Step | Hyp | Ref
| Expression |
1 | | fvexd 6903 |
. . . . 5
β’ (π β (Baseβπ) β V) |
2 | | evlsbagval.d |
. . . . . 6
β’ π· = {β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} |
3 | | ovexd 7440 |
. . . . . 6
β’ (π β (β0
βm πΌ)
β V) |
4 | 2, 3 | rabexd 5332 |
. . . . 5
β’ (π β π· β V) |
5 | | evlsbagval.r |
. . . . . . . . . 10
β’ (π β π
β (SubRingβπ)) |
6 | | evlsbagval.u |
. . . . . . . . . . 11
β’ π = (π βΎs π
) |
7 | 6 | subrgring 20358 |
. . . . . . . . . 10
β’ (π
β (SubRingβπ) β π β Ring) |
8 | 5, 7 | syl 17 |
. . . . . . . . 9
β’ (π β π β Ring) |
9 | | eqid 2732 |
. . . . . . . . . 10
β’
(Baseβπ) =
(Baseβπ) |
10 | | evlsbagval.o |
. . . . . . . . . 10
β’ 1 =
(1rβπ) |
11 | 9, 10 | ringidcl 20076 |
. . . . . . . . 9
β’ (π β Ring β 1 β
(Baseβπ)) |
12 | 8, 11 | syl 17 |
. . . . . . . 8
β’ (π β 1 β (Baseβπ)) |
13 | | evlsbagval.z |
. . . . . . . . . 10
β’ 0 =
(0gβπ) |
14 | 9, 13 | ring0cl 20077 |
. . . . . . . . 9
β’ (π β Ring β 0 β
(Baseβπ)) |
15 | 8, 14 | syl 17 |
. . . . . . . 8
β’ (π β 0 β (Baseβπ)) |
16 | 12, 15 | ifcld 4573 |
. . . . . . 7
β’ (π β if(π = π΅, 1 , 0 ) β (Baseβπ)) |
17 | 16 | adantr 481 |
. . . . . 6
β’ ((π β§ π β π·) β if(π = π΅, 1 , 0 ) β (Baseβπ)) |
18 | | evlsbagval.f |
. . . . . 6
β’ πΉ = (π β π· β¦ if(π = π΅, 1 , 0 )) |
19 | 17, 18 | fmptd 7110 |
. . . . 5
β’ (π β πΉ:π·βΆ(Baseβπ)) |
20 | 1, 4, 19 | elmapdd 8831 |
. . . 4
β’ (π β πΉ β ((Baseβπ) βm π·)) |
21 | | eqid 2732 |
. . . . 5
β’ (πΌ mPwSer π) = (πΌ mPwSer π) |
22 | | eqid 2732 |
. . . . 5
β’
(Baseβ(πΌ
mPwSer π)) =
(Baseβ(πΌ mPwSer π)) |
23 | | evlsbagval.i |
. . . . 5
β’ (π β πΌ β π) |
24 | 21, 9, 2, 22, 23 | psrbas 21488 |
. . . 4
β’ (π β (Baseβ(πΌ mPwSer π)) = ((Baseβπ) βm π·)) |
25 | 20, 24 | eleqtrrd 2836 |
. . 3
β’ (π β πΉ β (Baseβ(πΌ mPwSer π))) |
26 | 4, 15, 18 | sniffsupp 9391 |
. . 3
β’ (π β πΉ finSupp 0 ) |
27 | | evlsbagval.p |
. . . 4
β’ π = (πΌ mPoly π) |
28 | | evlsbagval.w |
. . . 4
β’ π = (Baseβπ) |
29 | 27, 21, 22, 13, 28 | mplelbas 21541 |
. . 3
β’ (πΉ β π β (πΉ β (Baseβ(πΌ mPwSer π)) β§ πΉ finSupp 0 )) |
30 | 25, 26, 29 | sylanbrc 583 |
. 2
β’ (π β πΉ β π) |
31 | | evlsbagval.q |
. . . 4
β’ π = ((πΌ evalSub π)βπ
) |
32 | | evlsbagval.k |
. . . 4
β’ πΎ = (Baseβπ) |
33 | | evlsbagval.m |
. . . 4
β’ π = (mulGrpβπ) |
34 | | evlsbagval.e |
. . . 4
β’ β =
(.gβπ) |
35 | | eqid 2732 |
. . . 4
β’
(.rβπ) = (.rβπ) |
36 | | evlsbagval.s |
. . . 4
β’ (π β π β CRing) |
37 | | evlsbagval.a |
. . . 4
β’ (π β π΄ β (πΎ βm πΌ)) |
38 | 31, 27, 28, 6, 2, 32, 33, 34, 35, 23, 36, 5, 30, 37 | evlsvvval 41132 |
. . 3
β’ (π β ((πβπΉ)βπ΄) = (π Ξ£g (π β π· β¦ ((πΉβπ)(.rβπ)(π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£)))))))) |
39 | | evlsbagval.b |
. . . . . . 7
β’ (π β π΅ β π·) |
40 | 39 | snssd 4811 |
. . . . . 6
β’ (π β {π΅} β π·) |
41 | | resmpt 6035 |
. . . . . 6
β’ ({π΅} β π· β ((π β π· β¦ ((πΉβπ)(.rβπ)(π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£)))))) βΎ {π΅}) = (π β {π΅} β¦ ((πΉβπ)(.rβπ)(π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£))))))) |
42 | 40, 41 | syl 17 |
. . . . 5
β’ (π β ((π β π· β¦ ((πΉβπ)(.rβπ)(π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£)))))) βΎ {π΅}) = (π β {π΅} β¦ ((πΉβπ)(.rβπ)(π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£))))))) |
43 | 42 | oveq2d 7421 |
. . . 4
β’ (π β (π Ξ£g ((π β π· β¦ ((πΉβπ)(.rβπ)(π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£)))))) βΎ {π΅})) = (π Ξ£g (π β {π΅} β¦ ((πΉβπ)(.rβπ)(π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£)))))))) |
44 | | eqid 2732 |
. . . . 5
β’
(0gβπ) = (0gβπ) |
45 | 36 | crngringd 20062 |
. . . . . 6
β’ (π β π β Ring) |
46 | 45 | ringcmnd 20094 |
. . . . 5
β’ (π β π β CMnd) |
47 | 45 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β π·) β π β Ring) |
48 | 6 | subrgbas 20364 |
. . . . . . . . . . 11
β’ (π
β (SubRingβπ) β π
= (Baseβπ)) |
49 | 32 | subrgss 20356 |
. . . . . . . . . . 11
β’ (π
β (SubRingβπ) β π
β πΎ) |
50 | 48, 49 | eqsstrrd 4020 |
. . . . . . . . . 10
β’ (π
β (SubRingβπ) β (Baseβπ) β πΎ) |
51 | 5, 50 | syl 17 |
. . . . . . . . 9
β’ (π β (Baseβπ) β πΎ) |
52 | 19, 51 | fssd 6732 |
. . . . . . . 8
β’ (π β πΉ:π·βΆπΎ) |
53 | 52 | ffvelcdmda 7083 |
. . . . . . 7
β’ ((π β§ π β π·) β (πΉβπ) β πΎ) |
54 | 23 | adantr 481 |
. . . . . . . 8
β’ ((π β§ π β π·) β πΌ β π) |
55 | 36 | adantr 481 |
. . . . . . . 8
β’ ((π β§ π β π·) β π β CRing) |
56 | 37 | adantr 481 |
. . . . . . . 8
β’ ((π β§ π β π·) β π΄ β (πΎ βm πΌ)) |
57 | | simpr 485 |
. . . . . . . 8
β’ ((π β§ π β π·) β π β π·) |
58 | 2, 32, 33, 34, 54, 55, 56, 57 | evlsvvvallem 41130 |
. . . . . . 7
β’ ((π β§ π β π·) β (π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£)))) β πΎ) |
59 | 32, 35, 47, 53, 58 | ringcld 20073 |
. . . . . 6
β’ ((π β§ π β π·) β ((πΉβπ)(.rβπ)(π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£))))) β πΎ) |
60 | 59 | fmpttd 7111 |
. . . . 5
β’ (π β (π β π· β¦ ((πΉβπ)(.rβπ)(π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£)))))):π·βΆπΎ) |
61 | | eldifsnneq 4793 |
. . . . . . . . . . 11
β’ (π β (π· β {π΅}) β Β¬ π = π΅) |
62 | 61 | adantl 482 |
. . . . . . . . . 10
β’ ((π β§ π β (π· β {π΅})) β Β¬ π = π΅) |
63 | 62 | iffalsed 4538 |
. . . . . . . . 9
β’ ((π β§ π β (π· β {π΅})) β if(π = π΅, 1 , 0 ) = 0 ) |
64 | | eqeq1 2736 |
. . . . . . . . . . 11
β’ (π = π β (π = π΅ β π = π΅)) |
65 | 64 | ifbid 4550 |
. . . . . . . . . 10
β’ (π = π β if(π = π΅, 1 , 0 ) = if(π = π΅, 1 , 0 )) |
66 | | eldifi 4125 |
. . . . . . . . . . 11
β’ (π β (π· β {π΅}) β π β π·) |
67 | 66 | adantl 482 |
. . . . . . . . . 10
β’ ((π β§ π β (π· β {π΅})) β π β π·) |
68 | 10 | fvexi 6902 |
. . . . . . . . . . . 12
β’ 1 β
V |
69 | 13 | fvexi 6902 |
. . . . . . . . . . . 12
β’ 0 β
V |
70 | 68, 69 | ifex 4577 |
. . . . . . . . . . 11
β’ if(π = π΅, 1 , 0 ) β
V |
71 | 70 | a1i 11 |
. . . . . . . . . 10
β’ ((π β§ π β (π· β {π΅})) β if(π = π΅, 1 , 0 ) β
V) |
72 | 18, 65, 67, 71 | fvmptd3 7018 |
. . . . . . . . 9
β’ ((π β§ π β (π· β {π΅})) β (πΉβπ) = if(π = π΅, 1 , 0 )) |
73 | 6, 44 | subrg0 20362 |
. . . . . . . . . . . 12
β’ (π
β (SubRingβπ) β
(0gβπ) =
(0gβπ)) |
74 | 73, 13 | eqtr4di 2790 |
. . . . . . . . . . 11
β’ (π
β (SubRingβπ) β
(0gβπ) =
0
) |
75 | 5, 74 | syl 17 |
. . . . . . . . . 10
β’ (π β (0gβπ) = 0 ) |
76 | 75 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π β (π· β {π΅})) β (0gβπ) = 0 ) |
77 | 63, 72, 76 | 3eqtr4d 2782 |
. . . . . . . 8
β’ ((π β§ π β (π· β {π΅})) β (πΉβπ) = (0gβπ)) |
78 | 77 | oveq1d 7420 |
. . . . . . 7
β’ ((π β§ π β (π· β {π΅})) β ((πΉβπ)(.rβπ)(π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£))))) = ((0gβπ)(.rβπ)(π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£)))))) |
79 | 66, 58 | sylan2 593 |
. . . . . . . 8
β’ ((π β§ π β (π· β {π΅})) β (π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£)))) β πΎ) |
80 | 32, 35, 44 | ringlz 20100 |
. . . . . . . 8
β’ ((π β Ring β§ (π Ξ£g
(π£ β πΌ β¦ ((πβπ£) β (π΄βπ£)))) β πΎ) β ((0gβπ)(.rβπ)(π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£))))) = (0gβπ)) |
81 | 45, 79, 80 | syl2an2r 683 |
. . . . . . 7
β’ ((π β§ π β (π· β {π΅})) β ((0gβπ)(.rβπ)(π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£))))) = (0gβπ)) |
82 | 78, 81 | eqtrd 2772 |
. . . . . 6
β’ ((π β§ π β (π· β {π΅})) β ((πΉβπ)(.rβπ)(π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£))))) = (0gβπ)) |
83 | 82, 4 | suppss2 8181 |
. . . . 5
β’ (π β ((π β π· β¦ ((πΉβπ)(.rβπ)(π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£)))))) supp (0gβπ)) β {π΅}) |
84 | 2, 27, 6, 28, 32, 33, 34, 35, 23, 36, 5, 30, 37 | evlsvvvallem2 41131 |
. . . . 5
β’ (π β (π β π· β¦ ((πΉβπ)(.rβπ)(π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£)))))) finSupp (0gβπ)) |
85 | 32, 44, 46, 4, 60, 83, 84 | gsumres 19775 |
. . . 4
β’ (π β (π Ξ£g ((π β π· β¦ ((πΉβπ)(.rβπ)(π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£)))))) βΎ {π΅})) = (π Ξ£g (π β π· β¦ ((πΉβπ)(.rβπ)(π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£)))))))) |
86 | 36 | crnggrpd 20063 |
. . . . . . 7
β’ (π β π β Grp) |
87 | 86 | grpmndd 18828 |
. . . . . 6
β’ (π β π β Mnd) |
88 | 52, 39 | ffvelcdmd 7084 |
. . . . . . 7
β’ (π β (πΉβπ΅) β πΎ) |
89 | 2, 32, 33, 34, 23, 36, 37, 39 | evlsvvvallem 41130 |
. . . . . . 7
β’ (π β (π Ξ£g (π£ β πΌ β¦ ((π΅βπ£) β (π΄βπ£)))) β πΎ) |
90 | 32, 35, 45, 88, 89 | ringcld 20073 |
. . . . . 6
β’ (π β ((πΉβπ΅)(.rβπ)(π Ξ£g (π£ β πΌ β¦ ((π΅βπ£) β (π΄βπ£))))) β πΎ) |
91 | | fveq2 6888 |
. . . . . . . 8
β’ (π = π΅ β (πΉβπ) = (πΉβπ΅)) |
92 | | fveq1 6887 |
. . . . . . . . . . 11
β’ (π = π΅ β (πβπ£) = (π΅βπ£)) |
93 | 92 | oveq1d 7420 |
. . . . . . . . . 10
β’ (π = π΅ β ((πβπ£) β (π΄βπ£)) = ((π΅βπ£) β (π΄βπ£))) |
94 | 93 | mpteq2dv 5249 |
. . . . . . . . 9
β’ (π = π΅ β (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£))) = (π£ β πΌ β¦ ((π΅βπ£) β (π΄βπ£)))) |
95 | 94 | oveq2d 7421 |
. . . . . . . 8
β’ (π = π΅ β (π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£)))) = (π Ξ£g (π£ β πΌ β¦ ((π΅βπ£) β (π΄βπ£))))) |
96 | 91, 95 | oveq12d 7423 |
. . . . . . 7
β’ (π = π΅ β ((πΉβπ)(.rβπ)(π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£))))) = ((πΉβπ΅)(.rβπ)(π Ξ£g (π£ β πΌ β¦ ((π΅βπ£) β (π΄βπ£)))))) |
97 | 32, 96 | gsumsn 19816 |
. . . . . 6
β’ ((π β Mnd β§ π΅ β π· β§ ((πΉβπ΅)(.rβπ)(π Ξ£g (π£ β πΌ β¦ ((π΅βπ£) β (π΄βπ£))))) β πΎ) β (π Ξ£g (π β {π΅} β¦ ((πΉβπ)(.rβπ)(π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£))))))) = ((πΉβπ΅)(.rβπ)(π Ξ£g (π£ β πΌ β¦ ((π΅βπ£) β (π΄βπ£)))))) |
98 | 87, 39, 90, 97 | syl3anc 1371 |
. . . . 5
β’ (π β (π Ξ£g (π β {π΅} β¦ ((πΉβπ)(.rβπ)(π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£))))))) = ((πΉβπ΅)(.rβπ)(π Ξ£g (π£ β πΌ β¦ ((π΅βπ£) β (π΄βπ£)))))) |
99 | | iftrue 4533 |
. . . . . . . 8
β’ (π = π΅ β if(π = π΅, 1 , 0 ) = 1 ) |
100 | 68 | a1i 11 |
. . . . . . . 8
β’ (π β 1 β V) |
101 | 18, 99, 39, 100 | fvmptd3 7018 |
. . . . . . 7
β’ (π β (πΉβπ΅) = 1 ) |
102 | | eqid 2732 |
. . . . . . . . 9
β’
(1rβπ) = (1rβπ) |
103 | 6, 102 | subrg1 20365 |
. . . . . . . 8
β’ (π
β (SubRingβπ) β
(1rβπ) =
(1rβπ)) |
104 | 5, 103 | syl 17 |
. . . . . . 7
β’ (π β (1rβπ) = (1rβπ)) |
105 | 10, 101, 104 | 3eqtr4a 2798 |
. . . . . 6
β’ (π β (πΉβπ΅) = (1rβπ)) |
106 | 105 | oveq1d 7420 |
. . . . 5
β’ (π β ((πΉβπ΅)(.rβπ)(π Ξ£g (π£ β πΌ β¦ ((π΅βπ£) β (π΄βπ£))))) = ((1rβπ)(.rβπ)(π Ξ£g (π£ β πΌ β¦ ((π΅βπ£) β (π΄βπ£)))))) |
107 | 32, 35, 102, 45, 89 | ringlidmd 20082 |
. . . . 5
β’ (π β
((1rβπ)(.rβπ)(π Ξ£g (π£ β πΌ β¦ ((π΅βπ£) β (π΄βπ£))))) = (π Ξ£g (π£ β πΌ β¦ ((π΅βπ£) β (π΄βπ£))))) |
108 | 98, 106, 107 | 3eqtrd 2776 |
. . . 4
β’ (π β (π Ξ£g (π β {π΅} β¦ ((πΉβπ)(.rβπ)(π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£))))))) = (π Ξ£g (π£ β πΌ β¦ ((π΅βπ£) β (π΄βπ£))))) |
109 | 43, 85, 108 | 3eqtr3d 2780 |
. . 3
β’ (π β (π Ξ£g (π β π· β¦ ((πΉβπ)(.rβπ)(π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£))))))) = (π Ξ£g (π£ β πΌ β¦ ((π΅βπ£) β (π΄βπ£))))) |
110 | 38, 109 | eqtrd 2772 |
. 2
β’ (π β ((πβπΉ)βπ΄) = (π Ξ£g (π£ β πΌ β¦ ((π΅βπ£) β (π΄βπ£))))) |
111 | 30, 110 | jca 512 |
1
β’ (π β (πΉ β π β§ ((πβπΉ)βπ΄) = (π Ξ£g (π£ β πΌ β¦ ((π΅βπ£) β (π΄βπ£)))))) |