Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-fvsnun1 Structured version   Visualization version   GIF version

Theorem bj-fvsnun1 37231
Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. (Contributed by NM, 23-Sep-2007.) Put in deduction form and remove two sethood hypotheses. (Revised by BJ, 18-Mar-2023.)
Hypotheses
Ref Expression
bj-fvsnun.un (𝜑𝐺 = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
bj-fvsnun1.eldif (𝜑𝐷 ∈ (𝐶 ∖ {𝐴}))
Assertion
Ref Expression
bj-fvsnun1 (𝜑 → (𝐺𝐷) = (𝐹𝐷))

Proof of Theorem bj-fvsnun1
StepHypRef Expression
1 bj-fvsnun.un . . 3 (𝜑𝐺 = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
2 bj-fvsnun1.eldif . . . 4 (𝜑𝐷 ∈ (𝐶 ∖ {𝐴}))
3 eldifsnneq 4771 . . . 4 (𝐷 ∈ (𝐶 ∖ {𝐴}) → ¬ 𝐷 = 𝐴)
42, 3syl 17 . . 3 (𝜑 → ¬ 𝐷 = 𝐴)
51, 4bj-fununsn1 37229 . 2 (𝜑 → (𝐺𝐷) = ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷))
62fvresd 6906 . 2 (𝜑 → ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = (𝐹𝐷))
75, 6eqtrd 2769 1 (𝜑 → (𝐺𝐷) = (𝐹𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2107  cdif 3928  cun 3929  {csn 4606  cop 4612  cres 5667  cfv 6541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-xp 5671  df-cnv 5673  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fv 6549
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator