Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsummpt2co Structured version   Visualization version   GIF version

Theorem gsummpt2co 30619
 Description: Split a finite sum into a sum of a collection of sums over disjoint subsets. (Contributed by Thierry Arnoux, 27-Mar-2018.)
Hypotheses
Ref Expression
gsummpt2co.b 𝐵 = (Base‘𝑊)
gsummpt2co.z 0 = (0g𝑊)
gsummpt2co.w (𝜑𝑊 ∈ CMnd)
gsummpt2co.a (𝜑𝐴 ∈ Fin)
gsummpt2co.e (𝜑𝐸𝑉)
gsummpt2co.1 ((𝜑𝑥𝐴) → 𝐶𝐵)
gsummpt2co.2 ((𝜑𝑥𝐴) → 𝐷𝐸)
gsummpt2co.3 𝐹 = (𝑥𝐴𝐷)
Assertion
Ref Expression
gsummpt2co (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑦𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶)))))
Distinct variable groups:   𝑥, 0 ,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐸,𝑦   𝑥,𝐹,𝑦   𝑦,𝑉   𝑥,𝑊,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐶(𝑥)   𝐷(𝑥,𝑦)   𝑉(𝑥)

Proof of Theorem gsummpt2co
Dummy variables 𝑧 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcsb1v 3911 . . . 4 𝑥(2nd𝑝) / 𝑥𝐶
2 gsummpt2co.b . . . 4 𝐵 = (Base‘𝑊)
3 gsummpt2co.z . . . 4 0 = (0g𝑊)
4 csbeq1a 3901 . . . 4 (𝑥 = (2nd𝑝) → 𝐶 = (2nd𝑝) / 𝑥𝐶)
5 gsummpt2co.w . . . 4 (𝜑𝑊 ∈ CMnd)
6 gsummpt2co.a . . . 4 (𝜑𝐴 ∈ Fin)
7 ssidd 3994 . . . 4 (𝜑𝐵𝐵)
8 gsummpt2co.1 . . . 4 ((𝜑𝑥𝐴) → 𝐶𝐵)
9 elcnv 5746 . . . . . 6 (𝑝𝐹 ↔ ∃𝑧𝑥(𝑝 = ⟨𝑧, 𝑥⟩ ∧ 𝑥𝐹𝑧))
10 vex 3503 . . . . . . . . . 10 𝑧 ∈ V
11 vex 3503 . . . . . . . . . 10 𝑥 ∈ V
1210, 11op2ndd 7696 . . . . . . . . 9 (𝑝 = ⟨𝑧, 𝑥⟩ → (2nd𝑝) = 𝑥)
1312adantr 481 . . . . . . . 8 ((𝑝 = ⟨𝑧, 𝑥⟩ ∧ 𝑥𝐹𝑧) → (2nd𝑝) = 𝑥)
14 gsummpt2co.3 . . . . . . . . . . 11 𝐹 = (𝑥𝐴𝐷)
1514dmmptss 6094 . . . . . . . . . 10 dom 𝐹𝐴
1611, 10breldm 5776 . . . . . . . . . 10 (𝑥𝐹𝑧𝑥 ∈ dom 𝐹)
1715, 16sseldi 3969 . . . . . . . . 9 (𝑥𝐹𝑧𝑥𝐴)
1817adantl 482 . . . . . . . 8 ((𝑝 = ⟨𝑧, 𝑥⟩ ∧ 𝑥𝐹𝑧) → 𝑥𝐴)
1913, 18eqeltrd 2918 . . . . . . 7 ((𝑝 = ⟨𝑧, 𝑥⟩ ∧ 𝑥𝐹𝑧) → (2nd𝑝) ∈ 𝐴)
2019exlimivv 1926 . . . . . 6 (∃𝑧𝑥(𝑝 = ⟨𝑧, 𝑥⟩ ∧ 𝑥𝐹𝑧) → (2nd𝑝) ∈ 𝐴)
219, 20sylbi 218 . . . . 5 (𝑝𝐹 → (2nd𝑝) ∈ 𝐴)
2221adantl 482 . . . 4 ((𝜑𝑝𝐹) → (2nd𝑝) ∈ 𝐴)
2314funmpt2 6393 . . . . . . 7 Fun 𝐹
24 funcnvcnv 6420 . . . . . . 7 (Fun 𝐹 → Fun 𝐹)
2523, 24ax-mp 5 . . . . . 6 Fun 𝐹
2625a1i 11 . . . . 5 ((𝜑𝑥𝐴) → Fun 𝐹)
27 dfdm4 5763 . . . . . . . 8 dom 𝐹 = ran 𝐹
2814dmeqi 5772 . . . . . . . . 9 dom 𝐹 = dom (𝑥𝐴𝐷)
29 gsummpt2co.2 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐷𝐸)
3029ralrimiva 3187 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴 𝐷𝐸)
31 dmmptg 6095 . . . . . . . . . 10 (∀𝑥𝐴 𝐷𝐸 → dom (𝑥𝐴𝐷) = 𝐴)
3230, 31syl 17 . . . . . . . . 9 (𝜑 → dom (𝑥𝐴𝐷) = 𝐴)
3328, 32syl5eq 2873 . . . . . . . 8 (𝜑 → dom 𝐹 = 𝐴)
3427, 33syl5eqr 2875 . . . . . . 7 (𝜑 → ran 𝐹 = 𝐴)
3534eleq2d 2903 . . . . . 6 (𝜑 → (𝑥 ∈ ran 𝐹𝑥𝐴))
3635biimpar 478 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ ran 𝐹)
37 relcnv 5966 . . . . . 6 Rel 𝐹
38 fcnvgreu 30352 . . . . . 6 (((Rel 𝐹 ∧ Fun 𝐹) ∧ 𝑥 ∈ ran 𝐹) → ∃!𝑝 𝐹𝑥 = (2nd𝑝))
3937, 38mpanl1 696 . . . . 5 ((Fun 𝐹𝑥 ∈ ran 𝐹) → ∃!𝑝 𝐹𝑥 = (2nd𝑝))
4026, 36, 39syl2anc 584 . . . 4 ((𝜑𝑥𝐴) → ∃!𝑝 𝐹𝑥 = (2nd𝑝))
411, 2, 3, 4, 5, 6, 7, 8, 22, 40gsummptf1o 19019 . . 3 (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑝𝐹(2nd𝑝) / 𝑥𝐶)))
4214rnmptss 6884 . . . . . . . 8 (∀𝑥𝐴 𝐷𝐸 → ran 𝐹𝐸)
4330, 42syl 17 . . . . . . 7 (𝜑 → ran 𝐹𝐸)
44 dfcnv2 30356 . . . . . . 7 (ran 𝐹𝐸𝐹 = 𝑧𝐸 ({𝑧} × (𝐹 “ {𝑧})))
4543, 44syl 17 . . . . . 6 (𝜑𝐹 = 𝑧𝐸 ({𝑧} × (𝐹 “ {𝑧})))
4645mpteq1d 5152 . . . . 5 (𝜑 → (𝑝𝐹(2nd𝑝) / 𝑥𝐶) = (𝑝 𝑧𝐸 ({𝑧} × (𝐹 “ {𝑧})) ↦ (2nd𝑝) / 𝑥𝐶))
47 nfcv 2982 . . . . . 6 𝑧(2nd𝑝) / 𝑥𝐶
48 csbeq1 3890 . . . . . . . 8 ((2nd𝑝) = 𝑥(2nd𝑝) / 𝑥𝐶 = 𝑥 / 𝑥𝐶)
4912, 48syl 17 . . . . . . 7 (𝑝 = ⟨𝑧, 𝑥⟩ → (2nd𝑝) / 𝑥𝐶 = 𝑥 / 𝑥𝐶)
50 csbid 3900 . . . . . . 7 𝑥 / 𝑥𝐶 = 𝐶
5149, 50syl6eq 2877 . . . . . 6 (𝑝 = ⟨𝑧, 𝑥⟩ → (2nd𝑝) / 𝑥𝐶 = 𝐶)
5247, 1, 51mpomptxf 30359 . . . . 5 (𝑝 𝑧𝐸 ({𝑧} × (𝐹 “ {𝑧})) ↦ (2nd𝑝) / 𝑥𝐶) = (𝑧𝐸, 𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)
5346, 52syl6eq 2877 . . . 4 (𝜑 → (𝑝𝐹(2nd𝑝) / 𝑥𝐶) = (𝑧𝐸, 𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶))
5453oveq2d 7166 . . 3 (𝜑 → (𝑊 Σg (𝑝𝐹(2nd𝑝) / 𝑥𝐶)) = (𝑊 Σg (𝑧𝐸, 𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)))
55 gsummpt2co.e . . . 4 (𝜑𝐸𝑉)
56 mptfi 8817 . . . . . . . 8 (𝐴 ∈ Fin → (𝑥𝐴𝐷) ∈ Fin)
5714, 56eqeltrid 2922 . . . . . . 7 (𝐴 ∈ Fin → 𝐹 ∈ Fin)
58 cnvfi 8800 . . . . . . 7 (𝐹 ∈ Fin → 𝐹 ∈ Fin)
596, 57, 583syl 18 . . . . . 6 (𝜑𝐹 ∈ Fin)
60 imaexg 7613 . . . . . 6 (𝐹 ∈ Fin → (𝐹 “ {𝑧}) ∈ V)
6159, 60syl 17 . . . . 5 (𝜑 → (𝐹 “ {𝑧}) ∈ V)
6261adantr 481 . . . 4 ((𝜑𝑧𝐸) → (𝐹 “ {𝑧}) ∈ V)
63 simpll 763 . . . . . 6 (((𝜑𝑧𝐸) ∧ 𝑥 ∈ (𝐹 “ {𝑧})) → 𝜑)
64 imassrn 5939 . . . . . . . . 9 (𝐹 “ {𝑧}) ⊆ ran 𝐹
6564, 27sseqtrri 4008 . . . . . . . 8 (𝐹 “ {𝑧}) ⊆ dom 𝐹
6665, 15sstri 3980 . . . . . . 7 (𝐹 “ {𝑧}) ⊆ 𝐴
6710, 11elimasn 5953 . . . . . . . . . 10 (𝑥 ∈ (𝐹 “ {𝑧}) ↔ ⟨𝑧, 𝑥⟩ ∈ 𝐹)
6867biimpi 217 . . . . . . . . 9 (𝑥 ∈ (𝐹 “ {𝑧}) → ⟨𝑧, 𝑥⟩ ∈ 𝐹)
6968adantl 482 . . . . . . . 8 (((𝜑𝑧𝐸) ∧ 𝑥 ∈ (𝐹 “ {𝑧})) → ⟨𝑧, 𝑥⟩ ∈ 𝐹)
7069, 67sylibr 235 . . . . . . 7 (((𝜑𝑧𝐸) ∧ 𝑥 ∈ (𝐹 “ {𝑧})) → 𝑥 ∈ (𝐹 “ {𝑧}))
7166, 70sseldi 3969 . . . . . 6 (((𝜑𝑧𝐸) ∧ 𝑥 ∈ (𝐹 “ {𝑧})) → 𝑥𝐴)
7263, 71, 8syl2anc 584 . . . . 5 (((𝜑𝑧𝐸) ∧ 𝑥 ∈ (𝐹 “ {𝑧})) → 𝐶𝐵)
7372anasss 467 . . . 4 ((𝜑 ∧ (𝑧𝐸𝑥 ∈ (𝐹 “ {𝑧}))) → 𝐶𝐵)
74 df-br 5064 . . . . . . . . 9 (𝑧𝐹𝑥 ↔ ⟨𝑧, 𝑥⟩ ∈ 𝐹)
7569, 74sylibr 235 . . . . . . . 8 (((𝜑𝑧𝐸) ∧ 𝑥 ∈ (𝐹 “ {𝑧})) → 𝑧𝐹𝑥)
7675anasss 467 . . . . . . 7 ((𝜑 ∧ (𝑧𝐸𝑥 ∈ (𝐹 “ {𝑧}))) → 𝑧𝐹𝑥)
7776pm2.24d 154 . . . . . 6 ((𝜑 ∧ (𝑧𝐸𝑥 ∈ (𝐹 “ {𝑧}))) → (¬ 𝑧𝐹𝑥𝐶 = 0 ))
7877imp 407 . . . . 5 (((𝜑 ∧ (𝑧𝐸𝑥 ∈ (𝐹 “ {𝑧}))) ∧ ¬ 𝑧𝐹𝑥) → 𝐶 = 0 )
7978anasss 467 . . . 4 ((𝜑 ∧ ((𝑧𝐸𝑥 ∈ (𝐹 “ {𝑧})) ∧ ¬ 𝑧𝐹𝑥)) → 𝐶 = 0 )
802, 3, 5, 55, 62, 73, 59, 79gsum2d2 19030 . . 3 (𝜑 → (𝑊 Σg (𝑧𝐸, 𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)) = (𝑊 Σg (𝑧𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)))))
8141, 54, 803eqtrd 2865 . 2 (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑧𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)))))
82 nfcv 2982 . . . 4 𝑧(𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶))
83 nfcv 2982 . . . 4 𝑦(𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶))
84 sneq 4574 . . . . . . 7 (𝑦 = 𝑧 → {𝑦} = {𝑧})
8584imaeq2d 5928 . . . . . 6 (𝑦 = 𝑧 → (𝐹 “ {𝑦}) = (𝐹 “ {𝑧}))
8685mpteq1d 5152 . . . . 5 (𝑦 = 𝑧 → (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶) = (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶))
8786oveq2d 7166 . . . 4 (𝑦 = 𝑧 → (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶)) = (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)))
8882, 83, 87cbvmpt 5164 . . 3 (𝑦𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶))) = (𝑧𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)))
8988oveq2i 7161 . 2 (𝑊 Σg (𝑦𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶)))) = (𝑊 Σg (𝑧𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶))))
9081, 89syl6eqr 2879 1 (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑦𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶)))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 396   = wceq 1530  ∃wex 1773   ∈ wcel 2107  ∀wral 3143  ∃!wreu 3145  Vcvv 3500  ⦋csb 3887   ⊆ wss 3940  {csn 4564  ⟨cop 4570  ∪ ciun 4917   class class class wbr 5063   ↦ cmpt 5143   × cxp 5552  ◡ccnv 5553  dom cdm 5554  ran crn 5555   “ cima 5557  Rel wrel 5559  Fun wfun 6348  ‘cfv 6354  (class class class)co 7150   ∈ cmpo 7152  2nd c2nd 7684  Fincfn 8503  Basecbs 16478  0gc0g 16708   Σg cgsu 16709  CMndccmn 18842 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7574  df-1st 7685  df-2nd 7686  df-supp 7827  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12888  df-fzo 13029  df-seq 13365  df-hash 13686  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-0g 16710  df-gsum 16711  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-mulg 18170  df-cntz 18392  df-cmn 18844 This theorem is referenced by:  gsummpt2d  30620
 Copyright terms: Public domain W3C validator