MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgextfv Structured version   Visualization version   GIF version

Theorem symgextfv 19437
Description: The function value of the extension of a permutation, fixing the additional element, for elements in the original domain. (Contributed by AV, 6-Jan-2019.)
Hypotheses
Ref Expression
symgext.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgext.e 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
Assertion
Ref Expression
symgextfv ((𝐾𝑁𝑍𝑆) → (𝑋 ∈ (𝑁 ∖ {𝐾}) → (𝐸𝑋) = (𝑍𝑋)))
Distinct variable groups:   𝑥,𝐾   𝑥,𝑁   𝑥,𝑆   𝑥,𝑍   𝑥,𝑋
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem symgextfv
StepHypRef Expression
1 eldifi 4130 . . . 4 (𝑋 ∈ (𝑁 ∖ {𝐾}) → 𝑋𝑁)
2 fvexd 6920 . . . . 5 ((𝐾𝑁𝑍𝑆) → (𝑍𝑋) ∈ V)
3 ifexg 4574 . . . . 5 ((𝐾𝑁 ∧ (𝑍𝑋) ∈ V) → if(𝑋 = 𝐾, 𝐾, (𝑍𝑋)) ∈ V)
42, 3syldan 591 . . . 4 ((𝐾𝑁𝑍𝑆) → if(𝑋 = 𝐾, 𝐾, (𝑍𝑋)) ∈ V)
5 eqeq1 2740 . . . . . 6 (𝑥 = 𝑋 → (𝑥 = 𝐾𝑋 = 𝐾))
6 fveq2 6905 . . . . . 6 (𝑥 = 𝑋 → (𝑍𝑥) = (𝑍𝑋))
75, 6ifbieq2d 4551 . . . . 5 (𝑥 = 𝑋 → if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)) = if(𝑋 = 𝐾, 𝐾, (𝑍𝑋)))
8 symgext.e . . . . 5 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
97, 8fvmptg 7013 . . . 4 ((𝑋𝑁 ∧ if(𝑋 = 𝐾, 𝐾, (𝑍𝑋)) ∈ V) → (𝐸𝑋) = if(𝑋 = 𝐾, 𝐾, (𝑍𝑋)))
101, 4, 9syl2anr 597 . . 3 (((𝐾𝑁𝑍𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → (𝐸𝑋) = if(𝑋 = 𝐾, 𝐾, (𝑍𝑋)))
11 eldifsnneq 4790 . . . . 5 (𝑋 ∈ (𝑁 ∖ {𝐾}) → ¬ 𝑋 = 𝐾)
1211adantl 481 . . . 4 (((𝐾𝑁𝑍𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → ¬ 𝑋 = 𝐾)
1312iffalsed 4535 . . 3 (((𝐾𝑁𝑍𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → if(𝑋 = 𝐾, 𝐾, (𝑍𝑋)) = (𝑍𝑋))
1410, 13eqtrd 2776 . 2 (((𝐾𝑁𝑍𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → (𝐸𝑋) = (𝑍𝑋))
1514ex 412 1 ((𝐾𝑁𝑍𝑆) → (𝑋 ∈ (𝑁 ∖ {𝐾}) → (𝐸𝑋) = (𝑍𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3479  cdif 3947  ifcif 4524  {csn 4625  cmpt 5224  cfv 6560  Basecbs 17248  SymGrpcsymg 19387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-iota 6513  df-fun 6562  df-fv 6568
This theorem is referenced by:  symgextf1lem  19439  symgextf1  19440  symgextfo  19441  symgextres  19444
  Copyright terms: Public domain W3C validator