MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcnv2 Structured version   Visualization version   GIF version

Theorem elcnv2 5813
Description: Membership in a converse relation. Equation 5 of [Suppes] p. 62. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
elcnv2 (𝐴𝑅 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦

Proof of Theorem elcnv2
StepHypRef Expression
1 elcnv 5812 . 2 (𝐴𝑅 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝑦𝑅𝑥))
2 df-br 5090 . . . 4 (𝑦𝑅𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝑅)
32anbi2i 623 . . 3 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝑦𝑅𝑥) ↔ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅))
432exbii 1850 . 2 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝑦𝑅𝑥) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅))
51, 4bitri 274 1 (𝐴𝑅 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1540  wex 1780  wcel 2105  cop 4578   class class class wbr 5089  ccnv 5613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pr 5369
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-sn 4573  df-pr 4575  df-op 4579  df-br 5090  df-opab 5152  df-cnv 5622
This theorem is referenced by:  cnvuni  5822  elcnvlem  41519
  Copyright terms: Public domain W3C validator