Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgextfv Structured version   Visualization version   GIF version

Theorem symgextfv 18189
 Description: The function value of the extension of a permutation, fixing the additional element, for elements in the original domain. (Contributed by AV, 6-Jan-2019.)
Hypotheses
Ref Expression
symgext.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgext.e 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
Assertion
Ref Expression
symgextfv ((𝐾𝑁𝑍𝑆) → (𝑋 ∈ (𝑁 ∖ {𝐾}) → (𝐸𝑋) = (𝑍𝑋)))
Distinct variable groups:   𝑥,𝐾   𝑥,𝑁   𝑥,𝑆   𝑥,𝑍   𝑥,𝑋
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem symgextfv
StepHypRef Expression
1 eldifi 3960 . . . 4 (𝑋 ∈ (𝑁 ∖ {𝐾}) → 𝑋𝑁)
2 fvexd 6449 . . . . 5 ((𝐾𝑁𝑍𝑆) → (𝑍𝑋) ∈ V)
3 ifexg 4354 . . . . 5 ((𝐾𝑁 ∧ (𝑍𝑋) ∈ V) → if(𝑋 = 𝐾, 𝐾, (𝑍𝑋)) ∈ V)
42, 3syldan 587 . . . 4 ((𝐾𝑁𝑍𝑆) → if(𝑋 = 𝐾, 𝐾, (𝑍𝑋)) ∈ V)
5 eqeq1 2830 . . . . . 6 (𝑥 = 𝑋 → (𝑥 = 𝐾𝑋 = 𝐾))
6 fveq2 6434 . . . . . 6 (𝑥 = 𝑋 → (𝑍𝑥) = (𝑍𝑋))
75, 6ifbieq2d 4332 . . . . 5 (𝑥 = 𝑋 → if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)) = if(𝑋 = 𝐾, 𝐾, (𝑍𝑋)))
8 symgext.e . . . . 5 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
97, 8fvmptg 6528 . . . 4 ((𝑋𝑁 ∧ if(𝑋 = 𝐾, 𝐾, (𝑍𝑋)) ∈ V) → (𝐸𝑋) = if(𝑋 = 𝐾, 𝐾, (𝑍𝑋)))
101, 4, 9syl2anr 592 . . 3 (((𝐾𝑁𝑍𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → (𝐸𝑋) = if(𝑋 = 𝐾, 𝐾, (𝑍𝑋)))
11 eldifsn 4537 . . . . . 6 (𝑋 ∈ (𝑁 ∖ {𝐾}) ↔ (𝑋𝑁𝑋𝐾))
12 df-ne 3001 . . . . . . . 8 (𝑋𝐾 ↔ ¬ 𝑋 = 𝐾)
1312biimpi 208 . . . . . . 7 (𝑋𝐾 → ¬ 𝑋 = 𝐾)
1413adantl 475 . . . . . 6 ((𝑋𝑁𝑋𝐾) → ¬ 𝑋 = 𝐾)
1511, 14sylbi 209 . . . . 5 (𝑋 ∈ (𝑁 ∖ {𝐾}) → ¬ 𝑋 = 𝐾)
1615adantl 475 . . . 4 (((𝐾𝑁𝑍𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → ¬ 𝑋 = 𝐾)
1716iffalsed 4318 . . 3 (((𝐾𝑁𝑍𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → if(𝑋 = 𝐾, 𝐾, (𝑍𝑋)) = (𝑍𝑋))
1810, 17eqtrd 2862 . 2 (((𝐾𝑁𝑍𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → (𝐸𝑋) = (𝑍𝑋))
1918ex 403 1 ((𝐾𝑁𝑍𝑆) → (𝑋 ∈ (𝑁 ∖ {𝐾}) → (𝐸𝑋) = (𝑍𝑋)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 386   = wceq 1658   ∈ wcel 2166   ≠ wne 3000  Vcvv 3415   ∖ cdif 3796  ifcif 4307  {csn 4398   ↦ cmpt 4953  ‘cfv 6124  Basecbs 16223  SymGrpcsymg 18148 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-sep 5006  ax-nul 5014  ax-pr 5128 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-ral 3123  df-rex 3124  df-rab 3127  df-v 3417  df-sbc 3664  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-nul 4146  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4660  df-br 4875  df-opab 4937  df-mpt 4954  df-id 5251  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-iota 6087  df-fun 6126  df-fv 6132 This theorem is referenced by:  symgextf1lem  18191  symgextf1  18192  symgextfo  18193  symgextres  18196
 Copyright terms: Public domain W3C validator