Step | Hyp | Ref
| Expression |
1 | | fvexd 6789 |
. . . . 5
⊢ (𝜑 → (Base‘𝑈) ∈ V) |
2 | | evlsbagval.d |
. . . . . 6
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
3 | | ovexd 7310 |
. . . . . 6
⊢ (𝜑 → (ℕ0
↑m 𝐼)
∈ V) |
4 | 2, 3 | rabexd 5257 |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ V) |
5 | | evlsbagval.r |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
6 | | evlsbagval.u |
. . . . . . . . . . 11
⊢ 𝑈 = (𝑆 ↾s 𝑅) |
7 | 6 | subrgring 20027 |
. . . . . . . . . 10
⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring) |
8 | 5, 7 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ Ring) |
9 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝑈) =
(Base‘𝑈) |
10 | | evlsbagval.o |
. . . . . . . . . 10
⊢ 1 =
(1r‘𝑈) |
11 | 9, 10 | ringidcl 19807 |
. . . . . . . . 9
⊢ (𝑈 ∈ Ring → 1 ∈
(Base‘𝑈)) |
12 | 8, 11 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈ (Base‘𝑈)) |
13 | | evlsbagval.z |
. . . . . . . . . 10
⊢ 0 =
(0g‘𝑈) |
14 | 9, 13 | ring0cl 19808 |
. . . . . . . . 9
⊢ (𝑈 ∈ Ring → 0 ∈
(Base‘𝑈)) |
15 | 8, 14 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈ (Base‘𝑈)) |
16 | 12, 15 | ifcld 4505 |
. . . . . . 7
⊢ (𝜑 → if(𝑠 = 𝐵, 1 , 0 ) ∈ (Base‘𝑈)) |
17 | 16 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐷) → if(𝑠 = 𝐵, 1 , 0 ) ∈ (Base‘𝑈)) |
18 | | evlsbagval.f |
. . . . . 6
⊢ 𝐹 = (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝐵, 1 , 0 )) |
19 | 17, 18 | fmptd 6988 |
. . . . 5
⊢ (𝜑 → 𝐹:𝐷⟶(Base‘𝑈)) |
20 | 1, 4, 19 | elmapdd 40216 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ ((Base‘𝑈) ↑m 𝐷)) |
21 | | eqid 2738 |
. . . . 5
⊢ (𝐼 mPwSer 𝑈) = (𝐼 mPwSer 𝑈) |
22 | | eqid 2738 |
. . . . 5
⊢
(Base‘(𝐼
mPwSer 𝑈)) =
(Base‘(𝐼 mPwSer 𝑈)) |
23 | | evlsbagval.i |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
24 | 21, 9, 2, 22, 23 | psrbas 21147 |
. . . 4
⊢ (𝜑 → (Base‘(𝐼 mPwSer 𝑈)) = ((Base‘𝑈) ↑m 𝐷)) |
25 | 20, 24 | eleqtrrd 2842 |
. . 3
⊢ (𝜑 → 𝐹 ∈ (Base‘(𝐼 mPwSer 𝑈))) |
26 | 4, 15, 18 | sniffsupp 9159 |
. . 3
⊢ (𝜑 → 𝐹 finSupp 0 ) |
27 | | evlsbagval.p |
. . . 4
⊢ 𝑃 = (𝐼 mPoly 𝑈) |
28 | | evlsbagval.w |
. . . 4
⊢ 𝑊 = (Base‘𝑃) |
29 | 27, 21, 22, 13, 28 | mplelbas 21199 |
. . 3
⊢ (𝐹 ∈ 𝑊 ↔ (𝐹 ∈ (Base‘(𝐼 mPwSer 𝑈)) ∧ 𝐹 finSupp 0 )) |
30 | 25, 26, 29 | sylanbrc 583 |
. 2
⊢ (𝜑 → 𝐹 ∈ 𝑊) |
31 | | fveq1 6773 |
. . . . . 6
⊢ (𝑔 = 𝐴 → (𝑔‘𝑣) = (𝐴‘𝑣)) |
32 | 31 | oveq2d 7291 |
. . . . 5
⊢ (𝑔 = 𝐴 → ((𝐵‘𝑣) ↑ (𝑔‘𝑣)) = ((𝐵‘𝑣) ↑ (𝐴‘𝑣))) |
33 | 32 | mpteq2dv 5176 |
. . . 4
⊢ (𝑔 = 𝐴 → (𝑣 ∈ 𝐼 ↦ ((𝐵‘𝑣) ↑ (𝑔‘𝑣))) = (𝑣 ∈ 𝐼 ↦ ((𝐵‘𝑣) ↑ (𝐴‘𝑣)))) |
34 | 33 | oveq2d 7291 |
. . 3
⊢ (𝑔 = 𝐴 → (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝐵‘𝑣) ↑ (𝑔‘𝑣)))) = (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝐵‘𝑣) ↑ (𝐴‘𝑣))))) |
35 | | fveq1 6773 |
. . . . . . . . 9
⊢ (𝑝 = 𝐹 → (𝑝‘𝑏) = (𝐹‘𝑏)) |
36 | 35 | fveq2d 6778 |
. . . . . . . 8
⊢ (𝑝 = 𝐹 → ((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝑝‘𝑏)) = ((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))) |
37 | 36 | oveq1d 7290 |
. . . . . . 7
⊢ (𝑝 = 𝐹 → (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝑝‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))))) = (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))))) |
38 | 37 | mpteq2dv 5176 |
. . . . . 6
⊢ (𝑝 = 𝐹 → (𝑏 ∈ 𝐷 ↦ (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝑝‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))))) = (𝑏 ∈ 𝐷 ↦ (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))))))) |
39 | 38 | oveq2d 7291 |
. . . . 5
⊢ (𝑝 = 𝐹 → ((𝑆 ↑s (𝐾 ↑m 𝐼)) Σg
(𝑏 ∈ 𝐷 ↦ (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝑝‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))))))) = ((𝑆 ↑s (𝐾 ↑m 𝐼)) Σg
(𝑏 ∈ 𝐷 ↦ (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))))))) |
40 | | evlsbagval.q |
. . . . . 6
⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
41 | | evlsbagval.k |
. . . . . 6
⊢ 𝐾 = (Base‘𝑆) |
42 | | eqid 2738 |
. . . . . 6
⊢ (𝑆 ↑s
(𝐾 ↑m 𝐼)) = (𝑆 ↑s (𝐾 ↑m 𝐼)) |
43 | | eqid 2738 |
. . . . . 6
⊢
(mulGrp‘(𝑆
↑s (𝐾 ↑m 𝐼))) = (mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))) |
44 | | eqid 2738 |
. . . . . 6
⊢
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) =
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
45 | | eqid 2738 |
. . . . . 6
⊢
(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼))) =
(.r‘(𝑆
↑s (𝐾 ↑m 𝐼))) |
46 | | eqid 2738 |
. . . . . 6
⊢ (𝑝 ∈ 𝑊 ↦ ((𝑆 ↑s (𝐾 ↑m 𝐼)) Σg
(𝑏 ∈ 𝐷 ↦ (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝑝‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))))))) = (𝑝 ∈ 𝑊 ↦ ((𝑆 ↑s (𝐾 ↑m 𝐼)) Σg
(𝑏 ∈ 𝐷 ↦ (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝑝‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))))))) |
47 | | eqid 2738 |
. . . . . 6
⊢ (𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥})) = (𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥})) |
48 | | eqid 2738 |
. . . . . 6
⊢ (𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))) = (𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))) |
49 | | evlsbagval.s |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ CRing) |
50 | 40, 27, 28, 2, 41, 6, 42, 43, 44, 45, 46, 47, 48, 23, 49, 5 | evlsval3 40272 |
. . . . 5
⊢ (𝜑 → 𝑄 = (𝑝 ∈ 𝑊 ↦ ((𝑆 ↑s (𝐾 ↑m 𝐼)) Σg
(𝑏 ∈ 𝐷 ↦ (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝑝‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))))))))) |
51 | | ovexd 7310 |
. . . . 5
⊢ (𝜑 → ((𝑆 ↑s (𝐾 ↑m 𝐼)) Σg
(𝑏 ∈ 𝐷 ↦ (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))))))) ∈ V) |
52 | 39, 50, 30, 51 | fvmptd4 40210 |
. . . 4
⊢ (𝜑 → (𝑄‘𝐹) = ((𝑆 ↑s (𝐾 ↑m 𝐼)) Σg
(𝑏 ∈ 𝐷 ↦ (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))))))) |
53 | | eqid 2738 |
. . . . . 6
⊢
(Base‘(𝑆
↑s (𝐾 ↑m 𝐼))) = (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼))) |
54 | | eqid 2738 |
. . . . . 6
⊢
(0g‘(𝑆 ↑s (𝐾 ↑m 𝐼))) =
(0g‘(𝑆
↑s (𝐾 ↑m 𝐼))) |
55 | 49 | crngringd 19796 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ Ring) |
56 | | ovexd 7310 |
. . . . . . . 8
⊢ (𝜑 → (𝐾 ↑m 𝐼) ∈ V) |
57 | 42 | pwsring 19854 |
. . . . . . . 8
⊢ ((𝑆 ∈ Ring ∧ (𝐾 ↑m 𝐼) ∈ V) → (𝑆 ↑s
(𝐾 ↑m 𝐼)) ∈ Ring) |
58 | 55, 56, 57 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝑆 ↑s (𝐾 ↑m 𝐼)) ∈ Ring) |
59 | 58 | ringcmnd 40245 |
. . . . . 6
⊢ (𝜑 → (𝑆 ↑s (𝐾 ↑m 𝐼)) ∈ CMnd) |
60 | 58 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑆 ↑s (𝐾 ↑m 𝐼)) ∈ Ring) |
61 | 49 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑥 ∈ 𝑅) → 𝑆 ∈ CRing) |
62 | | ovexd 7310 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑥 ∈ 𝑅) → (𝐾 ↑m 𝐼) ∈ V) |
63 | 41 | subrgss 20025 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐾) |
64 | 5, 63 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑅 ⊆ 𝐾) |
65 | 64 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑅 ⊆ 𝐾) |
66 | 65 | sselda 3921 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑥 ∈ 𝑅) → 𝑥 ∈ 𝐾) |
67 | | fconst6g 6663 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐾 → ((𝐾 ↑m 𝐼) × {𝑥}):(𝐾 ↑m 𝐼)⟶𝐾) |
68 | 66, 67 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑥 ∈ 𝑅) → ((𝐾 ↑m 𝐼) × {𝑥}):(𝐾 ↑m 𝐼)⟶𝐾) |
69 | 42, 41, 53, 61, 62, 68 | pwselbasr 40266 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑥 ∈ 𝑅) → ((𝐾 ↑m 𝐼) × {𝑥}) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
70 | 69 | fmpttd 6989 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥})):𝑅⟶(Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
71 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢
(1r‘𝑆) = (1r‘𝑆) |
72 | 6, 71 | subrg1 20034 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ (SubRing‘𝑆) →
(1r‘𝑆) =
(1r‘𝑈)) |
73 | 5, 72 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (1r‘𝑆) = (1r‘𝑈)) |
74 | 71 | subrg1cl 20032 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ (SubRing‘𝑆) →
(1r‘𝑆)
∈ 𝑅) |
75 | 5, 74 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (1r‘𝑆) ∈ 𝑅) |
76 | 73, 75 | eqeltrrd 2840 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (1r‘𝑈) ∈ 𝑅) |
77 | 10, 76 | eqeltrid 2843 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 1 ∈ 𝑅) |
78 | 6 | subrgbas 20033 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 = (Base‘𝑈)) |
79 | 5, 78 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑅 = (Base‘𝑈)) |
80 | 15, 79 | eleqtrrd 2842 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ∈ 𝑅) |
81 | 77, 80 | ifcld 4505 |
. . . . . . . . . . . 12
⊢ (𝜑 → if(𝑠 = 𝐵, 1 , 0 ) ∈ 𝑅) |
82 | 81 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐷) → if(𝑠 = 𝐵, 1 , 0 ) ∈ 𝑅) |
83 | 82, 18 | fmptd 6988 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:𝐷⟶𝑅) |
84 | 83 | ffvelrnda 6961 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝐹‘𝑏) ∈ 𝑅) |
85 | 70, 84 | ffvelrnd 6962 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → ((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏)) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
86 | 43, 53 | mgpbas 19726 |
. . . . . . . . 9
⊢
(Base‘(𝑆
↑s (𝐾 ↑m 𝐼))) = (Base‘(mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼)))) |
87 | 42 | pwscrng 19856 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ CRing ∧ (𝐾 ↑m 𝐼) ∈ V) → (𝑆 ↑s
(𝐾 ↑m 𝐼)) ∈
CRing) |
88 | 49, 56, 87 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑆 ↑s (𝐾 ↑m 𝐼)) ∈
CRing) |
89 | 43 | crngmgp 19791 |
. . . . . . . . . . 11
⊢ ((𝑆 ↑s
(𝐾 ↑m 𝐼)) ∈ CRing →
(mulGrp‘(𝑆
↑s (𝐾 ↑m 𝐼))) ∈ CMnd) |
90 | 88, 89 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) ∈
CMnd) |
91 | 90 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))) ∈
CMnd) |
92 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑏 ∈ 𝐷) |
93 | 49 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑥 ∈ 𝐼) → 𝑆 ∈ CRing) |
94 | | ovexd 7310 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑥 ∈ 𝐼) → (𝐾 ↑m 𝐼) ∈ V) |
95 | | elmapi 8637 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ (𝐾 ↑m 𝐼) → 𝑎:𝐼⟶𝐾) |
96 | 95 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑥 ∈ 𝐼) ∧ 𝑎 ∈ (𝐾 ↑m 𝐼)) → 𝑎:𝐼⟶𝐾) |
97 | | simplr 766 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑥 ∈ 𝐼) ∧ 𝑎 ∈ (𝐾 ↑m 𝐼)) → 𝑥 ∈ 𝐼) |
98 | 96, 97 | ffvelrnd 6962 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑥 ∈ 𝐼) ∧ 𝑎 ∈ (𝐾 ↑m 𝐼)) → (𝑎‘𝑥) ∈ 𝐾) |
99 | 98 | fmpttd 6989 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑥 ∈ 𝐼) → (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)):(𝐾 ↑m 𝐼)⟶𝐾) |
100 | 42, 41, 53, 93, 94, 99 | pwselbasr 40266 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑥 ∈ 𝐼) → (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
101 | 100 | fmpttd 6989 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))):𝐼⟶(Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
102 | 2, 86, 44, 91, 92, 101 | psrbagev2 21287 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → ((mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
103 | 53, 45, 60, 85, 102 | ringcld 40240 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))))) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
104 | 103 | fmpttd 6989 |
. . . . . 6
⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))))):𝐷⟶(Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
105 | | eqeq1 2742 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑏 → (𝑠 = 𝐵 ↔ 𝑏 = 𝐵)) |
106 | 105 | ifbid 4482 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑏 → if(𝑠 = 𝐵, 1 , 0 ) = if(𝑏 = 𝐵, 1 , 0 )) |
107 | | eldifi 4061 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈ (𝐷 ∖ {𝐵}) → 𝑏 ∈ 𝐷) |
108 | 107 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) → 𝑏 ∈ 𝐷) |
109 | 10 | fvexi 6788 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
V |
110 | 13 | fvexi 6788 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
V |
111 | 109, 110 | ifex 4509 |
. . . . . . . . . . . . . 14
⊢ if(𝑏 = 𝐵, 1 , 0 ) ∈
V |
112 | 111 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) → if(𝑏 = 𝐵, 1 , 0 ) ∈
V) |
113 | 18, 106, 108, 112 | fvmptd3 6898 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) → (𝐹‘𝑏) = if(𝑏 = 𝐵, 1 , 0 )) |
114 | | eldifsnneq 4724 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈ (𝐷 ∖ {𝐵}) → ¬ 𝑏 = 𝐵) |
115 | 114 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) → ¬ 𝑏 = 𝐵) |
116 | 115 | iffalsed 4470 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) → if(𝑏 = 𝐵, 1 , 0 ) = 0 ) |
117 | 113, 116 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) → (𝐹‘𝑏) = 0 ) |
118 | 117 | fveq2d 6778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) → ((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏)) = ((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘ 0 )) |
119 | | sneq 4571 |
. . . . . . . . . . . 12
⊢ (𝑥 = 0 → {𝑥} = { 0 }) |
120 | 119 | xpeq2d 5619 |
. . . . . . . . . . 11
⊢ (𝑥 = 0 → ((𝐾 ↑m 𝐼) × {𝑥}) = ((𝐾 ↑m 𝐼) × { 0 })) |
121 | 80 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) → 0 ∈ 𝑅) |
122 | | ovex 7308 |
. . . . . . . . . . . . 13
⊢ (𝐾 ↑m 𝐼) ∈ V |
123 | | snex 5354 |
. . . . . . . . . . . . 13
⊢ { 0 } ∈
V |
124 | 122, 123 | xpex 7603 |
. . . . . . . . . . . 12
⊢ ((𝐾 ↑m 𝐼) × { 0 }) ∈
V |
125 | 124 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) → ((𝐾 ↑m 𝐼) × { 0 }) ∈
V) |
126 | 47, 120, 121, 125 | fvmptd3 6898 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) → ((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘ 0 ) = ((𝐾 ↑m 𝐼) × { 0 })) |
127 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢
(0g‘𝑆) = (0g‘𝑆) |
128 | 6, 127 | subrg0 20031 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ (SubRing‘𝑆) →
(0g‘𝑆) =
(0g‘𝑈)) |
129 | 5, 128 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑈)) |
130 | 129, 13 | eqtr4di 2796 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (0g‘𝑆) = 0 ) |
131 | 130 | sneqd 4573 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
{(0g‘𝑆)} =
{ 0
}) |
132 | 131 | xpeq2d 5619 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐾 ↑m 𝐼) × {(0g‘𝑆)}) = ((𝐾 ↑m 𝐼) × { 0 })) |
133 | 55 | ringgrpd 19792 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑆 ∈ Grp) |
134 | 133 | grpmndd 18589 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆 ∈ Mnd) |
135 | 42, 127 | pws0g 18421 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ Mnd ∧ (𝐾 ↑m 𝐼) ∈ V) → ((𝐾 ↑m 𝐼) ×
{(0g‘𝑆)})
= (0g‘(𝑆
↑s (𝐾 ↑m 𝐼)))) |
136 | 134, 56, 135 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐾 ↑m 𝐼) × {(0g‘𝑆)}) =
(0g‘(𝑆
↑s (𝐾 ↑m 𝐼)))) |
137 | 132, 136 | eqtr3d 2780 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐾 ↑m 𝐼) × { 0 }) =
(0g‘(𝑆
↑s (𝐾 ↑m 𝐼)))) |
138 | 137 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) → ((𝐾 ↑m 𝐼) × { 0 }) =
(0g‘(𝑆
↑s (𝐾 ↑m 𝐼)))) |
139 | 118, 126,
138 | 3eqtrd 2782 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) → ((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏)) = (0g‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
140 | 139 | oveq1d 7290 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) → (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))))) = ((0g‘(𝑆 ↑s
(𝐾 ↑m 𝐼)))(.r‘(𝑆 ↑s
(𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))))) |
141 | 90 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) → (mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))) ∈
CMnd) |
142 | 49 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) ∧ 𝑥 ∈ 𝐼) → 𝑆 ∈ CRing) |
143 | | ovexd 7310 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) ∧ 𝑥 ∈ 𝐼) → (𝐾 ↑m 𝐼) ∈ V) |
144 | 95 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) ∧ 𝑥 ∈ 𝐼) ∧ 𝑎 ∈ (𝐾 ↑m 𝐼)) → 𝑎:𝐼⟶𝐾) |
145 | | simplr 766 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) ∧ 𝑥 ∈ 𝐼) ∧ 𝑎 ∈ (𝐾 ↑m 𝐼)) → 𝑥 ∈ 𝐼) |
146 | 144, 145 | ffvelrnd 6962 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) ∧ 𝑥 ∈ 𝐼) ∧ 𝑎 ∈ (𝐾 ↑m 𝐼)) → (𝑎‘𝑥) ∈ 𝐾) |
147 | 146 | fmpttd 6989 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) ∧ 𝑥 ∈ 𝐼) → (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)):(𝐾 ↑m 𝐼)⟶𝐾) |
148 | 42, 41, 53, 142, 143, 147 | pwselbasr 40266 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) ∧ 𝑥 ∈ 𝐼) → (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
149 | 148 | fmpttd 6989 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) → (𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))):𝐼⟶(Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
150 | 2, 86, 44, 141, 108, 149 | psrbagev2 21287 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) → ((mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
151 | 53, 45, 54 | ringlz 19826 |
. . . . . . . . 9
⊢ (((𝑆 ↑s
(𝐾 ↑m 𝐼)) ∈ Ring ∧
((mulGrp‘(𝑆
↑s (𝐾 ↑m 𝐼))) Σg (𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) →
((0g‘(𝑆
↑s (𝐾 ↑m 𝐼)))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))))) = (0g‘(𝑆 ↑s
(𝐾 ↑m 𝐼)))) |
152 | 58, 150, 151 | syl2an2r 682 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) → ((0g‘(𝑆 ↑s
(𝐾 ↑m 𝐼)))(.r‘(𝑆 ↑s
(𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))))) = (0g‘(𝑆 ↑s
(𝐾 ↑m 𝐼)))) |
153 | 140, 152 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) → (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))))) = (0g‘(𝑆 ↑s
(𝐾 ↑m 𝐼)))) |
154 | 153, 4 | suppss2 8016 |
. . . . . 6
⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))))) supp (0g‘(𝑆 ↑s
(𝐾 ↑m 𝐼)))) ⊆ {𝐵}) |
155 | 4 | mptexd 7100 |
. . . . . . 7
⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))))) ∈ V) |
156 | | fvexd 6789 |
. . . . . . 7
⊢ (𝜑 →
(0g‘(𝑆
↑s (𝐾 ↑m 𝐼))) ∈ V) |
157 | | funmpt 6472 |
. . . . . . . 8
⊢ Fun
(𝑏 ∈ 𝐷 ↦ (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))))) |
158 | 157 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → Fun (𝑏 ∈ 𝐷 ↦ (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))))))) |
159 | | snfi 8834 |
. . . . . . . . 9
⊢ {𝐵} ∈ Fin |
160 | 159 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → {𝐵} ∈ Fin) |
161 | 160, 154 | ssfid 9042 |
. . . . . . 7
⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))))) supp (0g‘(𝑆 ↑s
(𝐾 ↑m 𝐼)))) ∈
Fin) |
162 | 155, 156,
158, 161 | isfsuppd 40217 |
. . . . . 6
⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))))) finSupp (0g‘(𝑆 ↑s
(𝐾 ↑m 𝐼)))) |
163 | 53, 54, 59, 4, 104, 154, 162 | gsumres 19514 |
. . . . 5
⊢ (𝜑 → ((𝑆 ↑s (𝐾 ↑m 𝐼)) Σg
((𝑏 ∈ 𝐷 ↦ (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))))) ↾ {𝐵})) = ((𝑆 ↑s (𝐾 ↑m 𝐼)) Σg
(𝑏 ∈ 𝐷 ↦ (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))))))) |
164 | | evlsbagval.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ 𝐷) |
165 | 164 | snssd 4742 |
. . . . . . 7
⊢ (𝜑 → {𝐵} ⊆ 𝐷) |
166 | 165 | resmptd 5948 |
. . . . . 6
⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))))) ↾ {𝐵}) = (𝑏 ∈ {𝐵} ↦ (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))))))) |
167 | 166 | oveq2d 7291 |
. . . . 5
⊢ (𝜑 → ((𝑆 ↑s (𝐾 ↑m 𝐼)) Σg
((𝑏 ∈ 𝐷 ↦ (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))))) ↾ {𝐵})) = ((𝑆 ↑s (𝐾 ↑m 𝐼)) Σg
(𝑏 ∈ {𝐵} ↦ (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))))))) |
168 | 163, 167 | eqtr3d 2780 |
. . . 4
⊢ (𝜑 → ((𝑆 ↑s (𝐾 ↑m 𝐼)) Σg
(𝑏 ∈ 𝐷 ↦ (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))))))) = ((𝑆 ↑s (𝐾 ↑m 𝐼)) Σg
(𝑏 ∈ {𝐵} ↦ (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))))))) |
169 | 58 | ringgrpd 19792 |
. . . . . . 7
⊢ (𝜑 → (𝑆 ↑s (𝐾 ↑m 𝐼)) ∈ Grp) |
170 | 169 | grpmndd 18589 |
. . . . . 6
⊢ (𝜑 → (𝑆 ↑s (𝐾 ↑m 𝐼)) ∈ Mnd) |
171 | | iftrue 4465 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝐵 → if(𝑠 = 𝐵, 1 , 0 ) = 1 ) |
172 | 109 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ∈ V) |
173 | 18, 171, 164, 172 | fvmptd3 6898 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹‘𝐵) = 1 ) |
174 | 173 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝐵)) = ((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘ 1 )) |
175 | 10, 73 | eqtr4id 2797 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 =
(1r‘𝑆)) |
176 | 175 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘ 1 ) = ((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(1r‘𝑆))) |
177 | | sneq 4571 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (1r‘𝑆) → {𝑥} = {(1r‘𝑆)}) |
178 | 177 | xpeq2d 5619 |
. . . . . . . . . . . 12
⊢ (𝑥 = (1r‘𝑆) → ((𝐾 ↑m 𝐼) × {𝑥}) = ((𝐾 ↑m 𝐼) × {(1r‘𝑆)})) |
179 | | snex 5354 |
. . . . . . . . . . . . . 14
⊢
{(1r‘𝑆)} ∈ V |
180 | 179 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
{(1r‘𝑆)}
∈ V) |
181 | 56, 180 | xpexd 7601 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐾 ↑m 𝐼) × {(1r‘𝑆)}) ∈ V) |
182 | 47, 178, 75, 181 | fvmptd3 6898 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(1r‘𝑆)) = ((𝐾 ↑m 𝐼) × {(1r‘𝑆)})) |
183 | 176, 182 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘ 1 ) = ((𝐾 ↑m 𝐼) × {(1r‘𝑆)})) |
184 | 42, 71 | pws1 19855 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ Ring ∧ (𝐾 ↑m 𝐼) ∈ V) → ((𝐾 ↑m 𝐼) ×
{(1r‘𝑆)})
= (1r‘(𝑆
↑s (𝐾 ↑m 𝐼)))) |
185 | 55, 56, 184 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐾 ↑m 𝐼) × {(1r‘𝑆)}) =
(1r‘(𝑆
↑s (𝐾 ↑m 𝐼)))) |
186 | 174, 183,
185 | 3eqtrd 2782 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝐵)) = (1r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
187 | 186 | oveq1d 7290 |
. . . . . . . 8
⊢ (𝜑 → (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝐵))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝐵 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))))) = ((1r‘(𝑆 ↑s
(𝐾 ↑m 𝐼)))(.r‘(𝑆 ↑s
(𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝐵 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))))) |
188 | | eqid 2738 |
. . . . . . . . 9
⊢
(1r‘(𝑆 ↑s (𝐾 ↑m 𝐼))) =
(1r‘(𝑆
↑s (𝐾 ↑m 𝐼))) |
189 | 49 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ∈ CRing) |
190 | | ovexd 7310 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐾 ↑m 𝐼) ∈ V) |
191 | 95 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑎 ∈ (𝐾 ↑m 𝐼)) → 𝑎:𝐼⟶𝐾) |
192 | | simplr 766 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑎 ∈ (𝐾 ↑m 𝐼)) → 𝑥 ∈ 𝐼) |
193 | 191, 192 | ffvelrnd 6962 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑎 ∈ (𝐾 ↑m 𝐼)) → (𝑎‘𝑥) ∈ 𝐾) |
194 | 193 | fmpttd 6989 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)):(𝐾 ↑m 𝐼)⟶𝐾) |
195 | 42, 41, 53, 189, 190, 194 | pwselbasr 40266 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
196 | 195 | fmpttd 6989 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))):𝐼⟶(Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
197 | 2, 86, 44, 90, 164, 196 | psrbagev2 21287 |
. . . . . . . . 9
⊢ (𝜑 → ((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝐵 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
198 | 53, 45, 188, 58, 197 | ringlidmd 40242 |
. . . . . . . 8
⊢ (𝜑 →
((1r‘(𝑆
↑s (𝐾 ↑m 𝐼)))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝐵 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))))) = ((mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))) Σg
(𝐵 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))))) |
199 | 187, 198 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝐵))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝐵 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))))) = ((mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))) Σg
(𝐵 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))))) |
200 | 199, 197 | eqeltrd 2839 |
. . . . . 6
⊢ (𝜑 → (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝐵))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝐵 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))))) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
201 | | 2fveq3 6779 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → ((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏)) = ((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝐵))) |
202 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝑏 = 𝐵 → (𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))) = (𝐵 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))) |
203 | 202 | oveq2d 7291 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → ((mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))) = ((mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))) Σg
(𝐵 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))))) |
204 | 201, 203 | oveq12d 7293 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))))) = (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝐵))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝐵 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))))) |
205 | 53, 204 | gsumsn 19555 |
. . . . . 6
⊢ (((𝑆 ↑s
(𝐾 ↑m 𝐼)) ∈ Mnd ∧ 𝐵 ∈ 𝐷 ∧ (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝐵))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝐵 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))))) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) → ((𝑆 ↑s (𝐾 ↑m 𝐼)) Σg
(𝑏 ∈ {𝐵} ↦ (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))))))) = (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝐵))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝐵 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))))) |
206 | 170, 164,
200, 205 | syl3anc 1370 |
. . . . 5
⊢ (𝜑 → ((𝑆 ↑s (𝐾 ↑m 𝐼)) Σg
(𝑏 ∈ {𝐵} ↦ (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))))))) = (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝐵))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝐵 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))))) |
207 | 2 | psrbagf 21121 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ 𝐷 → 𝐵:𝐼⟶ℕ0) |
208 | 164, 207 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵:𝐼⟶ℕ0) |
209 | 208 | ffnd 6601 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 Fn 𝐼) |
210 | 122 | mptex 7099 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)) ∈ V |
211 | 210, 48 | fnmpti 6576 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))) Fn 𝐼 |
212 | 211 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))) Fn 𝐼) |
213 | | inidm 4152 |
. . . . . . . . 9
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
214 | | eqidd 2739 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐼) → (𝐵‘𝑣) = (𝐵‘𝑣)) |
215 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑣 → (𝑎‘𝑥) = (𝑎‘𝑣)) |
216 | 215 | mpteq2dv 5176 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑣 → (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)) = (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑣))) |
217 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐼) → 𝑣 ∈ 𝐼) |
218 | 122 | mptex 7099 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑣)) ∈ V |
219 | 218 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐼) → (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑣)) ∈ V) |
220 | 48, 216, 217, 219 | fvmptd3 6898 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐼) → ((𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))‘𝑣) = (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑣))) |
221 | 209, 212,
23, 23, 213, 214, 220 | offval 7542 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))) = (𝑣 ∈ 𝐼 ↦ ((𝐵‘𝑣)(.g‘(mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))))(𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑣))))) |
222 | 49 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐼) → 𝑆 ∈ CRing) |
223 | | ovexd 7310 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐼) → (𝐾 ↑m 𝐼) ∈ V) |
224 | 43 | ringmgp 19789 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 ↑s
(𝐾 ↑m 𝐼)) ∈ Ring →
(mulGrp‘(𝑆
↑s (𝐾 ↑m 𝐼))) ∈ Mnd) |
225 | 58, 224 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) ∈ Mnd) |
226 | 225 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐼) → (mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))) ∈ Mnd) |
227 | 208 | ffvelrnda 6961 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐼) → (𝐵‘𝑣) ∈
ℕ0) |
228 | 95 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑣 ∈ 𝐼) ∧ 𝑎 ∈ (𝐾 ↑m 𝐼)) → 𝑎:𝐼⟶𝐾) |
229 | | simplr 766 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑣 ∈ 𝐼) ∧ 𝑎 ∈ (𝐾 ↑m 𝐼)) → 𝑣 ∈ 𝐼) |
230 | 228, 229 | ffvelrnd 6962 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑣 ∈ 𝐼) ∧ 𝑎 ∈ (𝐾 ↑m 𝐼)) → (𝑎‘𝑣) ∈ 𝐾) |
231 | 230 | fmpttd 6989 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐼) → (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑣)):(𝐾 ↑m 𝐼)⟶𝐾) |
232 | 42, 41, 53, 222, 223, 231 | pwselbasr 40266 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐼) → (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑣)) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
233 | 86, 44 | mulgnn0cl 18720 |
. . . . . . . . . . . . 13
⊢
(((mulGrp‘(𝑆
↑s (𝐾 ↑m 𝐼))) ∈ Mnd ∧ (𝐵‘𝑣) ∈ ℕ0 ∧ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑣)) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) → ((𝐵‘𝑣)(.g‘(mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))))(𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑣))) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
234 | 226, 227,
232, 233 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐼) → ((𝐵‘𝑣)(.g‘(mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))))(𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑣))) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
235 | 42, 41, 53, 222, 223, 234 | pwselbas 17200 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐼) → ((𝐵‘𝑣)(.g‘(mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))))(𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑣))):(𝐾 ↑m 𝐼)⟶𝐾) |
236 | 235 | ffnd 6601 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐼) → ((𝐵‘𝑣)(.g‘(mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))))(𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑣))) Fn (𝐾 ↑m 𝐼)) |
237 | | ovex 7308 |
. . . . . . . . . . . 12
⊢ ((𝐵‘𝑣) ↑ (𝑔‘𝑣)) ∈ V |
238 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑔 ∈ (𝐾 ↑m 𝐼) ↦ ((𝐵‘𝑣) ↑ (𝑔‘𝑣))) = (𝑔 ∈ (𝐾 ↑m 𝐼) ↦ ((𝐵‘𝑣) ↑ (𝑔‘𝑣))) |
239 | 237, 238 | fnmpti 6576 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ (𝐾 ↑m 𝐼) ↦ ((𝐵‘𝑣) ↑ (𝑔‘𝑣))) Fn (𝐾 ↑m 𝐼) |
240 | 239 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐼) → (𝑔 ∈ (𝐾 ↑m 𝐼) ↦ ((𝐵‘𝑣) ↑ (𝑔‘𝑣))) Fn (𝐾 ↑m 𝐼)) |
241 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑣)) = (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑣)) |
242 | | fveq1 6773 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑙 → (𝑎‘𝑣) = (𝑙‘𝑣)) |
243 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑣 ∈ 𝐼) ∧ 𝑙 ∈ (𝐾 ↑m 𝐼)) → 𝑙 ∈ (𝐾 ↑m 𝐼)) |
244 | | fvexd 6789 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑣 ∈ 𝐼) ∧ 𝑙 ∈ (𝐾 ↑m 𝐼)) → (𝑙‘𝑣) ∈ V) |
245 | 241, 242,
243, 244 | fvmptd3 6898 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑣 ∈ 𝐼) ∧ 𝑙 ∈ (𝐾 ↑m 𝐼)) → ((𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑣))‘𝑙) = (𝑙‘𝑣)) |
246 | 245 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑣 ∈ 𝐼) ∧ 𝑙 ∈ (𝐾 ↑m 𝐼)) → ((𝐵‘𝑣) ↑ ((𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑣))‘𝑙)) = ((𝐵‘𝑣) ↑ (𝑙‘𝑣))) |
247 | | evlsbagval.m |
. . . . . . . . . . . 12
⊢ 𝑀 = (mulGrp‘𝑆) |
248 | | evlsbagval.e |
. . . . . . . . . . . 12
⊢ ↑ =
(.g‘𝑀) |
249 | 55 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑣 ∈ 𝐼) ∧ 𝑙 ∈ (𝐾 ↑m 𝐼)) → 𝑆 ∈ Ring) |
250 | | ovexd 7310 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑣 ∈ 𝐼) ∧ 𝑙 ∈ (𝐾 ↑m 𝐼)) → (𝐾 ↑m 𝐼) ∈ V) |
251 | 227 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑣 ∈ 𝐼) ∧ 𝑙 ∈ (𝐾 ↑m 𝐼)) → (𝐵‘𝑣) ∈
ℕ0) |
252 | 232 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑣 ∈ 𝐼) ∧ 𝑙 ∈ (𝐾 ↑m 𝐼)) → (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑣)) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
253 | 42, 53, 43, 247, 44, 248, 249, 250, 251, 252, 243 | pwsexpg 40268 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑣 ∈ 𝐼) ∧ 𝑙 ∈ (𝐾 ↑m 𝐼)) → (((𝐵‘𝑣)(.g‘(mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))))(𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑣)))‘𝑙) = ((𝐵‘𝑣) ↑ ((𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑣))‘𝑙))) |
254 | | fveq1 6773 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝑙 → (𝑔‘𝑣) = (𝑙‘𝑣)) |
255 | 254 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑙 → ((𝐵‘𝑣) ↑ (𝑔‘𝑣)) = ((𝐵‘𝑣) ↑ (𝑙‘𝑣))) |
256 | | ovexd 7310 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑣 ∈ 𝐼) ∧ 𝑙 ∈ (𝐾 ↑m 𝐼)) → ((𝐵‘𝑣) ↑ (𝑙‘𝑣)) ∈ V) |
257 | 238, 255,
243, 256 | fvmptd3 6898 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑣 ∈ 𝐼) ∧ 𝑙 ∈ (𝐾 ↑m 𝐼)) → ((𝑔 ∈ (𝐾 ↑m 𝐼) ↦ ((𝐵‘𝑣) ↑ (𝑔‘𝑣)))‘𝑙) = ((𝐵‘𝑣) ↑ (𝑙‘𝑣))) |
258 | 246, 253,
257 | 3eqtr4d 2788 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑣 ∈ 𝐼) ∧ 𝑙 ∈ (𝐾 ↑m 𝐼)) → (((𝐵‘𝑣)(.g‘(mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))))(𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑣)))‘𝑙) = ((𝑔 ∈ (𝐾 ↑m 𝐼) ↦ ((𝐵‘𝑣) ↑ (𝑔‘𝑣)))‘𝑙)) |
259 | 236, 240,
258 | eqfnfvd 6912 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐼) → ((𝐵‘𝑣)(.g‘(mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))))(𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑣))) = (𝑔 ∈ (𝐾 ↑m 𝐼) ↦ ((𝐵‘𝑣) ↑ (𝑔‘𝑣)))) |
260 | 259 | mpteq2dva 5174 |
. . . . . . . 8
⊢ (𝜑 → (𝑣 ∈ 𝐼 ↦ ((𝐵‘𝑣)(.g‘(mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))))(𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑣)))) = (𝑣 ∈ 𝐼 ↦ (𝑔 ∈ (𝐾 ↑m 𝐼) ↦ ((𝐵‘𝑣) ↑ (𝑔‘𝑣))))) |
261 | 221, 260 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → (𝐵 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))) = (𝑣 ∈ 𝐼 ↦ (𝑔 ∈ (𝐾 ↑m 𝐼) ↦ ((𝐵‘𝑣) ↑ (𝑔‘𝑣))))) |
262 | 261 | oveq2d 7291 |
. . . . . 6
⊢ (𝜑 → ((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝐵 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))) = ((mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))) Σg
(𝑣 ∈ 𝐼 ↦ (𝑔 ∈ (𝐾 ↑m 𝐼) ↦ ((𝐵‘𝑣) ↑ (𝑔‘𝑣)))))) |
263 | 247 | crngmgp 19791 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ CRing → 𝑀 ∈ CMnd) |
264 | 49, 263 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ CMnd) |
265 | 264 | cmnmndd 19409 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ Mnd) |
266 | 265 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑔 ∈ (𝐾 ↑m 𝐼) ∧ 𝑣 ∈ 𝐼)) → 𝑀 ∈ Mnd) |
267 | 227 | adantrl 713 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑔 ∈ (𝐾 ↑m 𝐼) ∧ 𝑣 ∈ 𝐼)) → (𝐵‘𝑣) ∈
ℕ0) |
268 | | elmapi 8637 |
. . . . . . . . . 10
⊢ (𝑔 ∈ (𝐾 ↑m 𝐼) → 𝑔:𝐼⟶𝐾) |
269 | 268 | ad2antrl 725 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑔 ∈ (𝐾 ↑m 𝐼) ∧ 𝑣 ∈ 𝐼)) → 𝑔:𝐼⟶𝐾) |
270 | | simprr 770 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑔 ∈ (𝐾 ↑m 𝐼) ∧ 𝑣 ∈ 𝐼)) → 𝑣 ∈ 𝐼) |
271 | 269, 270 | ffvelrnd 6962 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑔 ∈ (𝐾 ↑m 𝐼) ∧ 𝑣 ∈ 𝐼)) → (𝑔‘𝑣) ∈ 𝐾) |
272 | 247, 41 | mgpbas 19726 |
. . . . . . . . 9
⊢ 𝐾 = (Base‘𝑀) |
273 | 272, 248 | mulgnn0cl 18720 |
. . . . . . . 8
⊢ ((𝑀 ∈ Mnd ∧ (𝐵‘𝑣) ∈ ℕ0 ∧ (𝑔‘𝑣) ∈ 𝐾) → ((𝐵‘𝑣) ↑ (𝑔‘𝑣)) ∈ 𝐾) |
274 | 266, 267,
271, 273 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑔 ∈ (𝐾 ↑m 𝐼) ∧ 𝑣 ∈ 𝐼)) → ((𝐵‘𝑣) ↑ (𝑔‘𝑣)) ∈ 𝐾) |
275 | 23 | mptexd 7100 |
. . . . . . . 8
⊢ (𝜑 → (𝑣 ∈ 𝐼 ↦ (𝑔 ∈ (𝐾 ↑m 𝐼) ↦ ((𝐵‘𝑣) ↑ (𝑔‘𝑣)))) ∈ V) |
276 | | fvexd 6789 |
. . . . . . . 8
⊢ (𝜑 →
(1r‘(𝑆
↑s (𝐾 ↑m 𝐼))) ∈ V) |
277 | | funmpt 6472 |
. . . . . . . . 9
⊢ Fun
(𝑣 ∈ 𝐼 ↦ (𝑔 ∈ (𝐾 ↑m 𝐼) ↦ ((𝐵‘𝑣) ↑ (𝑔‘𝑣)))) |
278 | 277 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → Fun (𝑣 ∈ 𝐼 ↦ (𝑔 ∈ (𝐾 ↑m 𝐼) ↦ ((𝐵‘𝑣) ↑ (𝑔‘𝑣))))) |
279 | 2 | psrbagfsupp 21123 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ 𝐷 → 𝐵 finSupp 0) |
280 | 164, 279 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 finSupp 0) |
281 | 280 | fsuppimpd 9135 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 supp 0) ∈ Fin) |
282 | | ssidd 3944 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐵 supp 0) ⊆ (𝐵 supp 0)) |
283 | | c0ex 10969 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
V |
284 | 283 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 ∈
V) |
285 | 208, 282,
23, 284 | suppssr 8012 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐼 ∖ (𝐵 supp 0))) → (𝐵‘𝑣) = 0) |
286 | 285 | oveq1d 7290 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐼 ∖ (𝐵 supp 0))) → ((𝐵‘𝑣) ↑ (𝑔‘𝑣)) = (0 ↑ (𝑔‘𝑣))) |
287 | 286 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐼 ∖ (𝐵 supp 0))) ∧ 𝑔 ∈ (𝐾 ↑m 𝐼)) → ((𝐵‘𝑣) ↑ (𝑔‘𝑣)) = (0 ↑ (𝑔‘𝑣))) |
288 | 268 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐼 ∖ (𝐵 supp 0))) ∧ 𝑔 ∈ (𝐾 ↑m 𝐼)) → 𝑔:𝐼⟶𝐾) |
289 | | eldifi 4061 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 ∈ (𝐼 ∖ (𝐵 supp 0)) → 𝑣 ∈ 𝐼) |
290 | 289 | ad2antlr 724 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐼 ∖ (𝐵 supp 0))) ∧ 𝑔 ∈ (𝐾 ↑m 𝐼)) → 𝑣 ∈ 𝐼) |
291 | 288, 290 | ffvelrnd 6962 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐼 ∖ (𝐵 supp 0))) ∧ 𝑔 ∈ (𝐾 ↑m 𝐼)) → (𝑔‘𝑣) ∈ 𝐾) |
292 | 247, 71 | ringidval 19739 |
. . . . . . . . . . . . . . 15
⊢
(1r‘𝑆) = (0g‘𝑀) |
293 | 272, 292,
248 | mulg0 18707 |
. . . . . . . . . . . . . 14
⊢ ((𝑔‘𝑣) ∈ 𝐾 → (0 ↑ (𝑔‘𝑣)) = (1r‘𝑆)) |
294 | 291, 293 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐼 ∖ (𝐵 supp 0))) ∧ 𝑔 ∈ (𝐾 ↑m 𝐼)) → (0 ↑ (𝑔‘𝑣)) = (1r‘𝑆)) |
295 | 287, 294 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐼 ∖ (𝐵 supp 0))) ∧ 𝑔 ∈ (𝐾 ↑m 𝐼)) → ((𝐵‘𝑣) ↑ (𝑔‘𝑣)) = (1r‘𝑆)) |
296 | 295 | mpteq2dva 5174 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐼 ∖ (𝐵 supp 0))) → (𝑔 ∈ (𝐾 ↑m 𝐼) ↦ ((𝐵‘𝑣) ↑ (𝑔‘𝑣))) = (𝑔 ∈ (𝐾 ↑m 𝐼) ↦ (1r‘𝑆))) |
297 | | fconstmpt 5649 |
. . . . . . . . . . . 12
⊢ ((𝐾 ↑m 𝐼) ×
{(1r‘𝑆)})
= (𝑔 ∈ (𝐾 ↑m 𝐼) ↦
(1r‘𝑆)) |
298 | | ovexd 7310 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐼 ∖ (𝐵 supp 0))) → (𝐾 ↑m 𝐼) ∈ V) |
299 | 55, 298, 184 | syl2an2r 682 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐼 ∖ (𝐵 supp 0))) → ((𝐾 ↑m 𝐼) × {(1r‘𝑆)}) =
(1r‘(𝑆
↑s (𝐾 ↑m 𝐼)))) |
300 | 297, 299 | eqtr3id 2792 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐼 ∖ (𝐵 supp 0))) → (𝑔 ∈ (𝐾 ↑m 𝐼) ↦ (1r‘𝑆)) = (1r‘(𝑆 ↑s
(𝐾 ↑m 𝐼)))) |
301 | 296, 300 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐼 ∖ (𝐵 supp 0))) → (𝑔 ∈ (𝐾 ↑m 𝐼) ↦ ((𝐵‘𝑣) ↑ (𝑔‘𝑣))) = (1r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
302 | 301, 23 | suppss2 8016 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑣 ∈ 𝐼 ↦ (𝑔 ∈ (𝐾 ↑m 𝐼) ↦ ((𝐵‘𝑣) ↑ (𝑔‘𝑣)))) supp (1r‘(𝑆 ↑s
(𝐾 ↑m 𝐼)))) ⊆ (𝐵 supp 0)) |
303 | 281, 302 | ssfid 9042 |
. . . . . . . 8
⊢ (𝜑 → ((𝑣 ∈ 𝐼 ↦ (𝑔 ∈ (𝐾 ↑m 𝐼) ↦ ((𝐵‘𝑣) ↑ (𝑔‘𝑣)))) supp (1r‘(𝑆 ↑s
(𝐾 ↑m 𝐼)))) ∈
Fin) |
304 | 275, 276,
278, 303 | isfsuppd 40217 |
. . . . . . 7
⊢ (𝜑 → (𝑣 ∈ 𝐼 ↦ (𝑔 ∈ (𝐾 ↑m 𝐼) ↦ ((𝐵‘𝑣) ↑ (𝑔‘𝑣)))) finSupp (1r‘(𝑆 ↑s
(𝐾 ↑m 𝐼)))) |
305 | 42, 41, 188, 43, 247, 56, 23, 49, 274, 304 | pwsgprod 40269 |
. . . . . 6
⊢ (𝜑 → ((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑣 ∈ 𝐼 ↦ (𝑔 ∈ (𝐾 ↑m 𝐼) ↦ ((𝐵‘𝑣) ↑ (𝑔‘𝑣))))) = (𝑔 ∈ (𝐾 ↑m 𝐼) ↦ (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝐵‘𝑣) ↑ (𝑔‘𝑣)))))) |
306 | 198, 262,
305 | 3eqtrd 2782 |
. . . . 5
⊢ (𝜑 →
((1r‘(𝑆
↑s (𝐾 ↑m 𝐼)))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝐵 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))))) = (𝑔 ∈ (𝐾 ↑m 𝐼) ↦ (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝐵‘𝑣) ↑ (𝑔‘𝑣)))))) |
307 | 206, 187,
306 | 3eqtrd 2782 |
. . . 4
⊢ (𝜑 → ((𝑆 ↑s (𝐾 ↑m 𝐼)) Σg
(𝑏 ∈ {𝐵} ↦ (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))))))) = (𝑔 ∈ (𝐾 ↑m 𝐼) ↦ (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝐵‘𝑣) ↑ (𝑔‘𝑣)))))) |
308 | 52, 168, 307 | 3eqtrd 2782 |
. . 3
⊢ (𝜑 → (𝑄‘𝐹) = (𝑔 ∈ (𝐾 ↑m 𝐼) ↦ (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝐵‘𝑣) ↑ (𝑔‘𝑣)))))) |
309 | | evlsbagval.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
310 | | ovexd 7310 |
. . 3
⊢ (𝜑 → (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝐵‘𝑣) ↑ (𝐴‘𝑣)))) ∈ V) |
311 | 34, 308, 309, 310 | fvmptd4 40210 |
. 2
⊢ (𝜑 → ((𝑄‘𝐹)‘𝐴) = (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝐵‘𝑣) ↑ (𝐴‘𝑣))))) |
312 | 30, 311 | jca 512 |
1
⊢ (𝜑 → (𝐹 ∈ 𝑊 ∧ ((𝑄‘𝐹)‘𝐴) = (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝐵‘𝑣) ↑ (𝐴‘𝑣)))))) |