Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-fvsnun1 Structured version   Visualization version   GIF version

Theorem bj-fvsnun1 37238
Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. (Contributed by NM, 23-Sep-2007.) Put in deduction form and remove two sethood hypotheses. (Revised by BJ, 18-Mar-2023.)
Hypotheses
Ref Expression
bj-fvsnun.un (𝜑𝐺 = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
bj-fvsnun1.eldif (𝜑𝐷 ∈ (𝐶 ∖ {𝐴}))
Assertion
Ref Expression
bj-fvsnun1 (𝜑 → (𝐺𝐷) = (𝐹𝐷))

Proof of Theorem bj-fvsnun1
StepHypRef Expression
1 bj-fvsnun.un . . 3 (𝜑𝐺 = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
2 bj-fvsnun1.eldif . . . 4 (𝜑𝐷 ∈ (𝐶 ∖ {𝐴}))
3 eldifsnneq 4757 . . . 4 (𝐷 ∈ (𝐶 ∖ {𝐴}) → ¬ 𝐷 = 𝐴)
42, 3syl 17 . . 3 (𝜑 → ¬ 𝐷 = 𝐴)
51, 4bj-fununsn1 37236 . 2 (𝜑 → (𝐺𝐷) = ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷))
62fvresd 6880 . 2 (𝜑 → ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = (𝐹𝐷))
75, 6eqtrd 2765 1 (𝜑 → (𝐺𝐷) = (𝐹𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  cdif 3913  cun 3914  {csn 4591  cop 4597  cres 5642  cfv 6513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-xp 5646  df-cnv 5648  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fv 6521
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator