| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > symgextfv | Structured version Visualization version GIF version | ||
| Description: The function value of the extension of a permutation, fixing the additional element, for elements in the original domain. (Contributed by AV, 6-Jan-2019.) |
| Ref | Expression |
|---|---|
| symgext.s | ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) |
| symgext.e | ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) |
| Ref | Expression |
|---|---|
| symgextfv | ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝑋 ∈ (𝑁 ∖ {𝐾}) → (𝐸‘𝑋) = (𝑍‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 4130 | . . . 4 ⊢ (𝑋 ∈ (𝑁 ∖ {𝐾}) → 𝑋 ∈ 𝑁) | |
| 2 | fvexd 6920 | . . . . 5 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝑍‘𝑋) ∈ V) | |
| 3 | ifexg 4574 | . . . . 5 ⊢ ((𝐾 ∈ 𝑁 ∧ (𝑍‘𝑋) ∈ V) → if(𝑋 = 𝐾, 𝐾, (𝑍‘𝑋)) ∈ V) | |
| 4 | 2, 3 | syldan 591 | . . . 4 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → if(𝑋 = 𝐾, 𝐾, (𝑍‘𝑋)) ∈ V) |
| 5 | eqeq1 2740 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 = 𝐾 ↔ 𝑋 = 𝐾)) | |
| 6 | fveq2 6905 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑍‘𝑥) = (𝑍‘𝑋)) | |
| 7 | 5, 6 | ifbieq2d 4551 | . . . . 5 ⊢ (𝑥 = 𝑋 → if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥)) = if(𝑋 = 𝐾, 𝐾, (𝑍‘𝑋))) |
| 8 | symgext.e | . . . . 5 ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) | |
| 9 | 7, 8 | fvmptg 7013 | . . . 4 ⊢ ((𝑋 ∈ 𝑁 ∧ if(𝑋 = 𝐾, 𝐾, (𝑍‘𝑋)) ∈ V) → (𝐸‘𝑋) = if(𝑋 = 𝐾, 𝐾, (𝑍‘𝑋))) |
| 10 | 1, 4, 9 | syl2anr 597 | . . 3 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → (𝐸‘𝑋) = if(𝑋 = 𝐾, 𝐾, (𝑍‘𝑋))) |
| 11 | eldifsnneq 4790 | . . . . 5 ⊢ (𝑋 ∈ (𝑁 ∖ {𝐾}) → ¬ 𝑋 = 𝐾) | |
| 12 | 11 | adantl 481 | . . . 4 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → ¬ 𝑋 = 𝐾) |
| 13 | 12 | iffalsed 4535 | . . 3 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → if(𝑋 = 𝐾, 𝐾, (𝑍‘𝑋)) = (𝑍‘𝑋)) |
| 14 | 10, 13 | eqtrd 2776 | . 2 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → (𝐸‘𝑋) = (𝑍‘𝑋)) |
| 15 | 14 | ex 412 | 1 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝑋 ∈ (𝑁 ∖ {𝐾}) → (𝐸‘𝑋) = (𝑍‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3479 ∖ cdif 3947 ifcif 4524 {csn 4625 ↦ cmpt 5224 ‘cfv 6560 Basecbs 17248 SymGrpcsymg 19387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-iota 6513 df-fun 6562 df-fv 6568 |
| This theorem is referenced by: symgextf1lem 19439 symgextf1 19440 symgextfo 19441 symgextres 19444 |
| Copyright terms: Public domain | W3C validator |