| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > symgextfv | Structured version Visualization version GIF version | ||
| Description: The function value of the extension of a permutation, fixing the additional element, for elements in the original domain. (Contributed by AV, 6-Jan-2019.) |
| Ref | Expression |
|---|---|
| symgext.s | ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) |
| symgext.e | ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) |
| Ref | Expression |
|---|---|
| symgextfv | ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝑋 ∈ (𝑁 ∖ {𝐾}) → (𝐸‘𝑋) = (𝑍‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 4111 | . . . 4 ⊢ (𝑋 ∈ (𝑁 ∖ {𝐾}) → 𝑋 ∈ 𝑁) | |
| 2 | fvexd 6896 | . . . . 5 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝑍‘𝑋) ∈ V) | |
| 3 | ifexg 4555 | . . . . 5 ⊢ ((𝐾 ∈ 𝑁 ∧ (𝑍‘𝑋) ∈ V) → if(𝑋 = 𝐾, 𝐾, (𝑍‘𝑋)) ∈ V) | |
| 4 | 2, 3 | syldan 591 | . . . 4 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → if(𝑋 = 𝐾, 𝐾, (𝑍‘𝑋)) ∈ V) |
| 5 | eqeq1 2740 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 = 𝐾 ↔ 𝑋 = 𝐾)) | |
| 6 | fveq2 6881 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑍‘𝑥) = (𝑍‘𝑋)) | |
| 7 | 5, 6 | ifbieq2d 4532 | . . . . 5 ⊢ (𝑥 = 𝑋 → if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥)) = if(𝑋 = 𝐾, 𝐾, (𝑍‘𝑋))) |
| 8 | symgext.e | . . . . 5 ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) | |
| 9 | 7, 8 | fvmptg 6989 | . . . 4 ⊢ ((𝑋 ∈ 𝑁 ∧ if(𝑋 = 𝐾, 𝐾, (𝑍‘𝑋)) ∈ V) → (𝐸‘𝑋) = if(𝑋 = 𝐾, 𝐾, (𝑍‘𝑋))) |
| 10 | 1, 4, 9 | syl2anr 597 | . . 3 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → (𝐸‘𝑋) = if(𝑋 = 𝐾, 𝐾, (𝑍‘𝑋))) |
| 11 | eldifsnneq 4772 | . . . . 5 ⊢ (𝑋 ∈ (𝑁 ∖ {𝐾}) → ¬ 𝑋 = 𝐾) | |
| 12 | 11 | adantl 481 | . . . 4 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → ¬ 𝑋 = 𝐾) |
| 13 | 12 | iffalsed 4516 | . . 3 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → if(𝑋 = 𝐾, 𝐾, (𝑍‘𝑋)) = (𝑍‘𝑋)) |
| 14 | 10, 13 | eqtrd 2771 | . 2 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → (𝐸‘𝑋) = (𝑍‘𝑋)) |
| 15 | 14 | ex 412 | 1 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝑋 ∈ (𝑁 ∖ {𝐾}) → (𝐸‘𝑋) = (𝑍‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∖ cdif 3928 ifcif 4505 {csn 4606 ↦ cmpt 5206 ‘cfv 6536 Basecbs 17233 SymGrpcsymg 19355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 |
| This theorem is referenced by: symgextf1lem 19406 symgextf1 19407 symgextfo 19408 symgextres 19411 |
| Copyright terms: Public domain | W3C validator |