Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsummpt2co Structured version   Visualization version   GIF version

Theorem gsummpt2co 32471
Description: Split a finite sum into a sum of a collection of sums over disjoint subsets. (Contributed by Thierry Arnoux, 27-Mar-2018.)
Hypotheses
Ref Expression
gsummpt2co.b 𝐵 = (Base‘𝑊)
gsummpt2co.z 0 = (0g𝑊)
gsummpt2co.w (𝜑𝑊 ∈ CMnd)
gsummpt2co.a (𝜑𝐴 ∈ Fin)
gsummpt2co.e (𝜑𝐸𝑉)
gsummpt2co.1 ((𝜑𝑥𝐴) → 𝐶𝐵)
gsummpt2co.2 ((𝜑𝑥𝐴) → 𝐷𝐸)
gsummpt2co.3 𝐹 = (𝑥𝐴𝐷)
Assertion
Ref Expression
gsummpt2co (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑦𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶)))))
Distinct variable groups:   𝑥, 0 ,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐸,𝑦   𝑥,𝐹,𝑦   𝑦,𝑉   𝑥,𝑊,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐶(𝑥)   𝐷(𝑥,𝑦)   𝑉(𝑥)

Proof of Theorem gsummpt2co
Dummy variables 𝑧 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcsb1v 3918 . . . 4 𝑥(2nd𝑝) / 𝑥𝐶
2 gsummpt2co.b . . . 4 𝐵 = (Base‘𝑊)
3 gsummpt2co.z . . . 4 0 = (0g𝑊)
4 csbeq1a 3907 . . . 4 (𝑥 = (2nd𝑝) → 𝐶 = (2nd𝑝) / 𝑥𝐶)
5 gsummpt2co.w . . . 4 (𝜑𝑊 ∈ CMnd)
6 gsummpt2co.a . . . 4 (𝜑𝐴 ∈ Fin)
7 ssidd 4005 . . . 4 (𝜑𝐵𝐵)
8 gsummpt2co.1 . . . 4 ((𝜑𝑥𝐴) → 𝐶𝐵)
9 elcnv 5876 . . . . . 6 (𝑝𝐹 ↔ ∃𝑧𝑥(𝑝 = ⟨𝑧, 𝑥⟩ ∧ 𝑥𝐹𝑧))
10 vex 3477 . . . . . . . . . 10 𝑧 ∈ V
11 vex 3477 . . . . . . . . . 10 𝑥 ∈ V
1210, 11op2ndd 7990 . . . . . . . . 9 (𝑝 = ⟨𝑧, 𝑥⟩ → (2nd𝑝) = 𝑥)
1312adantr 480 . . . . . . . 8 ((𝑝 = ⟨𝑧, 𝑥⟩ ∧ 𝑥𝐹𝑧) → (2nd𝑝) = 𝑥)
14 gsummpt2co.3 . . . . . . . . . . 11 𝐹 = (𝑥𝐴𝐷)
1514dmmptss 6240 . . . . . . . . . 10 dom 𝐹𝐴
1611, 10breldm 5908 . . . . . . . . . 10 (𝑥𝐹𝑧𝑥 ∈ dom 𝐹)
1715, 16sselid 3980 . . . . . . . . 9 (𝑥𝐹𝑧𝑥𝐴)
1817adantl 481 . . . . . . . 8 ((𝑝 = ⟨𝑧, 𝑥⟩ ∧ 𝑥𝐹𝑧) → 𝑥𝐴)
1913, 18eqeltrd 2832 . . . . . . 7 ((𝑝 = ⟨𝑧, 𝑥⟩ ∧ 𝑥𝐹𝑧) → (2nd𝑝) ∈ 𝐴)
2019exlimivv 1934 . . . . . 6 (∃𝑧𝑥(𝑝 = ⟨𝑧, 𝑥⟩ ∧ 𝑥𝐹𝑧) → (2nd𝑝) ∈ 𝐴)
219, 20sylbi 216 . . . . 5 (𝑝𝐹 → (2nd𝑝) ∈ 𝐴)
2221adantl 481 . . . 4 ((𝜑𝑝𝐹) → (2nd𝑝) ∈ 𝐴)
2314funmpt2 6587 . . . . . . 7 Fun 𝐹
24 funcnvcnv 6615 . . . . . . 7 (Fun 𝐹 → Fun 𝐹)
2523, 24ax-mp 5 . . . . . 6 Fun 𝐹
2625a1i 11 . . . . 5 ((𝜑𝑥𝐴) → Fun 𝐹)
27 dfdm4 5895 . . . . . . . 8 dom 𝐹 = ran 𝐹
2814dmeqi 5904 . . . . . . . . 9 dom 𝐹 = dom (𝑥𝐴𝐷)
29 gsummpt2co.2 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐷𝐸)
3029ralrimiva 3145 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴 𝐷𝐸)
31 dmmptg 6241 . . . . . . . . . 10 (∀𝑥𝐴 𝐷𝐸 → dom (𝑥𝐴𝐷) = 𝐴)
3230, 31syl 17 . . . . . . . . 9 (𝜑 → dom (𝑥𝐴𝐷) = 𝐴)
3328, 32eqtrid 2783 . . . . . . . 8 (𝜑 → dom 𝐹 = 𝐴)
3427, 33eqtr3id 2785 . . . . . . 7 (𝜑 → ran 𝐹 = 𝐴)
3534eleq2d 2818 . . . . . 6 (𝜑 → (𝑥 ∈ ran 𝐹𝑥𝐴))
3635biimpar 477 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ ran 𝐹)
37 relcnv 6103 . . . . . 6 Rel 𝐹
38 fcnvgreu 32166 . . . . . 6 (((Rel 𝐹 ∧ Fun 𝐹) ∧ 𝑥 ∈ ran 𝐹) → ∃!𝑝 𝐹𝑥 = (2nd𝑝))
3937, 38mpanl1 697 . . . . 5 ((Fun 𝐹𝑥 ∈ ran 𝐹) → ∃!𝑝 𝐹𝑥 = (2nd𝑝))
4026, 36, 39syl2anc 583 . . . 4 ((𝜑𝑥𝐴) → ∃!𝑝 𝐹𝑥 = (2nd𝑝))
411, 2, 3, 4, 5, 6, 7, 8, 22, 40gsummptf1o 19873 . . 3 (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑝𝐹(2nd𝑝) / 𝑥𝐶)))
4214rnmptss 7124 . . . . . . . 8 (∀𝑥𝐴 𝐷𝐸 → ran 𝐹𝐸)
4330, 42syl 17 . . . . . . 7 (𝜑 → ran 𝐹𝐸)
44 dfcnv2 32169 . . . . . . 7 (ran 𝐹𝐸𝐹 = 𝑧𝐸 ({𝑧} × (𝐹 “ {𝑧})))
4543, 44syl 17 . . . . . 6 (𝜑𝐹 = 𝑧𝐸 ({𝑧} × (𝐹 “ {𝑧})))
4645mpteq1d 5243 . . . . 5 (𝜑 → (𝑝𝐹(2nd𝑝) / 𝑥𝐶) = (𝑝 𝑧𝐸 ({𝑧} × (𝐹 “ {𝑧})) ↦ (2nd𝑝) / 𝑥𝐶))
47 nfcv 2902 . . . . . 6 𝑧(2nd𝑝) / 𝑥𝐶
48 csbeq1 3896 . . . . . . . 8 ((2nd𝑝) = 𝑥(2nd𝑝) / 𝑥𝐶 = 𝑥 / 𝑥𝐶)
4912, 48syl 17 . . . . . . 7 (𝑝 = ⟨𝑧, 𝑥⟩ → (2nd𝑝) / 𝑥𝐶 = 𝑥 / 𝑥𝐶)
50 csbid 3906 . . . . . . 7 𝑥 / 𝑥𝐶 = 𝐶
5149, 50eqtrdi 2787 . . . . . 6 (𝑝 = ⟨𝑧, 𝑥⟩ → (2nd𝑝) / 𝑥𝐶 = 𝐶)
5247, 1, 51mpomptxf 32173 . . . . 5 (𝑝 𝑧𝐸 ({𝑧} × (𝐹 “ {𝑧})) ↦ (2nd𝑝) / 𝑥𝐶) = (𝑧𝐸, 𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)
5346, 52eqtrdi 2787 . . . 4 (𝜑 → (𝑝𝐹(2nd𝑝) / 𝑥𝐶) = (𝑧𝐸, 𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶))
5453oveq2d 7428 . . 3 (𝜑 → (𝑊 Σg (𝑝𝐹(2nd𝑝) / 𝑥𝐶)) = (𝑊 Σg (𝑧𝐸, 𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)))
55 gsummpt2co.e . . . 4 (𝜑𝐸𝑉)
56 mptfi 9355 . . . . . . . 8 (𝐴 ∈ Fin → (𝑥𝐴𝐷) ∈ Fin)
5714, 56eqeltrid 2836 . . . . . . 7 (𝐴 ∈ Fin → 𝐹 ∈ Fin)
58 cnvfi 9184 . . . . . . 7 (𝐹 ∈ Fin → 𝐹 ∈ Fin)
596, 57, 583syl 18 . . . . . 6 (𝜑𝐹 ∈ Fin)
60 imaexg 7910 . . . . . 6 (𝐹 ∈ Fin → (𝐹 “ {𝑧}) ∈ V)
6159, 60syl 17 . . . . 5 (𝜑 → (𝐹 “ {𝑧}) ∈ V)
6261adantr 480 . . . 4 ((𝜑𝑧𝐸) → (𝐹 “ {𝑧}) ∈ V)
63 simpll 764 . . . . . 6 (((𝜑𝑧𝐸) ∧ 𝑥 ∈ (𝐹 “ {𝑧})) → 𝜑)
64 imassrn 6070 . . . . . . . . 9 (𝐹 “ {𝑧}) ⊆ ran 𝐹
6564, 27sseqtrri 4019 . . . . . . . 8 (𝐹 “ {𝑧}) ⊆ dom 𝐹
6665, 15sstri 3991 . . . . . . 7 (𝐹 “ {𝑧}) ⊆ 𝐴
6710, 11elimasn 6088 . . . . . . . . . 10 (𝑥 ∈ (𝐹 “ {𝑧}) ↔ ⟨𝑧, 𝑥⟩ ∈ 𝐹)
6867biimpi 215 . . . . . . . . 9 (𝑥 ∈ (𝐹 “ {𝑧}) → ⟨𝑧, 𝑥⟩ ∈ 𝐹)
6968adantl 481 . . . . . . . 8 (((𝜑𝑧𝐸) ∧ 𝑥 ∈ (𝐹 “ {𝑧})) → ⟨𝑧, 𝑥⟩ ∈ 𝐹)
7069, 67sylibr 233 . . . . . . 7 (((𝜑𝑧𝐸) ∧ 𝑥 ∈ (𝐹 “ {𝑧})) → 𝑥 ∈ (𝐹 “ {𝑧}))
7166, 70sselid 3980 . . . . . 6 (((𝜑𝑧𝐸) ∧ 𝑥 ∈ (𝐹 “ {𝑧})) → 𝑥𝐴)
7263, 71, 8syl2anc 583 . . . . 5 (((𝜑𝑧𝐸) ∧ 𝑥 ∈ (𝐹 “ {𝑧})) → 𝐶𝐵)
7372anasss 466 . . . 4 ((𝜑 ∧ (𝑧𝐸𝑥 ∈ (𝐹 “ {𝑧}))) → 𝐶𝐵)
74 df-br 5149 . . . . . . . . 9 (𝑧𝐹𝑥 ↔ ⟨𝑧, 𝑥⟩ ∈ 𝐹)
7569, 74sylibr 233 . . . . . . . 8 (((𝜑𝑧𝐸) ∧ 𝑥 ∈ (𝐹 “ {𝑧})) → 𝑧𝐹𝑥)
7675anasss 466 . . . . . . 7 ((𝜑 ∧ (𝑧𝐸𝑥 ∈ (𝐹 “ {𝑧}))) → 𝑧𝐹𝑥)
7776pm2.24d 151 . . . . . 6 ((𝜑 ∧ (𝑧𝐸𝑥 ∈ (𝐹 “ {𝑧}))) → (¬ 𝑧𝐹𝑥𝐶 = 0 ))
7877imp 406 . . . . 5 (((𝜑 ∧ (𝑧𝐸𝑥 ∈ (𝐹 “ {𝑧}))) ∧ ¬ 𝑧𝐹𝑥) → 𝐶 = 0 )
7978anasss 466 . . . 4 ((𝜑 ∧ ((𝑧𝐸𝑥 ∈ (𝐹 “ {𝑧})) ∧ ¬ 𝑧𝐹𝑥)) → 𝐶 = 0 )
802, 3, 5, 55, 62, 73, 59, 79gsum2d2 19884 . . 3 (𝜑 → (𝑊 Σg (𝑧𝐸, 𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)) = (𝑊 Σg (𝑧𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)))))
8141, 54, 803eqtrd 2775 . 2 (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑧𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)))))
82 nfcv 2902 . . . 4 𝑧(𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶))
83 nfcv 2902 . . . 4 𝑦(𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶))
84 sneq 4638 . . . . . . 7 (𝑦 = 𝑧 → {𝑦} = {𝑧})
8584imaeq2d 6059 . . . . . 6 (𝑦 = 𝑧 → (𝐹 “ {𝑦}) = (𝐹 “ {𝑧}))
8685mpteq1d 5243 . . . . 5 (𝑦 = 𝑧 → (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶) = (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶))
8786oveq2d 7428 . . . 4 (𝑦 = 𝑧 → (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶)) = (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)))
8882, 83, 87cbvmpt 5259 . . 3 (𝑦𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶))) = (𝑧𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶)))
8988oveq2i 7423 . 2 (𝑊 Σg (𝑦𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶)))) = (𝑊 Σg (𝑧𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑧}) ↦ 𝐶))))
9081, 89eqtr4di 2789 1 (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑦𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1780  wcel 2105  wral 3060  ∃!wreu 3373  Vcvv 3473  csb 3893  wss 3948  {csn 4628  cop 4634   ciun 4997   class class class wbr 5148  cmpt 5231   × cxp 5674  ccnv 5675  dom cdm 5676  ran crn 5677  cima 5679  Rel wrel 5681  Fun wfun 6537  cfv 6543  (class class class)co 7412  cmpo 7414  2nd c2nd 7978  Fincfn 8943  Basecbs 17149  0gc0g 17390   Σg cgsu 17391  CMndccmn 19690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8151  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-fsupp 9366  df-oi 9509  df-card 9938  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-n0 12478  df-z 12564  df-uz 12828  df-fz 13490  df-fzo 13633  df-seq 13972  df-hash 14296  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-0g 17392  df-gsum 17393  df-mre 17535  df-mrc 17536  df-acs 17538  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-submnd 18707  df-mulg 18988  df-cntz 19223  df-cmn 19692
This theorem is referenced by:  gsummpt2d  32472
  Copyright terms: Public domain W3C validator