Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-fvsnun1 | Structured version Visualization version GIF version |
Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. (Contributed by NM, 23-Sep-2007.) Put in deduction form and remove two sethood hypotheses. (Revised by BJ, 18-Mar-2023.) |
Ref | Expression |
---|---|
bj-fvsnun.un | ⊢ (𝜑 → 𝐺 = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
bj-fvsnun1.eldif | ⊢ (𝜑 → 𝐷 ∈ (𝐶 ∖ {𝐴})) |
Ref | Expression |
---|---|
bj-fvsnun1 | ⊢ (𝜑 → (𝐺‘𝐷) = (𝐹‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-fvsnun.un | . . 3 ⊢ (𝜑 → 𝐺 = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) | |
2 | bj-fvsnun1.eldif | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (𝐶 ∖ {𝐴})) | |
3 | eldifsnneq 4721 | . . . 4 ⊢ (𝐷 ∈ (𝐶 ∖ {𝐴}) → ¬ 𝐷 = 𝐴) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → ¬ 𝐷 = 𝐴) |
5 | 1, 4 | bj-fununsn1 35351 | . 2 ⊢ (𝜑 → (𝐺‘𝐷) = ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷)) |
6 | 2 | fvresd 6776 | . 2 ⊢ (𝜑 → ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = (𝐹‘𝐷)) |
7 | 5, 6 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝐺‘𝐷) = (𝐹‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ∪ cun 3881 {csn 4558 〈cop 4564 ↾ cres 5582 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fv 6426 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |