![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-fvsnun1 | Structured version Visualization version GIF version |
Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. (Contributed by NM, 23-Sep-2007.) Put in deduction form and remove two sethood hypotheses. (Revised by BJ, 18-Mar-2023.) |
Ref | Expression |
---|---|
bj-fvsnun.un | ⊢ (𝜑 → 𝐺 = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩})) |
bj-fvsnun1.eldif | ⊢ (𝜑 → 𝐷 ∈ (𝐶 ∖ {𝐴})) |
Ref | Expression |
---|---|
bj-fvsnun1 | ⊢ (𝜑 → (𝐺‘𝐷) = (𝐹‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-fvsnun.un | . . 3 ⊢ (𝜑 → 𝐺 = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩})) | |
2 | bj-fvsnun1.eldif | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (𝐶 ∖ {𝐴})) | |
3 | eldifsnneq 4794 | . . . 4 ⊢ (𝐷 ∈ (𝐶 ∖ {𝐴}) → ¬ 𝐷 = 𝐴) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → ¬ 𝐷 = 𝐴) |
5 | 1, 4 | bj-fununsn1 36129 | . 2 ⊢ (𝜑 → (𝐺‘𝐷) = ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷)) |
6 | 2 | fvresd 6911 | . 2 ⊢ (𝜑 → ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = (𝐹‘𝐷)) |
7 | 5, 6 | eqtrd 2772 | 1 ⊢ (𝜑 → (𝐺‘𝐷) = (𝐹‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2106 ∖ cdif 3945 ∪ cun 3946 {csn 4628 ⟨cop 4634 ↾ cres 5678 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fv 6551 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |