Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsummpt2co Structured version   Visualization version   GIF version

Theorem gsummpt2co 32988
Description: Split a finite sum into a sum of a collection of sums over disjoint subsets. (Contributed by Thierry Arnoux, 27-Mar-2018.)
Hypotheses
Ref Expression
gsummpt2co.b 𝐵 = (Base‘𝑊)
gsummpt2co.z 0 = (0g𝑊)
gsummpt2co.w (𝜑𝑊 ∈ CMnd)
gsummpt2co.a (𝜑𝐴 ∈ Fin)
gsummpt2co.e (𝜑𝐸𝑉)
gsummpt2co.1 ((𝜑𝑥𝐴) → 𝐶𝐵)
gsummpt2co.2 ((𝜑𝑥𝐴) → 𝐷𝐸)
gsummpt2co.3 𝐹 = (𝑥𝐴𝐷)
Assertion
Ref Expression
gsummpt2co (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑦𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶)))))
Distinct variable groups:   𝑥, 0 ,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐸,𝑦   𝑥,𝐹,𝑦   𝑦,𝑉   𝑥,𝑊,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐶(𝑥)   𝐷(𝑥,𝑦)   𝑉(𝑥)

Proof of Theorem gsummpt2co
Dummy variables 𝑧 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcsb1v 3886 . . . 4 𝑥(2nd𝑝) / 𝑥𝐶
2 gsummpt2co.b . . . 4 𝐵 = (Base‘𝑊)
3 gsummpt2co.z . . . 4 0 = (0g𝑊)
4 csbeq1a 3876 . . . 4 (𝑥 = (2nd𝑝) → 𝐶 = (2nd𝑝) / 𝑥𝐶)
5 gsummpt2co.w . . . 4 (𝜑𝑊 ∈ CMnd)
6 gsummpt2co.a . . . 4 (𝜑𝐴 ∈ Fin)
7 ssidd 3970 . . . 4 (𝜑𝐵𝐵)
8 gsummpt2co.1 . . . 4 ((𝜑𝑥𝐴) → 𝐶𝐵)
9 elcnv 5840 . . . . . 6 (𝑝𝐹 ↔ ∃𝑧𝑥(𝑝 = ⟨𝑧, 𝑥⟩ ∧ 𝑥𝐹𝑧))
10 vex 3451 . . . . . . . . . 10 𝑧 ∈ V
11 vex 3451 . . . . . . . . . 10 𝑥 ∈ V
1210, 11op2ndd 7979 . . . . . . . . 9 (𝑝 = ⟨𝑧, 𝑥⟩ → (2nd𝑝) = 𝑥)
1312adantr 480 . . . . . . . 8 ((𝑝 = ⟨𝑧, 𝑥⟩ ∧ 𝑥𝐹𝑧) → (2nd𝑝) = 𝑥)
14 gsummpt2co.3 . . . . . . . . . . 11 𝐹 = (𝑥𝐴𝐷)
1514dmmptss 6214 . . . . . . . . . 10 dom 𝐹𝐴
1611, 10breldm 5872 . . . . . . . . . 10 (𝑥𝐹𝑧𝑥 ∈ dom 𝐹)
1715, 16sselid 3944 . . . . . . . . 9 (𝑥𝐹𝑧𝑥𝐴)
1817adantl 481 . . . . . . . 8 ((𝑝 = ⟨𝑧, 𝑥⟩ ∧ 𝑥𝐹𝑧) → 𝑥𝐴)
1913, 18eqeltrd 2828 . . . . . . 7 ((𝑝 = ⟨𝑧, 𝑥⟩ ∧ 𝑥𝐹𝑧) → (2nd𝑝) ∈ 𝐴)
2019exlimivv 1932 . . . . . 6 (∃𝑧𝑥(𝑝 = ⟨𝑧, 𝑥⟩ ∧ 𝑥𝐹𝑧) → (2nd𝑝) ∈ 𝐴)
219, 20sylbi 217 . . . . 5 (𝑝𝐹 → (2nd𝑝) ∈ 𝐴)
2221adantl 481 . . . 4 ((𝜑𝑝𝐹) → (2nd𝑝) ∈ 𝐴)
2314funmpt2 6555 . . . . . . 7 Fun 𝐹
24 funcnvcnv 6583 . . . . . . 7 (Fun 𝐹 → Fun 𝐹)
2523, 24ax-mp 5 . . . . . 6 Fun 𝐹
2625a1i 11 . . . . 5 ((𝜑𝑥𝐴) → Fun 𝐹)
27 dfdm4 5859 . . . . . . . 8 dom 𝐹 = ran 𝐹
2814dmeqi 5868 . . . . . . . . 9 dom 𝐹 = dom (𝑥𝐴𝐷)
29 gsummpt2co.2 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐷𝐸)
3029ralrimiva 3125 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴 𝐷𝐸)
31 dmmptg 6215 . . . . . . . . . 10 (∀𝑥𝐴 𝐷𝐸 → dom (𝑥𝐴𝐷) = 𝐴)
3230, 31syl 17 . . . . . . . . 9 (𝜑 → dom (𝑥𝐴𝐷) = 𝐴)
3328, 32eqtrid 2776 . . . . . . . 8 (𝜑 → dom 𝐹 = 𝐴)
3427, 33eqtr3id 2778 . . . . . . 7 (𝜑 → ran 𝐹 = 𝐴)
3534eleq2d 2814 . . . . . 6 (𝜑 → (𝑥 ∈ ran 𝐹𝑥𝐴))
3635biimpar 477 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ ran 𝐹)
37 relcnv 6075 . . . . . 6 Rel 𝐹
38 fcnvgreu 32597 . . . . . 6 (((Rel 𝐹 ∧ Fun 𝐹) ∧ 𝑥 ∈ ran 𝐹) → ∃!𝑝 𝐹𝑥 = (2nd𝑝))
3937, 38mpanl1 700 . . . . 5 ((Fun 𝐹𝑥 ∈ ran 𝐹) → ∃!𝑝 𝐹𝑥 = (2nd𝑝))
4026, 36, 39syl2anc 584 . . . 4 ((𝜑𝑥𝐴) → ∃!𝑝 𝐹𝑥 = (2nd𝑝))
411, 2, 3, 4, 5, 6, 7, 8, 22, 40gsummptf1o 19893 . . 3 (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑝𝐹(2nd𝑝) / 𝑥𝐶)))
4214rnmptss 7095 . . . . . . . 8 (∀𝑥𝐴 𝐷𝐸 → ran 𝐹𝐸)
4330, 42syl 17 . . . . . . 7 (𝜑 → ran 𝐹𝐸)
44 dfcnv2 32600 . . . . . . 7 (ran 𝐹𝐸𝐹 = 𝑧𝐸 ({𝑧} × (𝐹 “ {𝑧})))
4543, 44syl 17 . . . . . 6 (𝜑𝐹 = 𝑧𝐸 ({𝑧} × (𝐹 “ {𝑧})))
4645mpteq1d 5197 . . . . 5 (𝜑 → (𝑝𝐹(2nd𝑝) / 𝑥𝐶) = (𝑝 𝑧𝐸 ({𝑧} × (𝐹 “ {𝑧})) ↦ (2nd𝑝) / 𝑥𝐶))
47 nfcv 2891 . . . . . 6 𝑧(2nd𝑝) / 𝑥𝐶
48 csbeq1 3865 . . . . . . . 8 ((2nd𝑝) = 𝑥(2nd𝑝) / 𝑥𝐶 = 𝑥 / 𝑥𝐶)
4912, 48syl 17 . . . . . . 7 (𝑝 = ⟨𝑧, 𝑥⟩ → (2nd𝑝) / 𝑥𝐶 = 𝑥 / 𝑥𝐶)
50 csbid 3875 . . . . . . 7 𝑥 / 𝑥𝐶 = 𝐶
5149, 50eqtrdi 2780 . . . . . 6 (𝑝 = ⟨𝑧, 𝑥⟩ → (2nd𝑝) / 𝑥𝐶 = 𝐶)
5247, 1, 51mpomptxf 32601 . . . . 5 (𝑝 𝑧𝐸 ({𝑧} × (𝐹 “ {𝑧})) ↦ (2nd𝑝) / 𝑥𝐶) = (𝑧𝐸, 𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)
5346, 52eqtrdi 2780 . . . 4 (𝜑 → (𝑝𝐹(2nd𝑝) / 𝑥𝐶) = (𝑧𝐸, 𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶))
5453oveq2d 7403 . . 3 (𝜑 → (𝑊 Σg (𝑝𝐹(2nd𝑝) / 𝑥𝐶)) = (𝑊 Σg (𝑧𝐸, 𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)))
55 gsummpt2co.e . . . 4 (𝜑𝐸𝑉)
56 mptfi 9302 . . . . . . . 8 (𝐴 ∈ Fin → (𝑥𝐴𝐷) ∈ Fin)
5714, 56eqeltrid 2832 . . . . . . 7 (𝐴 ∈ Fin → 𝐹 ∈ Fin)
58 cnvfi 9140 . . . . . . 7 (𝐹 ∈ Fin → 𝐹 ∈ Fin)
596, 57, 583syl 18 . . . . . 6 (𝜑𝐹 ∈ Fin)
60 imaexg 7889 . . . . . 6 (𝐹 ∈ Fin → (𝐹 “ {𝑧}) ∈ V)
6159, 60syl 17 . . . . 5 (𝜑 → (𝐹 “ {𝑧}) ∈ V)
6261adantr 480 . . . 4 ((𝜑𝑧𝐸) → (𝐹 “ {𝑧}) ∈ V)
63 simpll 766 . . . . . 6 (((𝜑𝑧𝐸) ∧ 𝑥 ∈ (𝐹 “ {𝑧})) → 𝜑)
64 imassrn 6042 . . . . . . . . 9 (𝐹 “ {𝑧}) ⊆ ran 𝐹
6564, 27sseqtrri 3996 . . . . . . . 8 (𝐹 “ {𝑧}) ⊆ dom 𝐹
6665, 15sstri 3956 . . . . . . 7 (𝐹 “ {𝑧}) ⊆ 𝐴
6710, 11elimasn 6061 . . . . . . . . . 10 (𝑥 ∈ (𝐹 “ {𝑧}) ↔ ⟨𝑧, 𝑥⟩ ∈ 𝐹)
6867biimpi 216 . . . . . . . . 9 (𝑥 ∈ (𝐹 “ {𝑧}) → ⟨𝑧, 𝑥⟩ ∈ 𝐹)
6968adantl 481 . . . . . . . 8 (((𝜑𝑧𝐸) ∧ 𝑥 ∈ (𝐹 “ {𝑧})) → ⟨𝑧, 𝑥⟩ ∈ 𝐹)
7069, 67sylibr 234 . . . . . . 7 (((𝜑𝑧𝐸) ∧ 𝑥 ∈ (𝐹 “ {𝑧})) → 𝑥 ∈ (𝐹 “ {𝑧}))
7166, 70sselid 3944 . . . . . 6 (((𝜑𝑧𝐸) ∧ 𝑥 ∈ (𝐹 “ {𝑧})) → 𝑥𝐴)
7263, 71, 8syl2anc 584 . . . . 5 (((𝜑𝑧𝐸) ∧ 𝑥 ∈ (𝐹 “ {𝑧})) → 𝐶𝐵)
7372anasss 466 . . . 4 ((𝜑 ∧ (𝑧𝐸𝑥 ∈ (𝐹 “ {𝑧}))) → 𝐶𝐵)
74 df-br 5108 . . . . . . . . 9 (𝑧𝐹𝑥 ↔ ⟨𝑧, 𝑥⟩ ∈ 𝐹)
7569, 74sylibr 234 . . . . . . . 8 (((𝜑𝑧𝐸) ∧ 𝑥 ∈ (𝐹 “ {𝑧})) → 𝑧𝐹𝑥)
7675anasss 466 . . . . . . 7 ((𝜑 ∧ (𝑧𝐸𝑥 ∈ (𝐹 “ {𝑧}))) → 𝑧𝐹𝑥)
7776pm2.24d 151 . . . . . 6 ((𝜑 ∧ (𝑧𝐸𝑥 ∈ (𝐹 “ {𝑧}))) → (¬ 𝑧𝐹𝑥𝐶 = 0 ))
7877imp 406 . . . . 5 (((𝜑 ∧ (𝑧𝐸𝑥 ∈ (𝐹 “ {𝑧}))) ∧ ¬ 𝑧𝐹𝑥) → 𝐶 = 0 )
7978anasss 466 . . . 4 ((𝜑 ∧ ((𝑧𝐸𝑥 ∈ (𝐹 “ {𝑧})) ∧ ¬ 𝑧𝐹𝑥)) → 𝐶 = 0 )
802, 3, 5, 55, 62, 73, 59, 79gsum2d2 19904 . . 3 (𝜑 → (𝑊 Σg (𝑧𝐸, 𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)) = (𝑊 Σg (𝑧𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)))))
8141, 54, 803eqtrd 2768 . 2 (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑧𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)))))
82 nfcv 2891 . . . 4 𝑧(𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶))
83 nfcv 2891 . . . 4 𝑦(𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶))
84 sneq 4599 . . . . . . 7 (𝑦 = 𝑧 → {𝑦} = {𝑧})
8584imaeq2d 6031 . . . . . 6 (𝑦 = 𝑧 → (𝐹 “ {𝑦}) = (𝐹 “ {𝑧}))
8685mpteq1d 5197 . . . . 5 (𝑦 = 𝑧 → (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶) = (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶))
8786oveq2d 7403 . . . 4 (𝑦 = 𝑧 → (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶)) = (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)))
8882, 83, 87cbvmpt 5209 . . 3 (𝑦𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶))) = (𝑧𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)))
8988oveq2i 7398 . 2 (𝑊 Σg (𝑦𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶)))) = (𝑊 Σg (𝑧𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶))))
9081, 89eqtr4di 2782 1 (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑦𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  ∃!wreu 3352  Vcvv 3447  csb 3862  wss 3914  {csn 4589  cop 4595   ciun 4955   class class class wbr 5107  cmpt 5188   × cxp 5636  ccnv 5637  dom cdm 5638  ran crn 5639  cima 5641  Rel wrel 5643  Fun wfun 6505  cfv 6511  (class class class)co 7387  cmpo 7389  2nd c2nd 7967  Fincfn 8918  Basecbs 17179  0gc0g 17402   Σg cgsu 17403  CMndccmn 19710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-gsum 17405  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712
This theorem is referenced by:  gsummpt2d  32989  elrgspnsubrunlem2  33199
  Copyright terms: Public domain W3C validator