Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-fvsnun1 Structured version   Visualization version   GIF version

Theorem bj-fvsnun1 36131
Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. (Contributed by NM, 23-Sep-2007.) Put in deduction form and remove two sethood hypotheses. (Revised by BJ, 18-Mar-2023.)
Hypotheses
Ref Expression
bj-fvsnun.un (𝜑𝐺 = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
bj-fvsnun1.eldif (𝜑𝐷 ∈ (𝐶 ∖ {𝐴}))
Assertion
Ref Expression
bj-fvsnun1 (𝜑 → (𝐺𝐷) = (𝐹𝐷))

Proof of Theorem bj-fvsnun1
StepHypRef Expression
1 bj-fvsnun.un . . 3 (𝜑𝐺 = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
2 bj-fvsnun1.eldif . . . 4 (𝜑𝐷 ∈ (𝐶 ∖ {𝐴}))
3 eldifsnneq 4794 . . . 4 (𝐷 ∈ (𝐶 ∖ {𝐴}) → ¬ 𝐷 = 𝐴)
42, 3syl 17 . . 3 (𝜑 → ¬ 𝐷 = 𝐴)
51, 4bj-fununsn1 36129 . 2 (𝜑 → (𝐺𝐷) = ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷))
62fvresd 6911 . 2 (𝜑 → ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = (𝐹𝐷))
75, 6eqtrd 2772 1 (𝜑 → (𝐺𝐷) = (𝐹𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2106  cdif 3945  cun 3946  {csn 4628  cop 4634  cres 5678  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5682  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fv 6551
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator