Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsummpt2co Structured version   Visualization version   GIF version

Theorem gsummpt2co 33033
Description: Split a finite sum into a sum of a collection of sums over disjoint subsets. (Contributed by Thierry Arnoux, 27-Mar-2018.)
Hypotheses
Ref Expression
gsummpt2co.b 𝐵 = (Base‘𝑊)
gsummpt2co.z 0 = (0g𝑊)
gsummpt2co.w (𝜑𝑊 ∈ CMnd)
gsummpt2co.a (𝜑𝐴 ∈ Fin)
gsummpt2co.e (𝜑𝐸𝑉)
gsummpt2co.1 ((𝜑𝑥𝐴) → 𝐶𝐵)
gsummpt2co.2 ((𝜑𝑥𝐴) → 𝐷𝐸)
gsummpt2co.3 𝐹 = (𝑥𝐴𝐷)
Assertion
Ref Expression
gsummpt2co (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑦𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶)))))
Distinct variable groups:   𝑥, 0 ,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐸,𝑦   𝑥,𝐹,𝑦   𝑦,𝑉   𝑥,𝑊,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐶(𝑥)   𝐷(𝑥,𝑦)   𝑉(𝑥)

Proof of Theorem gsummpt2co
Dummy variables 𝑧 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcsb1v 3932 . . . 4 𝑥(2nd𝑝) / 𝑥𝐶
2 gsummpt2co.b . . . 4 𝐵 = (Base‘𝑊)
3 gsummpt2co.z . . . 4 0 = (0g𝑊)
4 csbeq1a 3921 . . . 4 (𝑥 = (2nd𝑝) → 𝐶 = (2nd𝑝) / 𝑥𝐶)
5 gsummpt2co.w . . . 4 (𝜑𝑊 ∈ CMnd)
6 gsummpt2co.a . . . 4 (𝜑𝐴 ∈ Fin)
7 ssidd 4018 . . . 4 (𝜑𝐵𝐵)
8 gsummpt2co.1 . . . 4 ((𝜑𝑥𝐴) → 𝐶𝐵)
9 elcnv 5889 . . . . . 6 (𝑝𝐹 ↔ ∃𝑧𝑥(𝑝 = ⟨𝑧, 𝑥⟩ ∧ 𝑥𝐹𝑧))
10 vex 3481 . . . . . . . . . 10 𝑧 ∈ V
11 vex 3481 . . . . . . . . . 10 𝑥 ∈ V
1210, 11op2ndd 8023 . . . . . . . . 9 (𝑝 = ⟨𝑧, 𝑥⟩ → (2nd𝑝) = 𝑥)
1312adantr 480 . . . . . . . 8 ((𝑝 = ⟨𝑧, 𝑥⟩ ∧ 𝑥𝐹𝑧) → (2nd𝑝) = 𝑥)
14 gsummpt2co.3 . . . . . . . . . . 11 𝐹 = (𝑥𝐴𝐷)
1514dmmptss 6262 . . . . . . . . . 10 dom 𝐹𝐴
1611, 10breldm 5921 . . . . . . . . . 10 (𝑥𝐹𝑧𝑥 ∈ dom 𝐹)
1715, 16sselid 3992 . . . . . . . . 9 (𝑥𝐹𝑧𝑥𝐴)
1817adantl 481 . . . . . . . 8 ((𝑝 = ⟨𝑧, 𝑥⟩ ∧ 𝑥𝐹𝑧) → 𝑥𝐴)
1913, 18eqeltrd 2838 . . . . . . 7 ((𝑝 = ⟨𝑧, 𝑥⟩ ∧ 𝑥𝐹𝑧) → (2nd𝑝) ∈ 𝐴)
2019exlimivv 1929 . . . . . 6 (∃𝑧𝑥(𝑝 = ⟨𝑧, 𝑥⟩ ∧ 𝑥𝐹𝑧) → (2nd𝑝) ∈ 𝐴)
219, 20sylbi 217 . . . . 5 (𝑝𝐹 → (2nd𝑝) ∈ 𝐴)
2221adantl 481 . . . 4 ((𝜑𝑝𝐹) → (2nd𝑝) ∈ 𝐴)
2314funmpt2 6606 . . . . . . 7 Fun 𝐹
24 funcnvcnv 6634 . . . . . . 7 (Fun 𝐹 → Fun 𝐹)
2523, 24ax-mp 5 . . . . . 6 Fun 𝐹
2625a1i 11 . . . . 5 ((𝜑𝑥𝐴) → Fun 𝐹)
27 dfdm4 5908 . . . . . . . 8 dom 𝐹 = ran 𝐹
2814dmeqi 5917 . . . . . . . . 9 dom 𝐹 = dom (𝑥𝐴𝐷)
29 gsummpt2co.2 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐷𝐸)
3029ralrimiva 3143 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴 𝐷𝐸)
31 dmmptg 6263 . . . . . . . . . 10 (∀𝑥𝐴 𝐷𝐸 → dom (𝑥𝐴𝐷) = 𝐴)
3230, 31syl 17 . . . . . . . . 9 (𝜑 → dom (𝑥𝐴𝐷) = 𝐴)
3328, 32eqtrid 2786 . . . . . . . 8 (𝜑 → dom 𝐹 = 𝐴)
3427, 33eqtr3id 2788 . . . . . . 7 (𝜑 → ran 𝐹 = 𝐴)
3534eleq2d 2824 . . . . . 6 (𝜑 → (𝑥 ∈ ran 𝐹𝑥𝐴))
3635biimpar 477 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ ran 𝐹)
37 relcnv 6124 . . . . . 6 Rel 𝐹
38 fcnvgreu 32689 . . . . . 6 (((Rel 𝐹 ∧ Fun 𝐹) ∧ 𝑥 ∈ ran 𝐹) → ∃!𝑝 𝐹𝑥 = (2nd𝑝))
3937, 38mpanl1 700 . . . . 5 ((Fun 𝐹𝑥 ∈ ran 𝐹) → ∃!𝑝 𝐹𝑥 = (2nd𝑝))
4026, 36, 39syl2anc 584 . . . 4 ((𝜑𝑥𝐴) → ∃!𝑝 𝐹𝑥 = (2nd𝑝))
411, 2, 3, 4, 5, 6, 7, 8, 22, 40gsummptf1o 19995 . . 3 (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑝𝐹(2nd𝑝) / 𝑥𝐶)))
4214rnmptss 7142 . . . . . . . 8 (∀𝑥𝐴 𝐷𝐸 → ran 𝐹𝐸)
4330, 42syl 17 . . . . . . 7 (𝜑 → ran 𝐹𝐸)
44 dfcnv2 32692 . . . . . . 7 (ran 𝐹𝐸𝐹 = 𝑧𝐸 ({𝑧} × (𝐹 “ {𝑧})))
4543, 44syl 17 . . . . . 6 (𝜑𝐹 = 𝑧𝐸 ({𝑧} × (𝐹 “ {𝑧})))
4645mpteq1d 5242 . . . . 5 (𝜑 → (𝑝𝐹(2nd𝑝) / 𝑥𝐶) = (𝑝 𝑧𝐸 ({𝑧} × (𝐹 “ {𝑧})) ↦ (2nd𝑝) / 𝑥𝐶))
47 nfcv 2902 . . . . . 6 𝑧(2nd𝑝) / 𝑥𝐶
48 csbeq1 3910 . . . . . . . 8 ((2nd𝑝) = 𝑥(2nd𝑝) / 𝑥𝐶 = 𝑥 / 𝑥𝐶)
4912, 48syl 17 . . . . . . 7 (𝑝 = ⟨𝑧, 𝑥⟩ → (2nd𝑝) / 𝑥𝐶 = 𝑥 / 𝑥𝐶)
50 csbid 3920 . . . . . . 7 𝑥 / 𝑥𝐶 = 𝐶
5149, 50eqtrdi 2790 . . . . . 6 (𝑝 = ⟨𝑧, 𝑥⟩ → (2nd𝑝) / 𝑥𝐶 = 𝐶)
5247, 1, 51mpomptxf 32693 . . . . 5 (𝑝 𝑧𝐸 ({𝑧} × (𝐹 “ {𝑧})) ↦ (2nd𝑝) / 𝑥𝐶) = (𝑧𝐸, 𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)
5346, 52eqtrdi 2790 . . . 4 (𝜑 → (𝑝𝐹(2nd𝑝) / 𝑥𝐶) = (𝑧𝐸, 𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶))
5453oveq2d 7446 . . 3 (𝜑 → (𝑊 Σg (𝑝𝐹(2nd𝑝) / 𝑥𝐶)) = (𝑊 Σg (𝑧𝐸, 𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)))
55 gsummpt2co.e . . . 4 (𝜑𝐸𝑉)
56 mptfi 9388 . . . . . . . 8 (𝐴 ∈ Fin → (𝑥𝐴𝐷) ∈ Fin)
5714, 56eqeltrid 2842 . . . . . . 7 (𝐴 ∈ Fin → 𝐹 ∈ Fin)
58 cnvfi 9214 . . . . . . 7 (𝐹 ∈ Fin → 𝐹 ∈ Fin)
596, 57, 583syl 18 . . . . . 6 (𝜑𝐹 ∈ Fin)
60 imaexg 7935 . . . . . 6 (𝐹 ∈ Fin → (𝐹 “ {𝑧}) ∈ V)
6159, 60syl 17 . . . . 5 (𝜑 → (𝐹 “ {𝑧}) ∈ V)
6261adantr 480 . . . 4 ((𝜑𝑧𝐸) → (𝐹 “ {𝑧}) ∈ V)
63 simpll 767 . . . . . 6 (((𝜑𝑧𝐸) ∧ 𝑥 ∈ (𝐹 “ {𝑧})) → 𝜑)
64 imassrn 6090 . . . . . . . . 9 (𝐹 “ {𝑧}) ⊆ ran 𝐹
6564, 27sseqtrri 4032 . . . . . . . 8 (𝐹 “ {𝑧}) ⊆ dom 𝐹
6665, 15sstri 4004 . . . . . . 7 (𝐹 “ {𝑧}) ⊆ 𝐴
6710, 11elimasn 6109 . . . . . . . . . 10 (𝑥 ∈ (𝐹 “ {𝑧}) ↔ ⟨𝑧, 𝑥⟩ ∈ 𝐹)
6867biimpi 216 . . . . . . . . 9 (𝑥 ∈ (𝐹 “ {𝑧}) → ⟨𝑧, 𝑥⟩ ∈ 𝐹)
6968adantl 481 . . . . . . . 8 (((𝜑𝑧𝐸) ∧ 𝑥 ∈ (𝐹 “ {𝑧})) → ⟨𝑧, 𝑥⟩ ∈ 𝐹)
7069, 67sylibr 234 . . . . . . 7 (((𝜑𝑧𝐸) ∧ 𝑥 ∈ (𝐹 “ {𝑧})) → 𝑥 ∈ (𝐹 “ {𝑧}))
7166, 70sselid 3992 . . . . . 6 (((𝜑𝑧𝐸) ∧ 𝑥 ∈ (𝐹 “ {𝑧})) → 𝑥𝐴)
7263, 71, 8syl2anc 584 . . . . 5 (((𝜑𝑧𝐸) ∧ 𝑥 ∈ (𝐹 “ {𝑧})) → 𝐶𝐵)
7372anasss 466 . . . 4 ((𝜑 ∧ (𝑧𝐸𝑥 ∈ (𝐹 “ {𝑧}))) → 𝐶𝐵)
74 df-br 5148 . . . . . . . . 9 (𝑧𝐹𝑥 ↔ ⟨𝑧, 𝑥⟩ ∈ 𝐹)
7569, 74sylibr 234 . . . . . . . 8 (((𝜑𝑧𝐸) ∧ 𝑥 ∈ (𝐹 “ {𝑧})) → 𝑧𝐹𝑥)
7675anasss 466 . . . . . . 7 ((𝜑 ∧ (𝑧𝐸𝑥 ∈ (𝐹 “ {𝑧}))) → 𝑧𝐹𝑥)
7776pm2.24d 151 . . . . . 6 ((𝜑 ∧ (𝑧𝐸𝑥 ∈ (𝐹 “ {𝑧}))) → (¬ 𝑧𝐹𝑥𝐶 = 0 ))
7877imp 406 . . . . 5 (((𝜑 ∧ (𝑧𝐸𝑥 ∈ (𝐹 “ {𝑧}))) ∧ ¬ 𝑧𝐹𝑥) → 𝐶 = 0 )
7978anasss 466 . . . 4 ((𝜑 ∧ ((𝑧𝐸𝑥 ∈ (𝐹 “ {𝑧})) ∧ ¬ 𝑧𝐹𝑥)) → 𝐶 = 0 )
802, 3, 5, 55, 62, 73, 59, 79gsum2d2 20006 . . 3 (𝜑 → (𝑊 Σg (𝑧𝐸, 𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)) = (𝑊 Σg (𝑧𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)))))
8141, 54, 803eqtrd 2778 . 2 (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑧𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)))))
82 nfcv 2902 . . . 4 𝑧(𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶))
83 nfcv 2902 . . . 4 𝑦(𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶))
84 sneq 4640 . . . . . . 7 (𝑦 = 𝑧 → {𝑦} = {𝑧})
8584imaeq2d 6079 . . . . . 6 (𝑦 = 𝑧 → (𝐹 “ {𝑦}) = (𝐹 “ {𝑧}))
8685mpteq1d 5242 . . . . 5 (𝑦 = 𝑧 → (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶) = (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶))
8786oveq2d 7446 . . . 4 (𝑦 = 𝑧 → (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶)) = (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)))
8882, 83, 87cbvmpt 5258 . . 3 (𝑦𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶))) = (𝑧𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)))
8988oveq2i 7441 . 2 (𝑊 Σg (𝑦𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶)))) = (𝑊 Σg (𝑧𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶))))
9081, 89eqtr4di 2792 1 (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑦𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1536  wex 1775  wcel 2105  wral 3058  ∃!wreu 3375  Vcvv 3477  csb 3907  wss 3962  {csn 4630  cop 4636   ciun 4995   class class class wbr 5147  cmpt 5230   × cxp 5686  ccnv 5687  dom cdm 5688  ran crn 5689  cima 5691  Rel wrel 5693  Fun wfun 6556  cfv 6562  (class class class)co 7430  cmpo 7432  2nd c2nd 8011  Fincfn 8983  Basecbs 17244  0gc0g 17485   Σg cgsu 17486  CMndccmn 19812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-fzo 13691  df-seq 14039  df-hash 14366  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-0g 17487  df-gsum 17488  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814
This theorem is referenced by:  gsummpt2d  33034
  Copyright terms: Public domain W3C validator