MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlslem1 Structured version   Visualization version   GIF version

Theorem evlslem1 21488
Description: Lemma for evlseu 21489, give a formula for (the unique) polynomial evaluation homomorphism. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Proof shortened by AV, 26-Jul-2019.) (Revised by AV, 11-Apr-2024.)
Hypotheses
Ref Expression
evlslem1.p 𝑃 = (𝐼 mPoly 𝑅)
evlslem1.b 𝐵 = (Base‘𝑃)
evlslem1.c 𝐶 = (Base‘𝑆)
evlslem1.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlslem1.t 𝑇 = (mulGrp‘𝑆)
evlslem1.x = (.g𝑇)
evlslem1.m · = (.r𝑆)
evlslem1.v 𝑉 = (𝐼 mVar 𝑅)
evlslem1.e 𝐸 = (𝑝𝐵 ↦ (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
evlslem1.i (𝜑𝐼𝑊)
evlslem1.r (𝜑𝑅 ∈ CRing)
evlslem1.s (𝜑𝑆 ∈ CRing)
evlslem1.f (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
evlslem1.g (𝜑𝐺:𝐼𝐶)
evlslem1.a 𝐴 = (algSc‘𝑃)
Assertion
Ref Expression
evlslem1 (𝜑 → (𝐸 ∈ (𝑃 RingHom 𝑆) ∧ (𝐸𝐴) = 𝐹 ∧ (𝐸𝑉) = 𝐺))
Distinct variable groups:   𝑝,𝑏,𝐵   𝐶,𝑏,𝑝   𝜑,𝑏,𝑝   𝐹,𝑏,𝑝   𝑇,𝑏,𝑝   𝐷,𝑏,𝑝   ,𝑏,𝐼,𝑝   𝑅,𝑏,,𝑝   𝐺,𝑏,𝑝   𝑃,𝑏,𝑝   𝑆,𝑏,𝑝   · ,𝑏,𝑝   ,𝑏,𝑝
Allowed substitution hints:   𝜑()   𝐴(,𝑝,𝑏)   𝐵()   𝐶()   𝐷()   𝑃()   𝑆()   𝑇()   · ()   𝐸(,𝑝,𝑏)   ()   𝐹()   𝐺()   𝑉(,𝑝,𝑏)   𝑊(,𝑝,𝑏)

Proof of Theorem evlslem1
Dummy variables 𝑥 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlslem1.b . . 3 𝐵 = (Base‘𝑃)
2 eqid 2736 . . 3 (1r𝑃) = (1r𝑃)
3 eqid 2736 . . 3 (1r𝑆) = (1r𝑆)
4 eqid 2736 . . 3 (.r𝑃) = (.r𝑃)
5 evlslem1.m . . 3 · = (.r𝑆)
6 evlslem1.i . . . 4 (𝜑𝐼𝑊)
7 evlslem1.r . . . . 5 (𝜑𝑅 ∈ CRing)
87crngringd 19973 . . . 4 (𝜑𝑅 ∈ Ring)
9 evlslem1.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
109mplring 21420 . . . 4 ((𝐼𝑊𝑅 ∈ Ring) → 𝑃 ∈ Ring)
116, 8, 10syl2anc 584 . . 3 (𝜑𝑃 ∈ Ring)
12 evlslem1.s . . . 4 (𝜑𝑆 ∈ CRing)
1312crngringd 19973 . . 3 (𝜑𝑆 ∈ Ring)
14 2fveq3 6845 . . . . . 6 (𝑥 = (1r𝑅) → (𝐸‘(𝐴𝑥)) = (𝐸‘(𝐴‘(1r𝑅))))
15 fveq2 6840 . . . . . 6 (𝑥 = (1r𝑅) → (𝐹𝑥) = (𝐹‘(1r𝑅)))
1614, 15eqeq12d 2752 . . . . 5 (𝑥 = (1r𝑅) → ((𝐸‘(𝐴𝑥)) = (𝐹𝑥) ↔ (𝐸‘(𝐴‘(1r𝑅))) = (𝐹‘(1r𝑅))))
17 evlslem1.d . . . . . . . . 9 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
18 eqid 2736 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
19 eqid 2736 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
20 evlslem1.a . . . . . . . . 9 𝐴 = (algSc‘𝑃)
216adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐼𝑊)
228adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
23 simpr 485 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
249, 17, 18, 19, 20, 21, 22, 23mplascl 21468 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐴𝑥) = (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅))))
2524fveq2d 6844 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐸‘(𝐴𝑥)) = (𝐸‘(𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅)))))
26 evlslem1.c . . . . . . . 8 𝐶 = (Base‘𝑆)
27 evlslem1.t . . . . . . . 8 𝑇 = (mulGrp‘𝑆)
28 evlslem1.x . . . . . . . 8 = (.g𝑇)
29 evlslem1.v . . . . . . . 8 𝑉 = (𝐼 mVar 𝑅)
30 evlslem1.e . . . . . . . 8 𝐸 = (𝑝𝐵 ↦ (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
317adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ CRing)
3212adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑆 ∈ CRing)
33 evlslem1.f . . . . . . . . 9 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
3433adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐹 ∈ (𝑅 RingHom 𝑆))
35 evlslem1.g . . . . . . . . 9 (𝜑𝐺:𝐼𝐶)
3635adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐺:𝐼𝐶)
3717psrbag0 21466 . . . . . . . . . 10 (𝐼𝑊 → (𝐼 × {0}) ∈ 𝐷)
386, 37syl 17 . . . . . . . . 9 (𝜑 → (𝐼 × {0}) ∈ 𝐷)
3938adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐼 × {0}) ∈ 𝐷)
409, 1, 26, 19, 17, 27, 28, 5, 29, 30, 21, 31, 32, 34, 36, 18, 39, 23evlslem3 21486 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐸‘(𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅)))) = ((𝐹𝑥) · (𝑇 Σg ((𝐼 × {0}) ∘f 𝐺))))
41 0zd 12508 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → 0 ∈ ℤ)
42 fvexd 6855 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → (𝐺𝑥) ∈ V)
43 fconstmpt 5693 . . . . . . . . . . . . . . 15 (𝐼 × {0}) = (𝑥𝐼 ↦ 0)
4443a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (𝐼 × {0}) = (𝑥𝐼 ↦ 0))
4535feqmptd 6908 . . . . . . . . . . . . . 14 (𝜑𝐺 = (𝑥𝐼 ↦ (𝐺𝑥)))
466, 41, 42, 44, 45offval2 7634 . . . . . . . . . . . . 13 (𝜑 → ((𝐼 × {0}) ∘f 𝐺) = (𝑥𝐼 ↦ (0 (𝐺𝑥))))
4735ffvelcdmda 7032 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐼) → (𝐺𝑥) ∈ 𝐶)
4827, 26mgpbas 19898 . . . . . . . . . . . . . . . 16 𝐶 = (Base‘𝑇)
4927, 3ringidval 19911 . . . . . . . . . . . . . . . 16 (1r𝑆) = (0g𝑇)
5048, 49, 28mulg0 18875 . . . . . . . . . . . . . . 15 ((𝐺𝑥) ∈ 𝐶 → (0 (𝐺𝑥)) = (1r𝑆))
5147, 50syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → (0 (𝐺𝑥)) = (1r𝑆))
5251mpteq2dva 5204 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝐼 ↦ (0 (𝐺𝑥))) = (𝑥𝐼 ↦ (1r𝑆)))
5346, 52eqtrd 2776 . . . . . . . . . . . 12 (𝜑 → ((𝐼 × {0}) ∘f 𝐺) = (𝑥𝐼 ↦ (1r𝑆)))
5453oveq2d 7370 . . . . . . . . . . 11 (𝜑 → (𝑇 Σg ((𝐼 × {0}) ∘f 𝐺)) = (𝑇 Σg (𝑥𝐼 ↦ (1r𝑆))))
5527crngmgp 19968 . . . . . . . . . . . . . 14 (𝑆 ∈ CRing → 𝑇 ∈ CMnd)
5612, 55syl 17 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ CMnd)
5756cmnmndd 19582 . . . . . . . . . . . 12 (𝜑𝑇 ∈ Mnd)
5849gsumz 18643 . . . . . . . . . . . 12 ((𝑇 ∈ Mnd ∧ 𝐼𝑊) → (𝑇 Σg (𝑥𝐼 ↦ (1r𝑆))) = (1r𝑆))
5957, 6, 58syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑇 Σg (𝑥𝐼 ↦ (1r𝑆))) = (1r𝑆))
6054, 59eqtrd 2776 . . . . . . . . . 10 (𝜑 → (𝑇 Σg ((𝐼 × {0}) ∘f 𝐺)) = (1r𝑆))
6160adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑇 Σg ((𝐼 × {0}) ∘f 𝐺)) = (1r𝑆))
6261oveq2d 7370 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐹𝑥) · (𝑇 Σg ((𝐼 × {0}) ∘f 𝐺))) = ((𝐹𝑥) · (1r𝑆)))
6319, 26rhmf 20154 . . . . . . . . . . 11 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶𝐶)
6433, 63syl 17 . . . . . . . . . 10 (𝜑𝐹:(Base‘𝑅)⟶𝐶)
6564ffvelcdmda 7032 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐹𝑥) ∈ 𝐶)
6626, 5, 3ringridm 19989 . . . . . . . . 9 ((𝑆 ∈ Ring ∧ (𝐹𝑥) ∈ 𝐶) → ((𝐹𝑥) · (1r𝑆)) = (𝐹𝑥))
6713, 65, 66syl2an2r 683 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐹𝑥) · (1r𝑆)) = (𝐹𝑥))
6862, 67eqtrd 2776 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐹𝑥) · (𝑇 Σg ((𝐼 × {0}) ∘f 𝐺))) = (𝐹𝑥))
6925, 40, 683eqtrd 2780 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐸‘(𝐴𝑥)) = (𝐹𝑥))
7069ralrimiva 3142 . . . . 5 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)(𝐸‘(𝐴𝑥)) = (𝐹𝑥))
71 eqid 2736 . . . . . . 7 (1r𝑅) = (1r𝑅)
7219, 71ringidcl 19985 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
738, 72syl 17 . . . . 5 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
7416, 70, 73rspcdva 3581 . . . 4 (𝜑 → (𝐸‘(𝐴‘(1r𝑅))) = (𝐹‘(1r𝑅)))
759mplassa 21423 . . . . . . . . 9 ((𝐼𝑊𝑅 ∈ CRing) → 𝑃 ∈ AssAlg)
766, 7, 75syl2anc 584 . . . . . . . 8 (𝜑𝑃 ∈ AssAlg)
77 eqid 2736 . . . . . . . . 9 (Scalar‘𝑃) = (Scalar‘𝑃)
7820, 77asclrhm 21289 . . . . . . . 8 (𝑃 ∈ AssAlg → 𝐴 ∈ ((Scalar‘𝑃) RingHom 𝑃))
7976, 78syl 17 . . . . . . 7 (𝜑𝐴 ∈ ((Scalar‘𝑃) RingHom 𝑃))
809, 6, 7mplsca 21413 . . . . . . . 8 (𝜑𝑅 = (Scalar‘𝑃))
8180oveq1d 7369 . . . . . . 7 (𝜑 → (𝑅 RingHom 𝑃) = ((Scalar‘𝑃) RingHom 𝑃))
8279, 81eleqtrrd 2841 . . . . . 6 (𝜑𝐴 ∈ (𝑅 RingHom 𝑃))
8371, 2rhm1 20158 . . . . . 6 (𝐴 ∈ (𝑅 RingHom 𝑃) → (𝐴‘(1r𝑅)) = (1r𝑃))
8482, 83syl 17 . . . . 5 (𝜑 → (𝐴‘(1r𝑅)) = (1r𝑃))
8584fveq2d 6844 . . . 4 (𝜑 → (𝐸‘(𝐴‘(1r𝑅))) = (𝐸‘(1r𝑃)))
8671, 3rhm1 20158 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r𝑅)) = (1r𝑆))
8733, 86syl 17 . . . 4 (𝜑 → (𝐹‘(1r𝑅)) = (1r𝑆))
8874, 85, 873eqtr3d 2784 . . 3 (𝜑 → (𝐸‘(1r𝑃)) = (1r𝑆))
89 eqid 2736 . . . . 5 (+g𝑃) = (+g𝑃)
90 eqid 2736 . . . . 5 (+g𝑆) = (+g𝑆)
9111ringgrpd 19969 . . . . 5 (𝜑𝑃 ∈ Grp)
9213ringgrpd 19969 . . . . 5 (𝜑𝑆 ∈ Grp)
93 eqid 2736 . . . . . . 7 (0g𝑆) = (0g𝑆)
94 ringcmn 19999 . . . . . . . . 9 (𝑆 ∈ Ring → 𝑆 ∈ CMnd)
9513, 94syl 17 . . . . . . . 8 (𝜑𝑆 ∈ CMnd)
9695adantr 481 . . . . . . 7 ((𝜑𝑝𝐵) → 𝑆 ∈ CMnd)
97 ovex 7387 . . . . . . . . 9 (ℕ0m 𝐼) ∈ V
9817, 97rabex2 5290 . . . . . . . 8 𝐷 ∈ V
9998a1i 11 . . . . . . 7 ((𝜑𝑝𝐵) → 𝐷 ∈ V)
1006adantr 481 . . . . . . . . 9 ((𝜑𝑝𝐵) → 𝐼𝑊)
1017adantr 481 . . . . . . . . 9 ((𝜑𝑝𝐵) → 𝑅 ∈ CRing)
10212adantr 481 . . . . . . . . 9 ((𝜑𝑝𝐵) → 𝑆 ∈ CRing)
10333adantr 481 . . . . . . . . 9 ((𝜑𝑝𝐵) → 𝐹 ∈ (𝑅 RingHom 𝑆))
10435adantr 481 . . . . . . . . 9 ((𝜑𝑝𝐵) → 𝐺:𝐼𝐶)
105 simpr 485 . . . . . . . . 9 ((𝜑𝑝𝐵) → 𝑝𝐵)
1069, 1, 26, 17, 27, 28, 5, 29, 30, 100, 101, 102, 103, 104, 105evlslem6 21487 . . . . . . . 8 ((𝜑𝑝𝐵) → ((𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶 ∧ (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆)))
107106simpld 495 . . . . . . 7 ((𝜑𝑝𝐵) → (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶)
108106simprd 496 . . . . . . 7 ((𝜑𝑝𝐵) → (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆))
10926, 93, 96, 99, 107, 108gsumcl 19688 . . . . . 6 ((𝜑𝑝𝐵) → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) ∈ 𝐶)
110109, 30fmptd 7059 . . . . 5 (𝜑𝐸:𝐵𝐶)
111 eqid 2736 . . . . . . . . . . . . . . . . 17 (+g𝑅) = (+g𝑅)
112 simplrl 775 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑥𝐵)
113 simplrr 776 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑦𝐵)
1149, 1, 111, 89, 112, 113mpladd 21409 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝑥(+g𝑃)𝑦) = (𝑥f (+g𝑅)𝑦))
115114fveq1d 6842 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝑥(+g𝑃)𝑦)‘𝑏) = ((𝑥f (+g𝑅)𝑦)‘𝑏))
116 simprl 769 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
1179, 19, 1, 17, 116mplelf 21400 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥:𝐷⟶(Base‘𝑅))
118117ffnd 6667 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 Fn 𝐷)
119118adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑥 Fn 𝐷)
120 simprr 771 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
1219, 19, 1, 17, 120mplelf 21400 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦:𝐷⟶(Base‘𝑅))
122121ffnd 6667 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 Fn 𝐷)
123122adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑦 Fn 𝐷)
12498a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝐷 ∈ V)
125 simpr 485 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑏𝐷)
126 fnfvof 7631 . . . . . . . . . . . . . . . 16 (((𝑥 Fn 𝐷𝑦 Fn 𝐷) ∧ (𝐷 ∈ V ∧ 𝑏𝐷)) → ((𝑥f (+g𝑅)𝑦)‘𝑏) = ((𝑥𝑏)(+g𝑅)(𝑦𝑏)))
127119, 123, 124, 125, 126syl22anc 837 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝑥f (+g𝑅)𝑦)‘𝑏) = ((𝑥𝑏)(+g𝑅)(𝑦𝑏)))
128115, 127eqtrd 2776 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝑥(+g𝑃)𝑦)‘𝑏) = ((𝑥𝑏)(+g𝑅)(𝑦𝑏)))
129128fveq2d 6844 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) = (𝐹‘((𝑥𝑏)(+g𝑅)(𝑦𝑏))))
130 rhmghm 20153 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
13133, 130syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))
132131ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
133117ffvelcdmda 7032 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝑥𝑏) ∈ (Base‘𝑅))
134121ffvelcdmda 7032 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝑦𝑏) ∈ (Base‘𝑅))
13519, 111, 90ghmlin 19009 . . . . . . . . . . . . . 14 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝑥𝑏) ∈ (Base‘𝑅) ∧ (𝑦𝑏) ∈ (Base‘𝑅)) → (𝐹‘((𝑥𝑏)(+g𝑅)(𝑦𝑏))) = ((𝐹‘(𝑥𝑏))(+g𝑆)(𝐹‘(𝑦𝑏))))
136132, 133, 134, 135syl3anc 1371 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝐹‘((𝑥𝑏)(+g𝑅)(𝑦𝑏))) = ((𝐹‘(𝑥𝑏))(+g𝑆)(𝐹‘(𝑦𝑏))))
137129, 136eqtrd 2776 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) = ((𝐹‘(𝑥𝑏))(+g𝑆)(𝐹‘(𝑦𝑏))))
138137oveq1d 7369 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))) = (((𝐹‘(𝑥𝑏))(+g𝑆)(𝐹‘(𝑦𝑏))) · (𝑇 Σg (𝑏f 𝐺))))
13913ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑆 ∈ Ring)
14064ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝐹:(Base‘𝑅)⟶𝐶)
141140, 133ffvelcdmd 7033 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝐹‘(𝑥𝑏)) ∈ 𝐶)
142140, 134ffvelcdmd 7033 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝐹‘(𝑦𝑏)) ∈ 𝐶)
14356ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑇 ∈ CMnd)
14435ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝐺:𝐼𝐶)
14517, 48, 28, 143, 125, 144psrbagev2 21483 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝑇 Σg (𝑏f 𝐺)) ∈ 𝐶)
14626, 90, 5ringdir 19984 . . . . . . . . . . . 12 ((𝑆 ∈ Ring ∧ ((𝐹‘(𝑥𝑏)) ∈ 𝐶 ∧ (𝐹‘(𝑦𝑏)) ∈ 𝐶 ∧ (𝑇 Σg (𝑏f 𝐺)) ∈ 𝐶)) → (((𝐹‘(𝑥𝑏))(+g𝑆)(𝐹‘(𝑦𝑏))) · (𝑇 Σg (𝑏f 𝐺))) = (((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))(+g𝑆)((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
147139, 141, 142, 145, 146syl13anc 1372 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (((𝐹‘(𝑥𝑏))(+g𝑆)(𝐹‘(𝑦𝑏))) · (𝑇 Σg (𝑏f 𝐺))) = (((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))(+g𝑆)((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
148138, 147eqtrd 2776 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))) = (((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))(+g𝑆)((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
149148mpteq2dva 5204 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ (((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))(+g𝑆)((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
15098a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐷 ∈ V)
151 ovexd 7389 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺))) ∈ V)
152 ovexd 7389 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))) ∈ V)
153 eqidd 2737 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
154 eqidd 2737 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
155150, 151, 152, 153, 154offval2 7634 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) ∘f (+g𝑆)(𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = (𝑏𝐷 ↦ (((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))(+g𝑆)((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
156149, 155eqtr4d 2779 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = ((𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) ∘f (+g𝑆)(𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
157156oveq2d 7370 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = (𝑆 Σg ((𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) ∘f (+g𝑆)(𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))))
15895adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑆 ∈ CMnd)
1596adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐼𝑊)
1607adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑅 ∈ CRing)
16112adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑆 ∈ CRing)
16233adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐹 ∈ (𝑅 RingHom 𝑆))
16335adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐺:𝐼𝐶)
1649, 1, 26, 17, 27, 28, 5, 29, 30, 159, 160, 161, 162, 163, 116evlslem6 21487 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶 ∧ (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆)))
165164simpld 495 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶)
1669, 1, 26, 17, 27, 28, 5, 29, 30, 159, 160, 161, 162, 163, 120evlslem6 21487 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶 ∧ (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆)))
167166simpld 495 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶)
168164simprd 496 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆))
169166simprd 496 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆))
17026, 93, 90, 158, 150, 165, 167, 168, 169gsumadd 19696 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg ((𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) ∘f (+g𝑆)(𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))) = ((𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))(+g𝑆)(𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))))
171157, 170eqtrd 2776 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = ((𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))(+g𝑆)(𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))))
17291adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ Grp)
1731, 89grpcl 18753 . . . . . . . 8 ((𝑃 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝑃)𝑦) ∈ 𝐵)
174172, 116, 120, 173syl3anc 1371 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑃)𝑦) ∈ 𝐵)
175 fveq1 6839 . . . . . . . . . . . 12 (𝑝 = (𝑥(+g𝑃)𝑦) → (𝑝𝑏) = ((𝑥(+g𝑃)𝑦)‘𝑏))
176175fveq2d 6844 . . . . . . . . . . 11 (𝑝 = (𝑥(+g𝑃)𝑦) → (𝐹‘(𝑝𝑏)) = (𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)))
177176oveq1d 7369 . . . . . . . . . 10 (𝑝 = (𝑥(+g𝑃)𝑦) → ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))) = ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))
178177mpteq2dv 5206 . . . . . . . . 9 (𝑝 = (𝑥(+g𝑃)𝑦) → (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
179178oveq2d 7370 . . . . . . . 8 (𝑝 = (𝑥(+g𝑃)𝑦) → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
180 ovex 7387 . . . . . . . 8 (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) ∈ V
181179, 30, 180fvmpt 6946 . . . . . . 7 ((𝑥(+g𝑃)𝑦) ∈ 𝐵 → (𝐸‘(𝑥(+g𝑃)𝑦)) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
182174, 181syl 17 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘(𝑥(+g𝑃)𝑦)) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
183 fveq1 6839 . . . . . . . . . . . . 13 (𝑝 = 𝑥 → (𝑝𝑏) = (𝑥𝑏))
184183fveq2d 6844 . . . . . . . . . . . 12 (𝑝 = 𝑥 → (𝐹‘(𝑝𝑏)) = (𝐹‘(𝑥𝑏)))
185184oveq1d 7369 . . . . . . . . . . 11 (𝑝 = 𝑥 → ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))) = ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺))))
186185mpteq2dv 5206 . . . . . . . . . 10 (𝑝 = 𝑥 → (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
187186oveq2d 7370 . . . . . . . . 9 (𝑝 = 𝑥 → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
188 ovex 7387 . . . . . . . . 9 (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) ∈ V
189187, 30, 188fvmpt 6946 . . . . . . . 8 (𝑥𝐵 → (𝐸𝑥) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
190116, 189syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸𝑥) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
191 fveq1 6839 . . . . . . . . . . . . 13 (𝑝 = 𝑦 → (𝑝𝑏) = (𝑦𝑏))
192191fveq2d 6844 . . . . . . . . . . . 12 (𝑝 = 𝑦 → (𝐹‘(𝑝𝑏)) = (𝐹‘(𝑦𝑏)))
193192oveq1d 7369 . . . . . . . . . . 11 (𝑝 = 𝑦 → ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))) = ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))
194193mpteq2dv 5206 . . . . . . . . . 10 (𝑝 = 𝑦 → (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
195194oveq2d 7370 . . . . . . . . 9 (𝑝 = 𝑦 → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
196 ovex 7387 . . . . . . . . 9 (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) ∈ V
197195, 30, 196fvmpt 6946 . . . . . . . 8 (𝑦𝐵 → (𝐸𝑦) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
198197ad2antll 727 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸𝑦) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
199190, 198oveq12d 7372 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐸𝑥)(+g𝑆)(𝐸𝑦)) = ((𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))(+g𝑆)(𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))))
200171, 182, 1993eqtr4d 2786 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘(𝑥(+g𝑃)𝑦)) = ((𝐸𝑥)(+g𝑆)(𝐸𝑦)))
2011, 26, 89, 90, 91, 92, 110, 200isghmd 19013 . . . 4 (𝜑𝐸 ∈ (𝑃 GrpHom 𝑆))
202 eqid 2736 . . . . . . . . . . 11 (mulGrp‘𝑅) = (mulGrp‘𝑅)
203202, 27rhmmhm 20149 . . . . . . . . . 10 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom 𝑇))
20433, 203syl 17 . . . . . . . . 9 (𝜑𝐹 ∈ ((mulGrp‘𝑅) MndHom 𝑇))
205204adantr 481 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom 𝑇))
206 simprll 777 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑥𝐵)
2079, 19, 1, 17, 206mplelf 21400 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑥:𝐷⟶(Base‘𝑅))
208 simprrl 779 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑧𝐷)
209207, 208ffvelcdmd 7033 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝑥𝑧) ∈ (Base‘𝑅))
210 simprlr 778 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑦𝐵)
2119, 19, 1, 17, 210mplelf 21400 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑦:𝐷⟶(Base‘𝑅))
212 simprrr 780 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑤𝐷)
213211, 212ffvelcdmd 7033 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝑦𝑤) ∈ (Base‘𝑅))
214202, 19mgpbas 19898 . . . . . . . . 9 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
215 eqid 2736 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
216202, 215mgpplusg 19896 . . . . . . . . 9 (.r𝑅) = (+g‘(mulGrp‘𝑅))
21727, 5mgpplusg 19896 . . . . . . . . 9 · = (+g𝑇)
218214, 216, 217mhmlin 18606 . . . . . . . 8 ((𝐹 ∈ ((mulGrp‘𝑅) MndHom 𝑇) ∧ (𝑥𝑧) ∈ (Base‘𝑅) ∧ (𝑦𝑤) ∈ (Base‘𝑅)) → (𝐹‘((𝑥𝑧)(.r𝑅)(𝑦𝑤))) = ((𝐹‘(𝑥𝑧)) · (𝐹‘(𝑦𝑤))))
219205, 209, 213, 218syl3anc 1371 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐹‘((𝑥𝑧)(.r𝑅)(𝑦𝑤))) = ((𝐹‘(𝑥𝑧)) · (𝐹‘(𝑦𝑤))))
22057ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → 𝑇 ∈ Mnd)
221 simprl 769 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑧𝐷)
22217psrbagf 21316 . . . . . . . . . . . . . . 15 (𝑧𝐷𝑧:𝐼⟶ℕ0)
223221, 222syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑧:𝐼⟶ℕ0)
224223ffvelcdmda 7032 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝑧𝑣) ∈ ℕ0)
22517psrbagf 21316 . . . . . . . . . . . . . . 15 (𝑤𝐷𝑤:𝐼⟶ℕ0)
226225ad2antll 727 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑤:𝐼⟶ℕ0)
227226ffvelcdmda 7032 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝑤𝑣) ∈ ℕ0)
22835adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝐺:𝐼𝐶)
229228ffvelcdmda 7032 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝐺𝑣) ∈ 𝐶)
23048, 28, 217mulgnn0dir 18902 . . . . . . . . . . . . 13 ((𝑇 ∈ Mnd ∧ ((𝑧𝑣) ∈ ℕ0 ∧ (𝑤𝑣) ∈ ℕ0 ∧ (𝐺𝑣) ∈ 𝐶)) → (((𝑧𝑣) + (𝑤𝑣)) (𝐺𝑣)) = (((𝑧𝑣) (𝐺𝑣)) · ((𝑤𝑣) (𝐺𝑣))))
231220, 224, 227, 229, 230syl13anc 1372 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (((𝑧𝑣) + (𝑤𝑣)) (𝐺𝑣)) = (((𝑧𝑣) (𝐺𝑣)) · ((𝑤𝑣) (𝐺𝑣))))
232231mpteq2dva 5204 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑣𝐼 ↦ (((𝑧𝑣) + (𝑤𝑣)) (𝐺𝑣))) = (𝑣𝐼 ↦ (((𝑧𝑣) (𝐺𝑣)) · ((𝑤𝑣) (𝐺𝑣)))))
2336adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝐼𝑊)
234 ovexd 7389 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → ((𝑧𝑣) + (𝑤𝑣)) ∈ V)
235 fvexd 6855 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝐺𝑣) ∈ V)
236223ffnd 6667 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑧 Fn 𝐼)
237226ffnd 6667 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑤 Fn 𝐼)
238 inidm 4177 . . . . . . . . . . . . 13 (𝐼𝐼) = 𝐼
239 eqidd 2737 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝑧𝑣) = (𝑧𝑣))
240 eqidd 2737 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝑤𝑣) = (𝑤𝑣))
241236, 237, 233, 233, 238, 239, 240offval 7623 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑧f + 𝑤) = (𝑣𝐼 ↦ ((𝑧𝑣) + (𝑤𝑣))))
24235feqmptd 6908 . . . . . . . . . . . . 13 (𝜑𝐺 = (𝑣𝐼 ↦ (𝐺𝑣)))
243242adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝐺 = (𝑣𝐼 ↦ (𝐺𝑣)))
244233, 234, 235, 241, 243offval2 7634 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → ((𝑧f + 𝑤) ∘f 𝐺) = (𝑣𝐼 ↦ (((𝑧𝑣) + (𝑤𝑣)) (𝐺𝑣))))
245 ovexd 7389 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → ((𝑧𝑣) (𝐺𝑣)) ∈ V)
246 ovexd 7389 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → ((𝑤𝑣) (𝐺𝑣)) ∈ V)
24735ffnd 6667 . . . . . . . . . . . . . 14 (𝜑𝐺 Fn 𝐼)
248247adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝐺 Fn 𝐼)
249 eqidd 2737 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝐺𝑣) = (𝐺𝑣))
250236, 248, 233, 233, 238, 239, 249offval 7623 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑧f 𝐺) = (𝑣𝐼 ↦ ((𝑧𝑣) (𝐺𝑣))))
251237, 248, 233, 233, 238, 240, 249offval 7623 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑤f 𝐺) = (𝑣𝐼 ↦ ((𝑤𝑣) (𝐺𝑣))))
252233, 245, 246, 250, 251offval2 7634 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → ((𝑧f 𝐺) ∘f · (𝑤f 𝐺)) = (𝑣𝐼 ↦ (((𝑧𝑣) (𝐺𝑣)) · ((𝑤𝑣) (𝐺𝑣)))))
253232, 244, 2523eqtr4d 2786 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → ((𝑧f + 𝑤) ∘f 𝐺) = ((𝑧f 𝐺) ∘f · (𝑤f 𝐺)))
254253oveq2d 7370 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑇 Σg ((𝑧f + 𝑤) ∘f 𝐺)) = (𝑇 Σg ((𝑧f 𝐺) ∘f · (𝑤f 𝐺))))
25556adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑇 ∈ CMnd)
25617, 48, 28, 49, 255, 221, 228psrbagev1 21481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → ((𝑧f 𝐺):𝐼𝐶 ∧ (𝑧f 𝐺) finSupp (1r𝑆)))
257256simpld 495 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑧f 𝐺):𝐼𝐶)
258 simprr 771 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑤𝐷)
25917, 48, 28, 49, 255, 258, 228psrbagev1 21481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → ((𝑤f 𝐺):𝐼𝐶 ∧ (𝑤f 𝐺) finSupp (1r𝑆)))
260259simpld 495 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑤f 𝐺):𝐼𝐶)
261256simprd 496 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑧f 𝐺) finSupp (1r𝑆))
262259simprd 496 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑤f 𝐺) finSupp (1r𝑆))
26348, 49, 217, 255, 233, 257, 260, 261, 262gsumadd 19696 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑇 Σg ((𝑧f 𝐺) ∘f · (𝑤f 𝐺))) = ((𝑇 Σg (𝑧f 𝐺)) · (𝑇 Σg (𝑤f 𝐺))))
264254, 263eqtrd 2776 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑇 Σg ((𝑧f + 𝑤) ∘f 𝐺)) = ((𝑇 Σg (𝑧f 𝐺)) · (𝑇 Σg (𝑤f 𝐺))))
265264adantrl 714 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝑇 Σg ((𝑧f + 𝑤) ∘f 𝐺)) = ((𝑇 Σg (𝑧f 𝐺)) · (𝑇 Σg (𝑤f 𝐺))))
266219, 265oveq12d 7372 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → ((𝐹‘((𝑥𝑧)(.r𝑅)(𝑦𝑤))) · (𝑇 Σg ((𝑧f + 𝑤) ∘f 𝐺))) = (((𝐹‘(𝑥𝑧)) · (𝐹‘(𝑦𝑤))) · ((𝑇 Σg (𝑧f 𝐺)) · (𝑇 Σg (𝑤f 𝐺)))))
26756adantr 481 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑇 ∈ CMnd)
26864adantr 481 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝐹:(Base‘𝑅)⟶𝐶)
269268, 209ffvelcdmd 7033 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐹‘(𝑥𝑧)) ∈ 𝐶)
270268, 213ffvelcdmd 7033 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐹‘(𝑦𝑤)) ∈ 𝐶)
27117, 48, 28, 255, 221, 228psrbagev2 21483 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑇 Σg (𝑧f 𝐺)) ∈ 𝐶)
272271adantrl 714 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝑇 Σg (𝑧f 𝐺)) ∈ 𝐶)
27317, 48, 28, 255, 258, 228psrbagev2 21483 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑇 Σg (𝑤f 𝐺)) ∈ 𝐶)
274273adantrl 714 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝑇 Σg (𝑤f 𝐺)) ∈ 𝐶)
27548, 217cmn4 19579 . . . . . . 7 ((𝑇 ∈ CMnd ∧ ((𝐹‘(𝑥𝑧)) ∈ 𝐶 ∧ (𝐹‘(𝑦𝑤)) ∈ 𝐶) ∧ ((𝑇 Σg (𝑧f 𝐺)) ∈ 𝐶 ∧ (𝑇 Σg (𝑤f 𝐺)) ∈ 𝐶)) → (((𝐹‘(𝑥𝑧)) · (𝐹‘(𝑦𝑤))) · ((𝑇 Σg (𝑧f 𝐺)) · (𝑇 Σg (𝑤f 𝐺)))) = (((𝐹‘(𝑥𝑧)) · (𝑇 Σg (𝑧f 𝐺))) · ((𝐹‘(𝑦𝑤)) · (𝑇 Σg (𝑤f 𝐺)))))
276267, 269, 270, 272, 274, 275syl122anc 1379 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (((𝐹‘(𝑥𝑧)) · (𝐹‘(𝑦𝑤))) · ((𝑇 Σg (𝑧f 𝐺)) · (𝑇 Σg (𝑤f 𝐺)))) = (((𝐹‘(𝑥𝑧)) · (𝑇 Σg (𝑧f 𝐺))) · ((𝐹‘(𝑦𝑤)) · (𝑇 Σg (𝑤f 𝐺)))))
277266, 276eqtrd 2776 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → ((𝐹‘((𝑥𝑧)(.r𝑅)(𝑦𝑤))) · (𝑇 Σg ((𝑧f + 𝑤) ∘f 𝐺))) = (((𝐹‘(𝑥𝑧)) · (𝑇 Σg (𝑧f 𝐺))) · ((𝐹‘(𝑦𝑤)) · (𝑇 Σg (𝑤f 𝐺)))))
2786adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝐼𝑊)
2797adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑅 ∈ CRing)
28012adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑆 ∈ CRing)
28133adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝐹 ∈ (𝑅 RingHom 𝑆))
28235adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝐺:𝐼𝐶)
28317psrbagaddcl 21326 . . . . . . 7 ((𝑧𝐷𝑤𝐷) → (𝑧f + 𝑤) ∈ 𝐷)
284283ad2antll 727 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝑧f + 𝑤) ∈ 𝐷)
2858adantr 481 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑅 ∈ Ring)
28619, 215ringcl 19977 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥𝑧) ∈ (Base‘𝑅) ∧ (𝑦𝑤) ∈ (Base‘𝑅)) → ((𝑥𝑧)(.r𝑅)(𝑦𝑤)) ∈ (Base‘𝑅))
287285, 209, 213, 286syl3anc 1371 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → ((𝑥𝑧)(.r𝑅)(𝑦𝑤)) ∈ (Base‘𝑅))
2889, 1, 26, 19, 17, 27, 28, 5, 29, 30, 278, 279, 280, 281, 282, 18, 284, 287evlslem3 21486 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐸‘(𝑣𝐷 ↦ if(𝑣 = (𝑧f + 𝑤), ((𝑥𝑧)(.r𝑅)(𝑦𝑤)), (0g𝑅)))) = ((𝐹‘((𝑥𝑧)(.r𝑅)(𝑦𝑤))) · (𝑇 Σg ((𝑧f + 𝑤) ∘f 𝐺))))
2899, 1, 26, 19, 17, 27, 28, 5, 29, 30, 278, 279, 280, 281, 282, 18, 208, 209evlslem3 21486 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐸‘(𝑣𝐷 ↦ if(𝑣 = 𝑧, (𝑥𝑧), (0g𝑅)))) = ((𝐹‘(𝑥𝑧)) · (𝑇 Σg (𝑧f 𝐺))))
2909, 1, 26, 19, 17, 27, 28, 5, 29, 30, 278, 279, 280, 281, 282, 18, 212, 213evlslem3 21486 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐸‘(𝑣𝐷 ↦ if(𝑣 = 𝑤, (𝑦𝑤), (0g𝑅)))) = ((𝐹‘(𝑦𝑤)) · (𝑇 Σg (𝑤f 𝐺))))
291289, 290oveq12d 7372 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → ((𝐸‘(𝑣𝐷 ↦ if(𝑣 = 𝑧, (𝑥𝑧), (0g𝑅)))) · (𝐸‘(𝑣𝐷 ↦ if(𝑣 = 𝑤, (𝑦𝑤), (0g𝑅))))) = (((𝐹‘(𝑥𝑧)) · (𝑇 Σg (𝑧f 𝐺))) · ((𝐹‘(𝑦𝑤)) · (𝑇 Σg (𝑤f 𝐺)))))
292277, 288, 2913eqtr4d 2786 . . . 4 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐸‘(𝑣𝐷 ↦ if(𝑣 = (𝑧f + 𝑤), ((𝑥𝑧)(.r𝑅)(𝑦𝑤)), (0g𝑅)))) = ((𝐸‘(𝑣𝐷 ↦ if(𝑣 = 𝑧, (𝑥𝑧), (0g𝑅)))) · (𝐸‘(𝑣𝐷 ↦ if(𝑣 = 𝑤, (𝑦𝑤), (0g𝑅))))))
2939, 1, 5, 18, 17, 6, 7, 12, 201, 292evlslem2 21485 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘(𝑥(.r𝑃)𝑦)) = ((𝐸𝑥) · (𝐸𝑦)))
2941, 2, 3, 4, 5, 11, 13, 88, 293, 26, 89, 90, 110, 200isrhmd 20157 . 2 (𝜑𝐸 ∈ (𝑃 RingHom 𝑆))
295 ovex 7387 . . . . . 6 (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) ∈ V
296295, 30fnmpti 6642 . . . . 5 𝐸 Fn 𝐵
297296a1i 11 . . . 4 (𝜑𝐸 Fn 𝐵)
29819, 1rhmf 20154 . . . . . 6 (𝐴 ∈ (𝑅 RingHom 𝑃) → 𝐴:(Base‘𝑅)⟶𝐵)
29982, 298syl 17 . . . . 5 (𝜑𝐴:(Base‘𝑅)⟶𝐵)
300299ffnd 6667 . . . 4 (𝜑𝐴 Fn (Base‘𝑅))
301299frnd 6674 . . . 4 (𝜑 → ran 𝐴𝐵)
302 fnco 6616 . . . 4 ((𝐸 Fn 𝐵𝐴 Fn (Base‘𝑅) ∧ ran 𝐴𝐵) → (𝐸𝐴) Fn (Base‘𝑅))
303297, 300, 301, 302syl3anc 1371 . . 3 (𝜑 → (𝐸𝐴) Fn (Base‘𝑅))
30464ffnd 6667 . . 3 (𝜑𝐹 Fn (Base‘𝑅))
305 fvco2 6936 . . . . 5 ((𝐴 Fn (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐸𝐴)‘𝑥) = (𝐸‘(𝐴𝑥)))
306300, 305sylan 580 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐸𝐴)‘𝑥) = (𝐸‘(𝐴𝑥)))
307306, 69eqtrd 2776 . . 3 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐸𝐴)‘𝑥) = (𝐹𝑥))
308303, 304, 307eqfnfvd 6983 . 2 (𝜑 → (𝐸𝐴) = 𝐹)
3099, 29, 1, 6, 8mvrf2 21464 . . . . 5 (𝜑𝑉:𝐼𝐵)
310309ffnd 6667 . . . 4 (𝜑𝑉 Fn 𝐼)
311309frnd 6674 . . . 4 (𝜑 → ran 𝑉𝐵)
312 fnco 6616 . . . 4 ((𝐸 Fn 𝐵𝑉 Fn 𝐼 ∧ ran 𝑉𝐵) → (𝐸𝑉) Fn 𝐼)
313297, 310, 311, 312syl3anc 1371 . . 3 (𝜑 → (𝐸𝑉) Fn 𝐼)
314 fvco2 6936 . . . . 5 ((𝑉 Fn 𝐼𝑥𝐼) → ((𝐸𝑉)‘𝑥) = (𝐸‘(𝑉𝑥)))
315310, 314sylan 580 . . . 4 ((𝜑𝑥𝐼) → ((𝐸𝑉)‘𝑥) = (𝐸‘(𝑉𝑥)))
3166adantr 481 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐼𝑊)
3177adantr 481 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑅 ∈ CRing)
318 simpr 485 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑥𝐼)
31929, 17, 18, 71, 316, 317, 318mvrval 21386 . . . . . 6 ((𝜑𝑥𝐼) → (𝑉𝑥) = (𝑦𝐷 ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅))))
320319fveq2d 6844 . . . . 5 ((𝜑𝑥𝐼) → (𝐸‘(𝑉𝑥)) = (𝐸‘(𝑦𝐷 ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅)))))
32112adantr 481 . . . . . 6 ((𝜑𝑥𝐼) → 𝑆 ∈ CRing)
32233adantr 481 . . . . . 6 ((𝜑𝑥𝐼) → 𝐹 ∈ (𝑅 RingHom 𝑆))
32335adantr 481 . . . . . 6 ((𝜑𝑥𝐼) → 𝐺:𝐼𝐶)
32417psrbagsn 21467 . . . . . . . 8 (𝐼𝑊 → (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∈ 𝐷)
3256, 324syl 17 . . . . . . 7 (𝜑 → (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∈ 𝐷)
326325adantr 481 . . . . . 6 ((𝜑𝑥𝐼) → (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∈ 𝐷)
32773adantr 481 . . . . . 6 ((𝜑𝑥𝐼) → (1r𝑅) ∈ (Base‘𝑅))
3289, 1, 26, 19, 17, 27, 28, 5, 29, 30, 316, 317, 321, 322, 323, 18, 326, 327evlslem3 21486 . . . . 5 ((𝜑𝑥𝐼) → (𝐸‘(𝑦𝐷 ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅)))) = ((𝐹‘(1r𝑅)) · (𝑇 Σg ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f 𝐺))))
32987adantr 481 . . . . . . 7 ((𝜑𝑥𝐼) → (𝐹‘(1r𝑅)) = (1r𝑆))
330 1nn0 12426 . . . . . . . . . . . . . 14 1 ∈ ℕ0
331 0nn0 12425 . . . . . . . . . . . . . 14 0 ∈ ℕ0
332330, 331ifcli 4532 . . . . . . . . . . . . 13 if(𝑧 = 𝑥, 1, 0) ∈ ℕ0
333332a1i 11 . . . . . . . . . . . 12 ((𝜑𝑧𝐼) → if(𝑧 = 𝑥, 1, 0) ∈ ℕ0)
33435ffvelcdmda 7032 . . . . . . . . . . . 12 ((𝜑𝑧𝐼) → (𝐺𝑧) ∈ 𝐶)
335 eqidd 2737 . . . . . . . . . . . 12 (𝜑 → (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)))
33635feqmptd 6908 . . . . . . . . . . . 12 (𝜑𝐺 = (𝑧𝐼 ↦ (𝐺𝑧)))
3376, 333, 334, 335, 336offval2 7634 . . . . . . . . . . 11 (𝜑 → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f 𝐺) = (𝑧𝐼 ↦ (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧))))
338 oveq1 7361 . . . . . . . . . . . . . 14 (1 = if(𝑧 = 𝑥, 1, 0) → (1 (𝐺𝑧)) = (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧)))
339338eqeq1d 2738 . . . . . . . . . . . . 13 (1 = if(𝑧 = 𝑥, 1, 0) → ((1 (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) ↔ (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))))
340 oveq1 7361 . . . . . . . . . . . . . 14 (0 = if(𝑧 = 𝑥, 1, 0) → (0 (𝐺𝑧)) = (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧)))
341340eqeq1d 2738 . . . . . . . . . . . . 13 (0 = if(𝑧 = 𝑥, 1, 0) → ((0 (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) ↔ (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))))
342334adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝐼) ∧ 𝑧 = 𝑥) → (𝐺𝑧) ∈ 𝐶)
34348, 28mulg1 18879 . . . . . . . . . . . . . . 15 ((𝐺𝑧) ∈ 𝐶 → (1 (𝐺𝑧)) = (𝐺𝑧))
344342, 343syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐼) ∧ 𝑧 = 𝑥) → (1 (𝐺𝑧)) = (𝐺𝑧))
345 iftrue 4491 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (𝐺𝑧))
346345adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐼) ∧ 𝑧 = 𝑥) → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (𝐺𝑧))
347344, 346eqtr4d 2779 . . . . . . . . . . . . 13 (((𝜑𝑧𝐼) ∧ 𝑧 = 𝑥) → (1 (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))
34848, 49, 28mulg0 18875 . . . . . . . . . . . . . . . 16 ((𝐺𝑧) ∈ 𝐶 → (0 (𝐺𝑧)) = (1r𝑆))
349334, 348syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐼) → (0 (𝐺𝑧)) = (1r𝑆))
350349adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐼) ∧ ¬ 𝑧 = 𝑥) → (0 (𝐺𝑧)) = (1r𝑆))
351 iffalse 4494 . . . . . . . . . . . . . . 15 𝑧 = 𝑥 → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (1r𝑆))
352351adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐼) ∧ ¬ 𝑧 = 𝑥) → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (1r𝑆))
353350, 352eqtr4d 2779 . . . . . . . . . . . . 13 (((𝜑𝑧𝐼) ∧ ¬ 𝑧 = 𝑥) → (0 (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))
354339, 341, 347, 353ifbothda 4523 . . . . . . . . . . . 12 ((𝜑𝑧𝐼) → (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))
355354mpteq2dva 5204 . . . . . . . . . . 11 (𝜑 → (𝑧𝐼 ↦ (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧))) = (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))))
356337, 355eqtrd 2776 . . . . . . . . . 10 (𝜑 → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f 𝐺) = (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))))
357356adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐼) → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f 𝐺) = (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))))
358357oveq2d 7370 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝑇 Σg ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f 𝐺)) = (𝑇 Σg (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))))
35957adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐼) → 𝑇 ∈ Mnd)
360334adantlr 713 . . . . . . . . . . 11 (((𝜑𝑥𝐼) ∧ 𝑧𝐼) → (𝐺𝑧) ∈ 𝐶)
36126, 3ringidcl 19985 . . . . . . . . . . . . 13 (𝑆 ∈ Ring → (1r𝑆) ∈ 𝐶)
36213, 361syl 17 . . . . . . . . . . . 12 (𝜑 → (1r𝑆) ∈ 𝐶)
363362ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑥𝐼) ∧ 𝑧𝐼) → (1r𝑆) ∈ 𝐶)
364360, 363ifcld 4531 . . . . . . . . . 10 (((𝜑𝑥𝐼) ∧ 𝑧𝐼) → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) ∈ 𝐶)
365364fmpttd 7060 . . . . . . . . 9 ((𝜑𝑥𝐼) → (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))):𝐼𝐶)
366 eldifsnneq 4750 . . . . . . . . . . . 12 (𝑧 ∈ (𝐼 ∖ {𝑥}) → ¬ 𝑧 = 𝑥)
367366, 351syl 17 . . . . . . . . . . 11 (𝑧 ∈ (𝐼 ∖ {𝑥}) → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (1r𝑆))
368367adantl 482 . . . . . . . . . 10 (((𝜑𝑥𝐼) ∧ 𝑧 ∈ (𝐼 ∖ {𝑥})) → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (1r𝑆))
369368, 316suppss2 8128 . . . . . . . . 9 ((𝜑𝑥𝐼) → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))) supp (1r𝑆)) ⊆ {𝑥})
37048, 49, 359, 316, 318, 365, 369gsumpt 19735 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝑇 Σg (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))) = ((𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))‘𝑥))
371 fveq2 6840 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝐺𝑧) = (𝐺𝑥))
372345, 371eqtrd 2776 . . . . . . . . . 10 (𝑧 = 𝑥 → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (𝐺𝑥))
373 eqid 2736 . . . . . . . . . 10 (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))) = (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))
374 fvex 6853 . . . . . . . . . 10 (𝐺𝑥) ∈ V
375372, 373, 374fvmpt 6946 . . . . . . . . 9 (𝑥𝐼 → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))‘𝑥) = (𝐺𝑥))
376375adantl 482 . . . . . . . 8 ((𝜑𝑥𝐼) → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))‘𝑥) = (𝐺𝑥))
377358, 370, 3763eqtrd 2780 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑇 Σg ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f 𝐺)) = (𝐺𝑥))
378329, 377oveq12d 7372 . . . . . 6 ((𝜑𝑥𝐼) → ((𝐹‘(1r𝑅)) · (𝑇 Σg ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f 𝐺))) = ((1r𝑆) · (𝐺𝑥)))
37926, 5, 3ringlidm 19988 . . . . . . 7 ((𝑆 ∈ Ring ∧ (𝐺𝑥) ∈ 𝐶) → ((1r𝑆) · (𝐺𝑥)) = (𝐺𝑥))
38013, 47, 379syl2an2r 683 . . . . . 6 ((𝜑𝑥𝐼) → ((1r𝑆) · (𝐺𝑥)) = (𝐺𝑥))
381378, 380eqtrd 2776 . . . . 5 ((𝜑𝑥𝐼) → ((𝐹‘(1r𝑅)) · (𝑇 Σg ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f 𝐺))) = (𝐺𝑥))
382320, 328, 3813eqtrd 2780 . . . 4 ((𝜑𝑥𝐼) → (𝐸‘(𝑉𝑥)) = (𝐺𝑥))
383315, 382eqtrd 2776 . . 3 ((𝜑𝑥𝐼) → ((𝐸𝑉)‘𝑥) = (𝐺𝑥))
384313, 247, 383eqfnfvd 6983 . 2 (𝜑 → (𝐸𝑉) = 𝐺)
385294, 308, 3843jca 1128 1 (𝜑 → (𝐸 ∈ (𝑃 RingHom 𝑆) ∧ (𝐸𝐴) = 𝐹 ∧ (𝐸𝑉) = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  {crab 3406  Vcvv 3444  cdif 3906  wss 3909  ifcif 4485  {csn 4585   class class class wbr 5104  cmpt 5187   × cxp 5630  ccnv 5631  ran crn 5633  cima 5635  ccom 5636   Fn wfn 6489  wf 6490  cfv 6494  (class class class)co 7354  f cof 7612  m cmap 8762  Fincfn 8880   finSupp cfsupp 9302  0cc0 11048  1c1 11049   + caddc 11051  cn 12150  0cn0 12410  cz 12496  Basecbs 17080  +gcplusg 17130  .rcmulr 17131  Scalarcsca 17133  0gc0g 17318   Σg cgsu 17319  Mndcmnd 18553   MndHom cmhm 18596  Grpcgrp 18745  .gcmg 18868   GrpHom cghm 19001  CMndccmn 19558  mulGrpcmgp 19892  1rcur 19909  Ringcrg 19960  CRingccrg 19961   RingHom crh 20139  AssAlgcasa 21252  algSccascl 21254   mVar cmvr 21303   mPoly cmpl 21304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7669  ax-cnex 11104  ax-resscn 11105  ax-1cn 11106  ax-icn 11107  ax-addcl 11108  ax-addrcl 11109  ax-mulcl 11110  ax-mulrcl 11111  ax-mulcom 11112  ax-addass 11113  ax-mulass 11114  ax-distr 11115  ax-i2m1 11116  ax-1ne0 11117  ax-1rid 11118  ax-rnegex 11119  ax-rrecex 11120  ax-cnre 11121  ax-pre-lttri 11122  ax-pre-lttrn 11123  ax-pre-ltadd 11124  ax-pre-mulgt0 11125
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4865  df-int 4907  df-iun 4955  df-iin 4956  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5530  df-eprel 5536  df-po 5544  df-so 5545  df-fr 5587  df-se 5588  df-we 5589  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-pred 6252  df-ord 6319  df-on 6320  df-lim 6321  df-suc 6322  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-isom 6503  df-riota 7310  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7614  df-ofr 7615  df-om 7800  df-1st 7918  df-2nd 7919  df-supp 8090  df-frecs 8209  df-wrecs 8240  df-recs 8314  df-rdg 8353  df-1o 8409  df-er 8645  df-map 8764  df-pm 8765  df-ixp 8833  df-en 8881  df-dom 8882  df-sdom 8883  df-fin 8884  df-fsupp 9303  df-sup 9375  df-oi 9443  df-card 9872  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11384  df-neg 11385  df-nn 12151  df-2 12213  df-3 12214  df-4 12215  df-5 12216  df-6 12217  df-7 12218  df-8 12219  df-9 12220  df-n0 12411  df-z 12497  df-dec 12616  df-uz 12761  df-fz 13422  df-fzo 13565  df-seq 13904  df-hash 14228  df-struct 17016  df-sets 17033  df-slot 17051  df-ndx 17063  df-base 17081  df-ress 17110  df-plusg 17143  df-mulr 17144  df-sca 17146  df-vsca 17147  df-ip 17148  df-tset 17149  df-ple 17150  df-ds 17152  df-hom 17154  df-cco 17155  df-0g 17320  df-gsum 17321  df-prds 17326  df-pws 17328  df-mre 17463  df-mrc 17464  df-acs 17466  df-mgm 18494  df-sgrp 18543  df-mnd 18554  df-mhm 18598  df-submnd 18599  df-grp 18748  df-minusg 18749  df-sbg 18750  df-mulg 18869  df-subg 18921  df-ghm 19002  df-cntz 19093  df-cmn 19560  df-abl 19561  df-mgp 19893  df-ur 19910  df-ring 19962  df-cring 19963  df-rnghom 20142  df-subrg 20216  df-lmod 20320  df-lss 20389  df-assa 21255  df-ascl 21257  df-psr 21307  df-mvr 21308  df-mpl 21309
This theorem is referenced by:  evlseu  21489  evlsval3  40722
  Copyright terms: Public domain W3C validator