Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evlsbagval Structured version   Visualization version   GIF version

Theorem evlsbagval 42687
Description: Polynomial evaluation builder for a bag of variables. EDITORIAL: This theorem should stay in my mathbox until there's another use, since 0 and 1 using 𝑈 instead of 𝑆 may not be convenient. (Contributed by SN, 29-Jul-2024.)
Hypotheses
Ref Expression
evlsbagval.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
evlsbagval.p 𝑃 = (𝐼 mPoly 𝑈)
evlsbagval.u 𝑈 = (𝑆s 𝑅)
evlsbagval.w 𝑊 = (Base‘𝑃)
evlsbagval.k 𝐾 = (Base‘𝑆)
evlsbagval.m 𝑀 = (mulGrp‘𝑆)
evlsbagval.e = (.g𝑀)
evlsbagval.z 0 = (0g𝑈)
evlsbagval.o 1 = (1r𝑈)
evlsbagval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlsbagval.f 𝐹 = (𝑠𝐷 ↦ if(𝑠 = 𝐵, 1 , 0 ))
evlsbagval.i (𝜑𝐼𝑉)
evlsbagval.s (𝜑𝑆 ∈ CRing)
evlsbagval.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evlsbagval.a (𝜑𝐴 ∈ (𝐾m 𝐼))
evlsbagval.b (𝜑𝐵𝐷)
Assertion
Ref Expression
evlsbagval (𝜑 → (𝐹𝑊 ∧ ((𝑄𝐹)‘𝐴) = (𝑀 Σg (𝑣𝐼 ↦ ((𝐵𝑣) (𝐴𝑣))))))
Distinct variable groups:   0 ,𝑠   1 ,𝑠   𝑣,𝐴   𝑣,𝐵   𝐵,   𝐵,𝑠   𝑣,𝐷   𝐷,𝑠   𝑣,𝐼   ,𝐼   𝑣,𝐾   𝑅,𝑠   𝑣,𝑆   𝑈,   𝑈,𝑠   ,𝑊   𝑣,𝑊   𝜑,𝑣   𝜑,𝑠
Allowed substitution hints:   𝜑()   𝐴(,𝑠)   𝐷()   𝑃(𝑣,,𝑠)   𝑄(𝑣,,𝑠)   𝑅(𝑣,)   𝑆(,𝑠)   𝑈(𝑣)   1 (𝑣,)   (𝑣,,𝑠)   𝐹(𝑣,,𝑠)   𝐼(𝑠)   𝐾(,𝑠)   𝑀(𝑣,,𝑠)   𝑉(𝑣,,𝑠)   𝑊(𝑠)   0 (𝑣,)

Proof of Theorem evlsbagval
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 fvexd 6845 . . . . 5 (𝜑 → (Base‘𝑈) ∈ V)
2 evlsbagval.d . . . . . 6 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
3 ovexd 7389 . . . . . 6 (𝜑 → (ℕ0m 𝐼) ∈ V)
42, 3rabexd 5282 . . . . 5 (𝜑𝐷 ∈ V)
5 evlsbagval.r . . . . . . . . . 10 (𝜑𝑅 ∈ (SubRing‘𝑆))
6 evlsbagval.u . . . . . . . . . . 11 𝑈 = (𝑆s 𝑅)
76subrgring 20493 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring)
85, 7syl 17 . . . . . . . . 9 (𝜑𝑈 ∈ Ring)
9 eqid 2733 . . . . . . . . . 10 (Base‘𝑈) = (Base‘𝑈)
10 evlsbagval.o . . . . . . . . . 10 1 = (1r𝑈)
119, 10ringidcl 20187 . . . . . . . . 9 (𝑈 ∈ Ring → 1 ∈ (Base‘𝑈))
128, 11syl 17 . . . . . . . 8 (𝜑1 ∈ (Base‘𝑈))
13 evlsbagval.z . . . . . . . . . 10 0 = (0g𝑈)
149, 13ring0cl 20189 . . . . . . . . 9 (𝑈 ∈ Ring → 0 ∈ (Base‘𝑈))
158, 14syl 17 . . . . . . . 8 (𝜑0 ∈ (Base‘𝑈))
1612, 15ifcld 4523 . . . . . . 7 (𝜑 → if(𝑠 = 𝐵, 1 , 0 ) ∈ (Base‘𝑈))
1716adantr 480 . . . . . 6 ((𝜑𝑠𝐷) → if(𝑠 = 𝐵, 1 , 0 ) ∈ (Base‘𝑈))
18 evlsbagval.f . . . . . 6 𝐹 = (𝑠𝐷 ↦ if(𝑠 = 𝐵, 1 , 0 ))
1917, 18fmptd 7055 . . . . 5 (𝜑𝐹:𝐷⟶(Base‘𝑈))
201, 4, 19elmapdd 8773 . . . 4 (𝜑𝐹 ∈ ((Base‘𝑈) ↑m 𝐷))
21 eqid 2733 . . . . 5 (𝐼 mPwSer 𝑈) = (𝐼 mPwSer 𝑈)
22 eqid 2733 . . . . 5 (Base‘(𝐼 mPwSer 𝑈)) = (Base‘(𝐼 mPwSer 𝑈))
23 evlsbagval.i . . . . 5 (𝜑𝐼𝑉)
2421, 9, 2, 22, 23psrbas 21874 . . . 4 (𝜑 → (Base‘(𝐼 mPwSer 𝑈)) = ((Base‘𝑈) ↑m 𝐷))
2520, 24eleqtrrd 2836 . . 3 (𝜑𝐹 ∈ (Base‘(𝐼 mPwSer 𝑈)))
264, 15, 18sniffsupp 9293 . . 3 (𝜑𝐹 finSupp 0 )
27 evlsbagval.p . . . 4 𝑃 = (𝐼 mPoly 𝑈)
28 evlsbagval.w . . . 4 𝑊 = (Base‘𝑃)
2927, 21, 22, 13, 28mplelbas 21931 . . 3 (𝐹𝑊 ↔ (𝐹 ∈ (Base‘(𝐼 mPwSer 𝑈)) ∧ 𝐹 finSupp 0 ))
3025, 26, 29sylanbrc 583 . 2 (𝜑𝐹𝑊)
31 evlsbagval.q . . . 4 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
32 evlsbagval.k . . . 4 𝐾 = (Base‘𝑆)
33 evlsbagval.m . . . 4 𝑀 = (mulGrp‘𝑆)
34 evlsbagval.e . . . 4 = (.g𝑀)
35 eqid 2733 . . . 4 (.r𝑆) = (.r𝑆)
36 evlsbagval.s . . . 4 (𝜑𝑆 ∈ CRing)
37 evlsbagval.a . . . 4 (𝜑𝐴 ∈ (𝐾m 𝐼))
3831, 27, 28, 6, 2, 32, 33, 34, 35, 23, 36, 5, 30, 37evlsvvval 42684 . . 3 (𝜑 → ((𝑄𝐹)‘𝐴) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹𝑏)(.r𝑆)(𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣))))))))
39 evlsbagval.b . . . . . . 7 (𝜑𝐵𝐷)
4039snssd 4762 . . . . . 6 (𝜑 → {𝐵} ⊆ 𝐷)
41 resmpt 5992 . . . . . 6 ({𝐵} ⊆ 𝐷 → ((𝑏𝐷 ↦ ((𝐹𝑏)(.r𝑆)(𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))))) ↾ {𝐵}) = (𝑏 ∈ {𝐵} ↦ ((𝐹𝑏)(.r𝑆)(𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))))))
4240, 41syl 17 . . . . 5 (𝜑 → ((𝑏𝐷 ↦ ((𝐹𝑏)(.r𝑆)(𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))))) ↾ {𝐵}) = (𝑏 ∈ {𝐵} ↦ ((𝐹𝑏)(.r𝑆)(𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))))))
4342oveq2d 7370 . . . 4 (𝜑 → (𝑆 Σg ((𝑏𝐷 ↦ ((𝐹𝑏)(.r𝑆)(𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))))) ↾ {𝐵})) = (𝑆 Σg (𝑏 ∈ {𝐵} ↦ ((𝐹𝑏)(.r𝑆)(𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣))))))))
44 eqid 2733 . . . . 5 (0g𝑆) = (0g𝑆)
4536crngringd 20168 . . . . . 6 (𝜑𝑆 ∈ Ring)
4645ringcmnd 20206 . . . . 5 (𝜑𝑆 ∈ CMnd)
4745adantr 480 . . . . . . 7 ((𝜑𝑏𝐷) → 𝑆 ∈ Ring)
486subrgbas 20500 . . . . . . . . . . 11 (𝑅 ∈ (SubRing‘𝑆) → 𝑅 = (Base‘𝑈))
4932subrgss 20491 . . . . . . . . . . 11 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐾)
5048, 49eqsstrrd 3966 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘𝑆) → (Base‘𝑈) ⊆ 𝐾)
515, 50syl 17 . . . . . . . . 9 (𝜑 → (Base‘𝑈) ⊆ 𝐾)
5219, 51fssd 6675 . . . . . . . 8 (𝜑𝐹:𝐷𝐾)
5352ffvelcdmda 7025 . . . . . . 7 ((𝜑𝑏𝐷) → (𝐹𝑏) ∈ 𝐾)
5423adantr 480 . . . . . . . 8 ((𝜑𝑏𝐷) → 𝐼𝑉)
5536adantr 480 . . . . . . . 8 ((𝜑𝑏𝐷) → 𝑆 ∈ CRing)
5637adantr 480 . . . . . . . 8 ((𝜑𝑏𝐷) → 𝐴 ∈ (𝐾m 𝐼))
57 simpr 484 . . . . . . . 8 ((𝜑𝑏𝐷) → 𝑏𝐷)
582, 32, 33, 34, 54, 55, 56, 57evlsvvvallem 42682 . . . . . . 7 ((𝜑𝑏𝐷) → (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))) ∈ 𝐾)
5932, 35, 47, 53, 58ringcld 20182 . . . . . 6 ((𝜑𝑏𝐷) → ((𝐹𝑏)(.r𝑆)(𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣))))) ∈ 𝐾)
6059fmpttd 7056 . . . . 5 (𝜑 → (𝑏𝐷 ↦ ((𝐹𝑏)(.r𝑆)(𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))))):𝐷𝐾)
61 eldifsnneq 4744 . . . . . . . . . . 11 (𝑏 ∈ (𝐷 ∖ {𝐵}) → ¬ 𝑏 = 𝐵)
6261adantl 481 . . . . . . . . . 10 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐵})) → ¬ 𝑏 = 𝐵)
6362iffalsed 4487 . . . . . . . . 9 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐵})) → if(𝑏 = 𝐵, 1 , 0 ) = 0 )
64 eqeq1 2737 . . . . . . . . . . 11 (𝑠 = 𝑏 → (𝑠 = 𝐵𝑏 = 𝐵))
6564ifbid 4500 . . . . . . . . . 10 (𝑠 = 𝑏 → if(𝑠 = 𝐵, 1 , 0 ) = if(𝑏 = 𝐵, 1 , 0 ))
66 eldifi 4080 . . . . . . . . . . 11 (𝑏 ∈ (𝐷 ∖ {𝐵}) → 𝑏𝐷)
6766adantl 481 . . . . . . . . . 10 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐵})) → 𝑏𝐷)
6810fvexi 6844 . . . . . . . . . . . 12 1 ∈ V
6913fvexi 6844 . . . . . . . . . . . 12 0 ∈ V
7068, 69ifex 4527 . . . . . . . . . . 11 if(𝑏 = 𝐵, 1 , 0 ) ∈ V
7170a1i 11 . . . . . . . . . 10 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐵})) → if(𝑏 = 𝐵, 1 , 0 ) ∈ V)
7218, 65, 67, 71fvmptd3 6960 . . . . . . . . 9 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐵})) → (𝐹𝑏) = if(𝑏 = 𝐵, 1 , 0 ))
736, 44subrg0 20498 . . . . . . . . . . . 12 (𝑅 ∈ (SubRing‘𝑆) → (0g𝑆) = (0g𝑈))
7473, 13eqtr4di 2786 . . . . . . . . . . 11 (𝑅 ∈ (SubRing‘𝑆) → (0g𝑆) = 0 )
755, 74syl 17 . . . . . . . . . 10 (𝜑 → (0g𝑆) = 0 )
7675adantr 480 . . . . . . . . 9 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐵})) → (0g𝑆) = 0 )
7763, 72, 763eqtr4d 2778 . . . . . . . 8 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐵})) → (𝐹𝑏) = (0g𝑆))
7877oveq1d 7369 . . . . . . 7 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐵})) → ((𝐹𝑏)(.r𝑆)(𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣))))) = ((0g𝑆)(.r𝑆)(𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣))))))
7966, 58sylan2 593 . . . . . . . 8 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐵})) → (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))) ∈ 𝐾)
8032, 35, 44ringlz 20215 . . . . . . . 8 ((𝑆 ∈ Ring ∧ (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))) ∈ 𝐾) → ((0g𝑆)(.r𝑆)(𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣))))) = (0g𝑆))
8145, 79, 80syl2an2r 685 . . . . . . 7 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐵})) → ((0g𝑆)(.r𝑆)(𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣))))) = (0g𝑆))
8278, 81eqtrd 2768 . . . . . 6 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐵})) → ((𝐹𝑏)(.r𝑆)(𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣))))) = (0g𝑆))
8382, 4suppss2 8138 . . . . 5 (𝜑 → ((𝑏𝐷 ↦ ((𝐹𝑏)(.r𝑆)(𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))))) supp (0g𝑆)) ⊆ {𝐵})
842, 27, 6, 28, 32, 33, 34, 35, 23, 36, 5, 30, 37evlsvvvallem2 42683 . . . . 5 (𝜑 → (𝑏𝐷 ↦ ((𝐹𝑏)(.r𝑆)(𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))))) finSupp (0g𝑆))
8532, 44, 46, 4, 60, 83, 84gsumres 19829 . . . 4 (𝜑 → (𝑆 Σg ((𝑏𝐷 ↦ ((𝐹𝑏)(.r𝑆)(𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))))) ↾ {𝐵})) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹𝑏)(.r𝑆)(𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣))))))))
8636crnggrpd 20169 . . . . . . 7 (𝜑𝑆 ∈ Grp)
8786grpmndd 18863 . . . . . 6 (𝜑𝑆 ∈ Mnd)
8852, 39ffvelcdmd 7026 . . . . . . 7 (𝜑 → (𝐹𝐵) ∈ 𝐾)
892, 32, 33, 34, 23, 36, 37, 39evlsvvvallem 42682 . . . . . . 7 (𝜑 → (𝑀 Σg (𝑣𝐼 ↦ ((𝐵𝑣) (𝐴𝑣)))) ∈ 𝐾)
9032, 35, 45, 88, 89ringcld 20182 . . . . . 6 (𝜑 → ((𝐹𝐵)(.r𝑆)(𝑀 Σg (𝑣𝐼 ↦ ((𝐵𝑣) (𝐴𝑣))))) ∈ 𝐾)
91 fveq2 6830 . . . . . . . 8 (𝑏 = 𝐵 → (𝐹𝑏) = (𝐹𝐵))
92 fveq1 6829 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝑏𝑣) = (𝐵𝑣))
9392oveq1d 7369 . . . . . . . . . 10 (𝑏 = 𝐵 → ((𝑏𝑣) (𝐴𝑣)) = ((𝐵𝑣) (𝐴𝑣)))
9493mpteq2dv 5189 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣))) = (𝑣𝐼 ↦ ((𝐵𝑣) (𝐴𝑣))))
9594oveq2d 7370 . . . . . . . 8 (𝑏 = 𝐵 → (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))) = (𝑀 Σg (𝑣𝐼 ↦ ((𝐵𝑣) (𝐴𝑣)))))
9691, 95oveq12d 7372 . . . . . . 7 (𝑏 = 𝐵 → ((𝐹𝑏)(.r𝑆)(𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣))))) = ((𝐹𝐵)(.r𝑆)(𝑀 Σg (𝑣𝐼 ↦ ((𝐵𝑣) (𝐴𝑣))))))
9732, 96gsumsn 19870 . . . . . 6 ((𝑆 ∈ Mnd ∧ 𝐵𝐷 ∧ ((𝐹𝐵)(.r𝑆)(𝑀 Σg (𝑣𝐼 ↦ ((𝐵𝑣) (𝐴𝑣))))) ∈ 𝐾) → (𝑆 Σg (𝑏 ∈ {𝐵} ↦ ((𝐹𝑏)(.r𝑆)(𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣))))))) = ((𝐹𝐵)(.r𝑆)(𝑀 Σg (𝑣𝐼 ↦ ((𝐵𝑣) (𝐴𝑣))))))
9887, 39, 90, 97syl3anc 1373 . . . . 5 (𝜑 → (𝑆 Σg (𝑏 ∈ {𝐵} ↦ ((𝐹𝑏)(.r𝑆)(𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣))))))) = ((𝐹𝐵)(.r𝑆)(𝑀 Σg (𝑣𝐼 ↦ ((𝐵𝑣) (𝐴𝑣))))))
99 iftrue 4482 . . . . . . . 8 (𝑠 = 𝐵 → if(𝑠 = 𝐵, 1 , 0 ) = 1 )
10068a1i 11 . . . . . . . 8 (𝜑1 ∈ V)
10118, 99, 39, 100fvmptd3 6960 . . . . . . 7 (𝜑 → (𝐹𝐵) = 1 )
102 eqid 2733 . . . . . . . . 9 (1r𝑆) = (1r𝑆)
1036, 102subrg1 20501 . . . . . . . 8 (𝑅 ∈ (SubRing‘𝑆) → (1r𝑆) = (1r𝑈))
1045, 103syl 17 . . . . . . 7 (𝜑 → (1r𝑆) = (1r𝑈))
10510, 101, 1043eqtr4a 2794 . . . . . 6 (𝜑 → (𝐹𝐵) = (1r𝑆))
106105oveq1d 7369 . . . . 5 (𝜑 → ((𝐹𝐵)(.r𝑆)(𝑀 Σg (𝑣𝐼 ↦ ((𝐵𝑣) (𝐴𝑣))))) = ((1r𝑆)(.r𝑆)(𝑀 Σg (𝑣𝐼 ↦ ((𝐵𝑣) (𝐴𝑣))))))
10732, 35, 102, 45, 89ringlidmd 20194 . . . . 5 (𝜑 → ((1r𝑆)(.r𝑆)(𝑀 Σg (𝑣𝐼 ↦ ((𝐵𝑣) (𝐴𝑣))))) = (𝑀 Σg (𝑣𝐼 ↦ ((𝐵𝑣) (𝐴𝑣)))))
10898, 106, 1073eqtrd 2772 . . . 4 (𝜑 → (𝑆 Σg (𝑏 ∈ {𝐵} ↦ ((𝐹𝑏)(.r𝑆)(𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣))))))) = (𝑀 Σg (𝑣𝐼 ↦ ((𝐵𝑣) (𝐴𝑣)))))
10943, 85, 1083eqtr3d 2776 . . 3 (𝜑 → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹𝑏)(.r𝑆)(𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣))))))) = (𝑀 Σg (𝑣𝐼 ↦ ((𝐵𝑣) (𝐴𝑣)))))
11038, 109eqtrd 2768 . 2 (𝜑 → ((𝑄𝐹)‘𝐴) = (𝑀 Σg (𝑣𝐼 ↦ ((𝐵𝑣) (𝐴𝑣)))))
11130, 110jca 511 1 (𝜑 → (𝐹𝑊 ∧ ((𝑄𝐹)‘𝐴) = (𝑀 Σg (𝑣𝐼 ↦ ((𝐵𝑣) (𝐴𝑣))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  cdif 3895  wss 3898  ifcif 4476  {csn 4577   class class class wbr 5095  cmpt 5176  ccnv 5620  cres 5623  cima 5624  cfv 6488  (class class class)co 7354  m cmap 8758  Fincfn 8877   finSupp cfsupp 9254  cn 12134  0cn0 12390  Basecbs 17124  s cress 17145  .rcmulr 17166  0gc0g 17347   Σg cgsu 17348  Mndcmnd 18646  .gcmg 18984  mulGrpcmgp 20062  1rcur 20103  Ringcrg 20155  CRingccrg 20156  SubRingcsubrg 20488   mPwSer cmps 21845   mPoly cmpl 21847   evalSub ces 22010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-ofr 7619  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-er 8630  df-map 8760  df-pm 8761  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-sup 9335  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-fz 13412  df-fzo 13559  df-seq 13913  df-hash 14242  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-sca 17181  df-vsca 17182  df-ip 17183  df-tset 17184  df-ple 17185  df-ds 17187  df-hom 17189  df-cco 17190  df-0g 17349  df-gsum 17350  df-prds 17355  df-pws 17357  df-mre 17492  df-mrc 17493  df-acs 17495  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-mhm 18695  df-submnd 18696  df-grp 18853  df-minusg 18854  df-sbg 18855  df-mulg 18985  df-subg 19040  df-ghm 19129  df-cntz 19233  df-cmn 19698  df-abl 19699  df-mgp 20063  df-rng 20075  df-ur 20104  df-srg 20109  df-ring 20157  df-cring 20158  df-rhm 20394  df-subrng 20465  df-subrg 20489  df-lmod 20799  df-lss 20869  df-lsp 20909  df-assa 21794  df-asp 21795  df-ascl 21796  df-psr 21850  df-mvr 21851  df-mpl 21852  df-evls 22012
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator