| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-fvsnun1 | Structured version Visualization version GIF version | ||
| Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. (Contributed by NM, 23-Sep-2007.) Put in deduction form and remove two sethood hypotheses. (Revised by BJ, 18-Mar-2023.) |
| Ref | Expression |
|---|---|
| bj-fvsnun.un | ⊢ (𝜑 → 𝐺 = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
| bj-fvsnun1.eldif | ⊢ (𝜑 → 𝐷 ∈ (𝐶 ∖ {𝐴})) |
| Ref | Expression |
|---|---|
| bj-fvsnun1 | ⊢ (𝜑 → (𝐺‘𝐷) = (𝐹‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-fvsnun.un | . . 3 ⊢ (𝜑 → 𝐺 = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) | |
| 2 | bj-fvsnun1.eldif | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (𝐶 ∖ {𝐴})) | |
| 3 | eldifsnneq 4757 | . . . 4 ⊢ (𝐷 ∈ (𝐶 ∖ {𝐴}) → ¬ 𝐷 = 𝐴) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → ¬ 𝐷 = 𝐴) |
| 5 | 1, 4 | bj-fununsn1 37236 | . 2 ⊢ (𝜑 → (𝐺‘𝐷) = ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷)) |
| 6 | 2 | fvresd 6880 | . 2 ⊢ (𝜑 → ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = (𝐹‘𝐷)) |
| 7 | 5, 6 | eqtrd 2765 | 1 ⊢ (𝜑 → (𝐺‘𝐷) = (𝐹‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3913 ∪ cun 3914 {csn 4591 〈cop 4597 ↾ cres 5642 ‘cfv 6513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-xp 5646 df-cnv 5648 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fv 6521 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |