Step | Hyp | Ref
| Expression |
1 | | fvexd 6906 |
. . . . 5
⊢ (𝜑 → (Base‘𝑈) ∈ V) |
2 | | evlsbagval.d |
. . . . . 6
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
3 | | ovexd 7447 |
. . . . . 6
⊢ (𝜑 → (ℕ0
↑m 𝐼)
∈ V) |
4 | 2, 3 | rabexd 5333 |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ V) |
5 | | evlsbagval.r |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
6 | | evlsbagval.u |
. . . . . . . . . . 11
⊢ 𝑈 = (𝑆 ↾s 𝑅) |
7 | 6 | subrgring 20472 |
. . . . . . . . . 10
⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring) |
8 | 5, 7 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ Ring) |
9 | | eqid 2731 |
. . . . . . . . . 10
⊢
(Base‘𝑈) =
(Base‘𝑈) |
10 | | evlsbagval.o |
. . . . . . . . . 10
⊢ 1 =
(1r‘𝑈) |
11 | 9, 10 | ringidcl 20161 |
. . . . . . . . 9
⊢ (𝑈 ∈ Ring → 1 ∈
(Base‘𝑈)) |
12 | 8, 11 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈ (Base‘𝑈)) |
13 | | evlsbagval.z |
. . . . . . . . . 10
⊢ 0 =
(0g‘𝑈) |
14 | 9, 13 | ring0cl 20162 |
. . . . . . . . 9
⊢ (𝑈 ∈ Ring → 0 ∈
(Base‘𝑈)) |
15 | 8, 14 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈ (Base‘𝑈)) |
16 | 12, 15 | ifcld 4574 |
. . . . . . 7
⊢ (𝜑 → if(𝑠 = 𝐵, 1 , 0 ) ∈ (Base‘𝑈)) |
17 | 16 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐷) → if(𝑠 = 𝐵, 1 , 0 ) ∈ (Base‘𝑈)) |
18 | | evlsbagval.f |
. . . . . 6
⊢ 𝐹 = (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝐵, 1 , 0 )) |
19 | 17, 18 | fmptd 7115 |
. . . . 5
⊢ (𝜑 → 𝐹:𝐷⟶(Base‘𝑈)) |
20 | 1, 4, 19 | elmapdd 8841 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ ((Base‘𝑈) ↑m 𝐷)) |
21 | | eqid 2731 |
. . . . 5
⊢ (𝐼 mPwSer 𝑈) = (𝐼 mPwSer 𝑈) |
22 | | eqid 2731 |
. . . . 5
⊢
(Base‘(𝐼
mPwSer 𝑈)) =
(Base‘(𝐼 mPwSer 𝑈)) |
23 | | evlsbagval.i |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
24 | 21, 9, 2, 22, 23 | psrbas 21807 |
. . . 4
⊢ (𝜑 → (Base‘(𝐼 mPwSer 𝑈)) = ((Base‘𝑈) ↑m 𝐷)) |
25 | 20, 24 | eleqtrrd 2835 |
. . 3
⊢ (𝜑 → 𝐹 ∈ (Base‘(𝐼 mPwSer 𝑈))) |
26 | 4, 15, 18 | sniffsupp 9401 |
. . 3
⊢ (𝜑 → 𝐹 finSupp 0 ) |
27 | | evlsbagval.p |
. . . 4
⊢ 𝑃 = (𝐼 mPoly 𝑈) |
28 | | evlsbagval.w |
. . . 4
⊢ 𝑊 = (Base‘𝑃) |
29 | 27, 21, 22, 13, 28 | mplelbas 21861 |
. . 3
⊢ (𝐹 ∈ 𝑊 ↔ (𝐹 ∈ (Base‘(𝐼 mPwSer 𝑈)) ∧ 𝐹 finSupp 0 )) |
30 | 25, 26, 29 | sylanbrc 582 |
. 2
⊢ (𝜑 → 𝐹 ∈ 𝑊) |
31 | | evlsbagval.q |
. . . 4
⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
32 | | evlsbagval.k |
. . . 4
⊢ 𝐾 = (Base‘𝑆) |
33 | | evlsbagval.m |
. . . 4
⊢ 𝑀 = (mulGrp‘𝑆) |
34 | | evlsbagval.e |
. . . 4
⊢ ↑ =
(.g‘𝑀) |
35 | | eqid 2731 |
. . . 4
⊢
(.r‘𝑆) = (.r‘𝑆) |
36 | | evlsbagval.s |
. . . 4
⊢ (𝜑 → 𝑆 ∈ CRing) |
37 | | evlsbagval.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
38 | 31, 27, 28, 6, 2, 32, 33, 34, 35, 23, 36, 5, 30, 37 | evlsvvval 41600 |
. . 3
⊢ (𝜑 → ((𝑄‘𝐹)‘𝐴) = (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏)(.r‘𝑆)(𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))))) |
39 | | evlsbagval.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ 𝐷) |
40 | 39 | snssd 4812 |
. . . . . 6
⊢ (𝜑 → {𝐵} ⊆ 𝐷) |
41 | | resmpt 6037 |
. . . . . 6
⊢ ({𝐵} ⊆ 𝐷 → ((𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏)(.r‘𝑆)(𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) ↾ {𝐵}) = (𝑏 ∈ {𝐵} ↦ ((𝐹‘𝑏)(.r‘𝑆)(𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))))))) |
42 | 40, 41 | syl 17 |
. . . . 5
⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏)(.r‘𝑆)(𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) ↾ {𝐵}) = (𝑏 ∈ {𝐵} ↦ ((𝐹‘𝑏)(.r‘𝑆)(𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))))))) |
43 | 42 | oveq2d 7428 |
. . . 4
⊢ (𝜑 → (𝑆 Σg ((𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏)(.r‘𝑆)(𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) ↾ {𝐵})) = (𝑆 Σg (𝑏 ∈ {𝐵} ↦ ((𝐹‘𝑏)(.r‘𝑆)(𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))))) |
44 | | eqid 2731 |
. . . . 5
⊢
(0g‘𝑆) = (0g‘𝑆) |
45 | 36 | crngringd 20147 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ Ring) |
46 | 45 | ringcmnd 20179 |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ CMnd) |
47 | 45 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑆 ∈ Ring) |
48 | 6 | subrgbas 20479 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 = (Base‘𝑈)) |
49 | 32 | subrgss 20470 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐾) |
50 | 48, 49 | eqsstrrd 4021 |
. . . . . . . . . 10
⊢ (𝑅 ∈ (SubRing‘𝑆) → (Base‘𝑈) ⊆ 𝐾) |
51 | 5, 50 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (Base‘𝑈) ⊆ 𝐾) |
52 | 19, 51 | fssd 6735 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝐷⟶𝐾) |
53 | 52 | ffvelcdmda 7086 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝐹‘𝑏) ∈ 𝐾) |
54 | 23 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝐼 ∈ 𝑉) |
55 | 36 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑆 ∈ CRing) |
56 | 37 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
57 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑏 ∈ 𝐷) |
58 | 2, 32, 33, 34, 54, 55, 56, 57 | evlsvvvallem 41598 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))) ∈ 𝐾) |
59 | 32, 35, 47, 53, 58 | ringcld 20158 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → ((𝐹‘𝑏)(.r‘𝑆)(𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))))) ∈ 𝐾) |
60 | 59 | fmpttd 7116 |
. . . . 5
⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏)(.r‘𝑆)(𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))):𝐷⟶𝐾) |
61 | | eldifsnneq 4794 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ (𝐷 ∖ {𝐵}) → ¬ 𝑏 = 𝐵) |
62 | 61 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) → ¬ 𝑏 = 𝐵) |
63 | 62 | iffalsed 4539 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) → if(𝑏 = 𝐵, 1 , 0 ) = 0 ) |
64 | | eqeq1 2735 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑏 → (𝑠 = 𝐵 ↔ 𝑏 = 𝐵)) |
65 | 64 | ifbid 4551 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑏 → if(𝑠 = 𝐵, 1 , 0 ) = if(𝑏 = 𝐵, 1 , 0 )) |
66 | | eldifi 4126 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ (𝐷 ∖ {𝐵}) → 𝑏 ∈ 𝐷) |
67 | 66 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) → 𝑏 ∈ 𝐷) |
68 | 10 | fvexi 6905 |
. . . . . . . . . . . 12
⊢ 1 ∈
V |
69 | 13 | fvexi 6905 |
. . . . . . . . . . . 12
⊢ 0 ∈
V |
70 | 68, 69 | ifex 4578 |
. . . . . . . . . . 11
⊢ if(𝑏 = 𝐵, 1 , 0 ) ∈
V |
71 | 70 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) → if(𝑏 = 𝐵, 1 , 0 ) ∈
V) |
72 | 18, 65, 67, 71 | fvmptd3 7021 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) → (𝐹‘𝑏) = if(𝑏 = 𝐵, 1 , 0 )) |
73 | 6, 44 | subrg0 20477 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ (SubRing‘𝑆) →
(0g‘𝑆) =
(0g‘𝑈)) |
74 | 73, 13 | eqtr4di 2789 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ (SubRing‘𝑆) →
(0g‘𝑆) =
0
) |
75 | 5, 74 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (0g‘𝑆) = 0 ) |
76 | 75 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) → (0g‘𝑆) = 0 ) |
77 | 63, 72, 76 | 3eqtr4d 2781 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) → (𝐹‘𝑏) = (0g‘𝑆)) |
78 | 77 | oveq1d 7427 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) → ((𝐹‘𝑏)(.r‘𝑆)(𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))))) = ((0g‘𝑆)(.r‘𝑆)(𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) |
79 | 66, 58 | sylan2 592 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) → (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))) ∈ 𝐾) |
80 | 32, 35, 44 | ringlz 20188 |
. . . . . . . 8
⊢ ((𝑆 ∈ Ring ∧ (𝑀 Σg
(𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))) ∈ 𝐾) → ((0g‘𝑆)(.r‘𝑆)(𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))))) = (0g‘𝑆)) |
81 | 45, 79, 80 | syl2an2r 682 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) → ((0g‘𝑆)(.r‘𝑆)(𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))))) = (0g‘𝑆)) |
82 | 78, 81 | eqtrd 2771 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ {𝐵})) → ((𝐹‘𝑏)(.r‘𝑆)(𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))))) = (0g‘𝑆)) |
83 | 82, 4 | suppss2 8191 |
. . . . 5
⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏)(.r‘𝑆)(𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) supp (0g‘𝑆)) ⊆ {𝐵}) |
84 | 2, 27, 6, 28, 32, 33, 34, 35, 23, 36, 5, 30, 37 | evlsvvvallem2 41599 |
. . . . 5
⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏)(.r‘𝑆)(𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) finSupp (0g‘𝑆)) |
85 | 32, 44, 46, 4, 60, 83, 84 | gsumres 19829 |
. . . 4
⊢ (𝜑 → (𝑆 Σg ((𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏)(.r‘𝑆)(𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) ↾ {𝐵})) = (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏)(.r‘𝑆)(𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))))) |
86 | 36 | crnggrpd 20148 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ Grp) |
87 | 86 | grpmndd 18874 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ Mnd) |
88 | 52, 39 | ffvelcdmd 7087 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝐵) ∈ 𝐾) |
89 | 2, 32, 33, 34, 23, 36, 37, 39 | evlsvvvallem 41598 |
. . . . . . 7
⊢ (𝜑 → (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝐵‘𝑣) ↑ (𝐴‘𝑣)))) ∈ 𝐾) |
90 | 32, 35, 45, 88, 89 | ringcld 20158 |
. . . . . 6
⊢ (𝜑 → ((𝐹‘𝐵)(.r‘𝑆)(𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝐵‘𝑣) ↑ (𝐴‘𝑣))))) ∈ 𝐾) |
91 | | fveq2 6891 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → (𝐹‘𝑏) = (𝐹‘𝐵)) |
92 | | fveq1 6890 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝐵 → (𝑏‘𝑣) = (𝐵‘𝑣)) |
93 | 92 | oveq1d 7427 |
. . . . . . . . . 10
⊢ (𝑏 = 𝐵 → ((𝑏‘𝑣) ↑ (𝐴‘𝑣)) = ((𝐵‘𝑣) ↑ (𝐴‘𝑣))) |
94 | 93 | mpteq2dv 5250 |
. . . . . . . . 9
⊢ (𝑏 = 𝐵 → (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))) = (𝑣 ∈ 𝐼 ↦ ((𝐵‘𝑣) ↑ (𝐴‘𝑣)))) |
95 | 94 | oveq2d 7428 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))) = (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝐵‘𝑣) ↑ (𝐴‘𝑣))))) |
96 | 91, 95 | oveq12d 7430 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → ((𝐹‘𝑏)(.r‘𝑆)(𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))))) = ((𝐹‘𝐵)(.r‘𝑆)(𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝐵‘𝑣) ↑ (𝐴‘𝑣)))))) |
97 | 32, 96 | gsumsn 19870 |
. . . . . 6
⊢ ((𝑆 ∈ Mnd ∧ 𝐵 ∈ 𝐷 ∧ ((𝐹‘𝐵)(.r‘𝑆)(𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝐵‘𝑣) ↑ (𝐴‘𝑣))))) ∈ 𝐾) → (𝑆 Σg (𝑏 ∈ {𝐵} ↦ ((𝐹‘𝑏)(.r‘𝑆)(𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))))))) = ((𝐹‘𝐵)(.r‘𝑆)(𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝐵‘𝑣) ↑ (𝐴‘𝑣)))))) |
98 | 87, 39, 90, 97 | syl3anc 1370 |
. . . . 5
⊢ (𝜑 → (𝑆 Σg (𝑏 ∈ {𝐵} ↦ ((𝐹‘𝑏)(.r‘𝑆)(𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))))))) = ((𝐹‘𝐵)(.r‘𝑆)(𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝐵‘𝑣) ↑ (𝐴‘𝑣)))))) |
99 | | iftrue 4534 |
. . . . . . . 8
⊢ (𝑠 = 𝐵 → if(𝑠 = 𝐵, 1 , 0 ) = 1 ) |
100 | 68 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈ V) |
101 | 18, 99, 39, 100 | fvmptd3 7021 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝐵) = 1 ) |
102 | | eqid 2731 |
. . . . . . . . 9
⊢
(1r‘𝑆) = (1r‘𝑆) |
103 | 6, 102 | subrg1 20480 |
. . . . . . . 8
⊢ (𝑅 ∈ (SubRing‘𝑆) →
(1r‘𝑆) =
(1r‘𝑈)) |
104 | 5, 103 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (1r‘𝑆) = (1r‘𝑈)) |
105 | 10, 101, 104 | 3eqtr4a 2797 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝐵) = (1r‘𝑆)) |
106 | 105 | oveq1d 7427 |
. . . . 5
⊢ (𝜑 → ((𝐹‘𝐵)(.r‘𝑆)(𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝐵‘𝑣) ↑ (𝐴‘𝑣))))) = ((1r‘𝑆)(.r‘𝑆)(𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝐵‘𝑣) ↑ (𝐴‘𝑣)))))) |
107 | 32, 35, 102, 45, 89 | ringlidmd 20167 |
. . . . 5
⊢ (𝜑 →
((1r‘𝑆)(.r‘𝑆)(𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝐵‘𝑣) ↑ (𝐴‘𝑣))))) = (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝐵‘𝑣) ↑ (𝐴‘𝑣))))) |
108 | 98, 106, 107 | 3eqtrd 2775 |
. . . 4
⊢ (𝜑 → (𝑆 Σg (𝑏 ∈ {𝐵} ↦ ((𝐹‘𝑏)(.r‘𝑆)(𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))))))) = (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝐵‘𝑣) ↑ (𝐴‘𝑣))))) |
109 | 43, 85, 108 | 3eqtr3d 2779 |
. . 3
⊢ (𝜑 → (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏)(.r‘𝑆)(𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))))))) = (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝐵‘𝑣) ↑ (𝐴‘𝑣))))) |
110 | 38, 109 | eqtrd 2771 |
. 2
⊢ (𝜑 → ((𝑄‘𝐹)‘𝐴) = (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝐵‘𝑣) ↑ (𝐴‘𝑣))))) |
111 | 30, 110 | jca 511 |
1
⊢ (𝜑 → (𝐹 ∈ 𝑊 ∧ ((𝑄‘𝐹)‘𝐴) = (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝐵‘𝑣) ↑ (𝐴‘𝑣)))))) |