| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > symgextfv | Structured version Visualization version GIF version | ||
| Description: The function value of the extension of a permutation, fixing the additional element, for elements in the original domain. (Contributed by AV, 6-Jan-2019.) |
| Ref | Expression |
|---|---|
| symgext.s | ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) |
| symgext.e | ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) |
| Ref | Expression |
|---|---|
| symgextfv | ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝑋 ∈ (𝑁 ∖ {𝐾}) → (𝐸‘𝑋) = (𝑍‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 4078 | . . . 4 ⊢ (𝑋 ∈ (𝑁 ∖ {𝐾}) → 𝑋 ∈ 𝑁) | |
| 2 | fvexd 6837 | . . . . 5 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝑍‘𝑋) ∈ V) | |
| 3 | ifexg 4522 | . . . . 5 ⊢ ((𝐾 ∈ 𝑁 ∧ (𝑍‘𝑋) ∈ V) → if(𝑋 = 𝐾, 𝐾, (𝑍‘𝑋)) ∈ V) | |
| 4 | 2, 3 | syldan 591 | . . . 4 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → if(𝑋 = 𝐾, 𝐾, (𝑍‘𝑋)) ∈ V) |
| 5 | eqeq1 2735 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 = 𝐾 ↔ 𝑋 = 𝐾)) | |
| 6 | fveq2 6822 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑍‘𝑥) = (𝑍‘𝑋)) | |
| 7 | 5, 6 | ifbieq2d 4499 | . . . . 5 ⊢ (𝑥 = 𝑋 → if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥)) = if(𝑋 = 𝐾, 𝐾, (𝑍‘𝑋))) |
| 8 | symgext.e | . . . . 5 ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) | |
| 9 | 7, 8 | fvmptg 6927 | . . . 4 ⊢ ((𝑋 ∈ 𝑁 ∧ if(𝑋 = 𝐾, 𝐾, (𝑍‘𝑋)) ∈ V) → (𝐸‘𝑋) = if(𝑋 = 𝐾, 𝐾, (𝑍‘𝑋))) |
| 10 | 1, 4, 9 | syl2anr 597 | . . 3 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → (𝐸‘𝑋) = if(𝑋 = 𝐾, 𝐾, (𝑍‘𝑋))) |
| 11 | eldifsnneq 4740 | . . . . 5 ⊢ (𝑋 ∈ (𝑁 ∖ {𝐾}) → ¬ 𝑋 = 𝐾) | |
| 12 | 11 | adantl 481 | . . . 4 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → ¬ 𝑋 = 𝐾) |
| 13 | 12 | iffalsed 4483 | . . 3 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → if(𝑋 = 𝐾, 𝐾, (𝑍‘𝑋)) = (𝑍‘𝑋)) |
| 14 | 10, 13 | eqtrd 2766 | . 2 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → (𝐸‘𝑋) = (𝑍‘𝑋)) |
| 15 | 14 | ex 412 | 1 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝑋 ∈ (𝑁 ∖ {𝐾}) → (𝐸‘𝑋) = (𝑍‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3894 ifcif 4472 {csn 4573 ↦ cmpt 5170 ‘cfv 6481 Basecbs 17120 SymGrpcsymg 19281 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 |
| This theorem is referenced by: symgextf1lem 19332 symgextf1 19333 symgextfo 19334 symgextres 19337 |
| Copyright terms: Public domain | W3C validator |