐸) → (𝐹 “ {𝑧}) ∈ V)
63 simpll 765 . . . . . 6 (((𝜑𝑧𝐸) ∧ 𝑥 ∈ (𝐹 “ {𝑧})) → 𝜑)
64 imassrn 6070 . . . . . . . . 9 (𝐹 “ {𝑧}) ⊆ ran 𝐹
6564, 27sseqtrri 4019 . . . . . . . 8 (𝐹 “ {𝑧}) ⊆ dom 𝐹
6665, 15sstri 3991 . . . . . . 7 (𝐹 “ {𝑧}) ⊆ 𝐴
6710, 11elimasn 6088 . . . . . . . . . 10 (𝑥 ∈ (𝐹 “ {𝑧}) ↔ ⟨𝑧, 𝑥⟩ ∈ 𝐹)
6867biimpi 215 . . . . . . . . 9 (𝑥 ∈ (𝐹 “ {𝑧}) → ⟨𝑧, 𝑥⟩ ∈ 𝐹)
6968adantl 482 . . . . . . . 8 (((𝜑𝑧𝐸) ∧ 𝑥 ∈ (𝐹 “ {𝑧})) → ⟨𝑧, 𝑥⟩ ∈ 𝐹)
7069, 67sylibr 233 . . . . . . 7 (((𝜑𝑧𝐸) ∧ 𝑥 ∈ (𝐹 “ {𝑧})) → 𝑥 ∈ (𝐹 “ {𝑧}))
7166, 70sselid 3980 . . . . . 6 (((𝜑𝑧𝐸) ∧ 𝑥 ∈ (𝐹 “ {𝑧})) → 𝑥𝐴)
7263, 71, 8syl2anc 584 . . . . 5 (((𝜑𝑧𝐸) ∧ 𝑥 ∈ (𝐹 “ {𝑧})) → 𝐶𝐵)
7372anasss 467 . . . 4 ((𝜑 ∧ (𝑧𝐸𝑥 ∈ (𝐹 “ {𝑧}))) → 𝐶𝐵)
74 df-br 5149 . . . . . . . . 9 (𝑧𝐹𝑥 ↔ ⟨𝑧, 𝑥⟩ ∈ 𝐹)
7569, 74sylibr 233 . . . . . . . 8 (((𝜑𝑧𝐸) ∧ 𝑥 ∈ (𝐹 “ {𝑧})) → 𝑧𝐹𝑥)
7675anasss 467 . . . . . . 7 ((𝜑 ∧ (𝑧𝐸𝑥 ∈ (𝐹 “ {𝑧}))) → 𝑧𝐹𝑥)
7776pm2.24d 151 . . . . . 6 ((𝜑 ∧ (𝑧𝐸𝑥 ∈ (𝐹 “ {𝑧}))) → (¬ 𝑧𝐹𝑥𝐶 = 0 ))
7877imp 407 . . . . 5 (((𝜑 ∧ (𝑧𝐸𝑥 ∈ (𝐹 “ {𝑧}))) ∧ ¬ 𝑧𝐹𝑥) → 𝐶 = 0 )
7978anasss 467 . . . 4 ((𝜑 ∧ ((𝑧𝐸𝑥 ∈ (𝐹 “ {𝑧})) ∧ ¬ 𝑧𝐹𝑥)) → 𝐶 = 0 )
802, 3, 5, 55, 62, 73, 59, 79gsum2d2 19844 . . 3 (𝜑 → (𝑊 Σg (𝑧𝐸, 𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)) = (𝑊 Σg (𝑧𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)))))
8141, 54, 803eqtrd 2776 . 2 (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑧𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)))))
82 nfcv 2903 . . . 4 𝑧(𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶))
83 nfcv 2903 . . . 4 𝑦(𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶))
84 sneq 4638 . . . . . . 7 (𝑦 = 𝑧 → {𝑦} = {𝑧})
8584imaeq2d 6059 . . . . . 6 (𝑦 = 𝑧 → (𝐹 “ {𝑦}) = (𝐹 “ {𝑧}))
8685mpteq1d 5243 . . . . 5 (𝑦 = 𝑧 → (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶) = (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶))
8786oveq2d 7427 . . . 4 (𝑦 = 𝑧 → (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶)) = (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)))
8882, 83, 87cbvmpt 5259 . . 3 (𝑦𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶))) = (𝑧𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)))
8988oveq2i 7422 . 2 (𝑊 Σg (𝑦𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶)))) = (𝑊 Σg (𝑧𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶))))
9081, 89eqtr4di 2790 1 (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑦𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wex 1781  wcel 2106  wral 3061  ∃!wreu 3374  Vcvv 3474  csb 3893  wss 3948  {csn 4628  cop 4634   ciun 4997   class class class wbr 5148  cmpt 5231   × cxp 5674  ccnv 5675  dom cdm 5676  ran crn 5677  cima 5679  Rel wrel 5681  Fun wfun 6537  cfv 6543  (class class class)co 7411  cmpo 7413  2nd c2nd 7976  Fincfn 8941  Basecbs 17146  0gc0g 17387   Σg cgsu 17388  CMndccmn 19650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-oi 9507  df-card 9936  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-nn 12215  df-2 12277  df-n0 12475  df-z 12561  df-uz 12825  df-fz 13487  df-fzo 13630  df-seq 13969  df-hash 14293  df-sets 17099  df-slot 17117  df-ndx 17129  df-base 17147  df-ress 17176  df-plusg 17212  df-0g 17389  df-gsum 17390  df-mre 17532  df-mrc 17533  df-acs 17535  df-mgm 18563  df-sgrp 18612  df-mnd 18628  df-submnd 18674  df-mulg 18953  df-cntz 19183  df-cmn 19652
This theorem is referenced by:  gsummpt2d  32242
  Copyright terms: Public domain W3C validator