![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-fvsnun1 | Structured version Visualization version GIF version |
Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. (Contributed by NM, 23-Sep-2007.) Put in deduction form and remove two sethood hypotheses. (Revised by BJ, 18-Mar-2023.) |
Ref | Expression |
---|---|
bj-fvsnun.un | ⊢ (𝜑 → 𝐺 = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
bj-fvsnun1.eldif | ⊢ (𝜑 → 𝐷 ∈ (𝐶 ∖ {𝐴})) |
Ref | Expression |
---|---|
bj-fvsnun1 | ⊢ (𝜑 → (𝐺‘𝐷) = (𝐹‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-fvsnun.un | . . 3 ⊢ (𝜑 → 𝐺 = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) | |
2 | bj-fvsnun1.eldif | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (𝐶 ∖ {𝐴})) | |
3 | eldifsnneq 4798 | . . . 4 ⊢ (𝐷 ∈ (𝐶 ∖ {𝐴}) → ¬ 𝐷 = 𝐴) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → ¬ 𝐷 = 𝐴) |
5 | 1, 4 | bj-fununsn1 37196 | . 2 ⊢ (𝜑 → (𝐺‘𝐷) = ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷)) |
6 | 2 | fvresd 6921 | . 2 ⊢ (𝜑 → ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = (𝐹‘𝐷)) |
7 | 5, 6 | eqtrd 2773 | 1 ⊢ (𝜑 → (𝐺‘𝐷) = (𝐹‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1535 ∈ wcel 2104 ∖ cdif 3960 ∪ cun 3961 {csn 4630 〈cop 4636 ↾ cres 5685 ‘cfv 6558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-11 2153 ax-12 2173 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5430 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2536 df-eu 2565 df-clab 2711 df-cleq 2725 df-clel 2812 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3433 df-v 3479 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4915 df-br 5150 df-opab 5212 df-xp 5689 df-cnv 5691 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6510 df-fv 6566 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |