MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgextfv Structured version   Visualization version   GIF version

Theorem symgextfv 19338
Description: The function value of the extension of a permutation, fixing the additional element, for elements in the original domain. (Contributed by AV, 6-Jan-2019.)
Hypotheses
Ref Expression
symgext.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgext.e 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
Assertion
Ref Expression
symgextfv ((𝐾𝑁𝑍𝑆) → (𝑋 ∈ (𝑁 ∖ {𝐾}) → (𝐸𝑋) = (𝑍𝑋)))
Distinct variable groups:   𝑥,𝐾   𝑥,𝑁   𝑥,𝑆   𝑥,𝑍   𝑥,𝑋
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem symgextfv
StepHypRef Expression
1 eldifi 4121 . . . 4 (𝑋 ∈ (𝑁 ∖ {𝐾}) → 𝑋𝑁)
2 fvexd 6900 . . . . 5 ((𝐾𝑁𝑍𝑆) → (𝑍𝑋) ∈ V)
3 ifexg 4572 . . . . 5 ((𝐾𝑁 ∧ (𝑍𝑋) ∈ V) → if(𝑋 = 𝐾, 𝐾, (𝑍𝑋)) ∈ V)
42, 3syldan 590 . . . 4 ((𝐾𝑁𝑍𝑆) → if(𝑋 = 𝐾, 𝐾, (𝑍𝑋)) ∈ V)
5 eqeq1 2730 . . . . . 6 (𝑥 = 𝑋 → (𝑥 = 𝐾𝑋 = 𝐾))
6 fveq2 6885 . . . . . 6 (𝑥 = 𝑋 → (𝑍𝑥) = (𝑍𝑋))
75, 6ifbieq2d 4549 . . . . 5 (𝑥 = 𝑋 → if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)) = if(𝑋 = 𝐾, 𝐾, (𝑍𝑋)))
8 symgext.e . . . . 5 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
97, 8fvmptg 6990 . . . 4 ((𝑋𝑁 ∧ if(𝑋 = 𝐾, 𝐾, (𝑍𝑋)) ∈ V) → (𝐸𝑋) = if(𝑋 = 𝐾, 𝐾, (𝑍𝑋)))
101, 4, 9syl2anr 596 . . 3 (((𝐾𝑁𝑍𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → (𝐸𝑋) = if(𝑋 = 𝐾, 𝐾, (𝑍𝑋)))
11 eldifsnneq 4789 . . . . 5 (𝑋 ∈ (𝑁 ∖ {𝐾}) → ¬ 𝑋 = 𝐾)
1211adantl 481 . . . 4 (((𝐾𝑁𝑍𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → ¬ 𝑋 = 𝐾)
1312iffalsed 4534 . . 3 (((𝐾𝑁𝑍𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → if(𝑋 = 𝐾, 𝐾, (𝑍𝑋)) = (𝑍𝑋))
1410, 13eqtrd 2766 . 2 (((𝐾𝑁𝑍𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → (𝐸𝑋) = (𝑍𝑋))
1514ex 412 1 ((𝐾𝑁𝑍𝑆) → (𝑋 ∈ (𝑁 ∖ {𝐾}) → (𝐸𝑋) = (𝑍𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1533  wcel 2098  Vcvv 3468  cdif 3940  ifcif 4523  {csn 4623  cmpt 5224  cfv 6537  Basecbs 17153  SymGrpcsymg 19286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-iota 6489  df-fun 6539  df-fv 6545
This theorem is referenced by:  symgextf1lem  19340  symgextf1  19341  symgextfo  19342  symgextres  19345
  Copyright terms: Public domain W3C validator