| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elcnv2 | Structured version Visualization version GIF version | ||
| Description: Membership in a converse relation. Equation 5 of [Suppes] p. 62. (Contributed by NM, 11-Aug-2004.) |
| Ref | Expression |
|---|---|
| elcnv2 | ⊢ (𝐴 ∈ ◡𝑅 ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑦, 𝑥〉 ∈ 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elcnv 5815 | . 2 ⊢ (𝐴 ∈ ◡𝑅 ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝑦𝑅𝑥)) | |
| 2 | df-br 5090 | . . . 4 ⊢ (𝑦𝑅𝑥 ↔ 〈𝑦, 𝑥〉 ∈ 𝑅) | |
| 3 | 2 | anbi2i 623 | . . 3 ⊢ ((𝐴 = 〈𝑥, 𝑦〉 ∧ 𝑦𝑅𝑥) ↔ (𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑦, 𝑥〉 ∈ 𝑅)) |
| 4 | 3 | 2exbii 1850 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝑦𝑅𝑥) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑦, 𝑥〉 ∈ 𝑅)) |
| 5 | 1, 4 | bitri 275 | 1 ⊢ (𝐴 ∈ ◡𝑅 ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑦, 𝑥〉 ∈ 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 〈cop 4579 class class class wbr 5089 ◡ccnv 5613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-cnv 5622 |
| This theorem is referenced by: cnvuni 5825 elcnvlem 43693 |
| Copyright terms: Public domain | W3C validator |