![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symgextfv | Structured version Visualization version GIF version |
Description: The function value of the extension of a permutation, fixing the additional element, for elements in the original domain. (Contributed by AV, 6-Jan-2019.) |
Ref | Expression |
---|---|
symgext.s | ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) |
symgext.e | ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) |
Ref | Expression |
---|---|
symgextfv | ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝑋 ∈ (𝑁 ∖ {𝐾}) → (𝐸‘𝑋) = (𝑍‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 4123 | . . . 4 ⊢ (𝑋 ∈ (𝑁 ∖ {𝐾}) → 𝑋 ∈ 𝑁) | |
2 | fvexd 6907 | . . . . 5 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝑍‘𝑋) ∈ V) | |
3 | ifexg 4574 | . . . . 5 ⊢ ((𝐾 ∈ 𝑁 ∧ (𝑍‘𝑋) ∈ V) → if(𝑋 = 𝐾, 𝐾, (𝑍‘𝑋)) ∈ V) | |
4 | 2, 3 | syldan 590 | . . . 4 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → if(𝑋 = 𝐾, 𝐾, (𝑍‘𝑋)) ∈ V) |
5 | eqeq1 2732 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 = 𝐾 ↔ 𝑋 = 𝐾)) | |
6 | fveq2 6892 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑍‘𝑥) = (𝑍‘𝑋)) | |
7 | 5, 6 | ifbieq2d 4551 | . . . . 5 ⊢ (𝑥 = 𝑋 → if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥)) = if(𝑋 = 𝐾, 𝐾, (𝑍‘𝑋))) |
8 | symgext.e | . . . . 5 ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) | |
9 | 7, 8 | fvmptg 6998 | . . . 4 ⊢ ((𝑋 ∈ 𝑁 ∧ if(𝑋 = 𝐾, 𝐾, (𝑍‘𝑋)) ∈ V) → (𝐸‘𝑋) = if(𝑋 = 𝐾, 𝐾, (𝑍‘𝑋))) |
10 | 1, 4, 9 | syl2anr 596 | . . 3 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → (𝐸‘𝑋) = if(𝑋 = 𝐾, 𝐾, (𝑍‘𝑋))) |
11 | eldifsnneq 4791 | . . . . 5 ⊢ (𝑋 ∈ (𝑁 ∖ {𝐾}) → ¬ 𝑋 = 𝐾) | |
12 | 11 | adantl 481 | . . . 4 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → ¬ 𝑋 = 𝐾) |
13 | 12 | iffalsed 4536 | . . 3 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → if(𝑋 = 𝐾, 𝐾, (𝑍‘𝑋)) = (𝑍‘𝑋)) |
14 | 10, 13 | eqtrd 2768 | . 2 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → (𝐸‘𝑋) = (𝑍‘𝑋)) |
15 | 14 | ex 412 | 1 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝑋 ∈ (𝑁 ∖ {𝐾}) → (𝐸‘𝑋) = (𝑍‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3470 ∖ cdif 3942 ifcif 4525 {csn 4625 ↦ cmpt 5226 ‘cfv 6543 Basecbs 17174 SymGrpcsymg 19315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-iota 6495 df-fun 6545 df-fv 6551 |
This theorem is referenced by: symgextf1lem 19369 symgextf1 19370 symgextfo 19371 symgextres 19374 |
Copyright terms: Public domain | W3C validator |