MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlslem1 Structured version   Visualization version   GIF version

Theorem evlslem1 20289
Description: Lemma for evlseu 20290, give a formula for (the unique) polynomial evaluation homomorphism. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Proof shortened by AV, 26-Jul-2019.)
Hypotheses
Ref Expression
evlslem1.p 𝑃 = (𝐼 mPoly 𝑅)
evlslem1.b 𝐵 = (Base‘𝑃)
evlslem1.c 𝐶 = (Base‘𝑆)
evlslem1.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlslem1.t 𝑇 = (mulGrp‘𝑆)
evlslem1.x = (.g𝑇)
evlslem1.m · = (.r𝑆)
evlslem1.v 𝑉 = (𝐼 mVar 𝑅)
evlslem1.e 𝐸 = (𝑝𝐵 ↦ (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
evlslem1.i (𝜑𝐼 ∈ V)
evlslem1.r (𝜑𝑅 ∈ CRing)
evlslem1.s (𝜑𝑆 ∈ CRing)
evlslem1.f (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
evlslem1.g (𝜑𝐺:𝐼𝐶)
evlslem1.a 𝐴 = (algSc‘𝑃)
Assertion
Ref Expression
evlslem1 (𝜑 → (𝐸 ∈ (𝑃 RingHom 𝑆) ∧ (𝐸𝐴) = 𝐹 ∧ (𝐸𝑉) = 𝐺))
Distinct variable groups:   𝑝,𝑏,𝐵   𝐶,𝑏,𝑝   𝜑,𝑏,𝑝   𝐹,𝑏,𝑝   𝑇,𝑏,𝑝   𝐷,𝑏,𝑝   ,𝑏,𝐼,𝑝   𝑅,𝑏,,𝑝   𝐺,𝑏,𝑝   𝑃,𝑏,𝑝   𝑆,𝑏,𝑝   · ,𝑏,𝑝   ,𝑏,𝑝
Allowed substitution hints:   𝜑()   𝐴(,𝑝,𝑏)   𝐵()   𝐶()   𝐷()   𝑃()   𝑆()   𝑇()   · ()   𝐸(,𝑝,𝑏)   ()   𝐹()   𝐺()   𝑉(,𝑝,𝑏)

Proof of Theorem evlslem1
Dummy variables 𝑥 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlslem1.b . . 3 𝐵 = (Base‘𝑃)
2 eqid 2821 . . 3 (1r𝑃) = (1r𝑃)
3 eqid 2821 . . 3 (1r𝑆) = (1r𝑆)
4 eqid 2821 . . 3 (.r𝑃) = (.r𝑃)
5 evlslem1.m . . 3 · = (.r𝑆)
6 evlslem1.i . . . 4 (𝜑𝐼 ∈ V)
7 evlslem1.r . . . . 5 (𝜑𝑅 ∈ CRing)
8 crngring 19302 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
97, 8syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
10 evlslem1.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
1110mplring 20226 . . . 4 ((𝐼 ∈ V ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Ring)
126, 9, 11syl2anc 586 . . 3 (𝜑𝑃 ∈ Ring)
13 evlslem1.s . . . 4 (𝜑𝑆 ∈ CRing)
14 crngring 19302 . . . 4 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
1513, 14syl 17 . . 3 (𝜑𝑆 ∈ Ring)
16 2fveq3 6669 . . . . . 6 (𝑥 = (1r𝑅) → (𝐸‘(𝐴𝑥)) = (𝐸‘(𝐴‘(1r𝑅))))
17 fveq2 6664 . . . . . 6 (𝑥 = (1r𝑅) → (𝐹𝑥) = (𝐹‘(1r𝑅)))
1816, 17eqeq12d 2837 . . . . 5 (𝑥 = (1r𝑅) → ((𝐸‘(𝐴𝑥)) = (𝐹𝑥) ↔ (𝐸‘(𝐴‘(1r𝑅))) = (𝐹‘(1r𝑅))))
19 evlslem1.d . . . . . . . . 9 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
20 eqid 2821 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
21 eqid 2821 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
22 evlslem1.a . . . . . . . . 9 𝐴 = (algSc‘𝑃)
236adantr 483 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐼 ∈ V)
249adantr 483 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
25 simpr 487 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
2610, 19, 20, 21, 22, 23, 24, 25mplascl 20270 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐴𝑥) = (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅))))
2726fveq2d 6668 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐸‘(𝐴𝑥)) = (𝐸‘(𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅)))))
28 evlslem1.c . . . . . . . 8 𝐶 = (Base‘𝑆)
29 evlslem1.t . . . . . . . 8 𝑇 = (mulGrp‘𝑆)
30 evlslem1.x . . . . . . . 8 = (.g𝑇)
31 evlslem1.v . . . . . . . 8 𝑉 = (𝐼 mVar 𝑅)
32 evlslem1.e . . . . . . . 8 𝐸 = (𝑝𝐵 ↦ (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
337adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ CRing)
3413adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑆 ∈ CRing)
35 evlslem1.f . . . . . . . . 9 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
3635adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐹 ∈ (𝑅 RingHom 𝑆))
37 evlslem1.g . . . . . . . . 9 (𝜑𝐺:𝐼𝐶)
3837adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐺:𝐼𝐶)
3919psrbag0 20268 . . . . . . . . . 10 (𝐼 ∈ V → (𝐼 × {0}) ∈ 𝐷)
406, 39syl 17 . . . . . . . . 9 (𝜑 → (𝐼 × {0}) ∈ 𝐷)
4140adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐼 × {0}) ∈ 𝐷)
4210, 1, 28, 21, 19, 29, 30, 5, 31, 32, 23, 33, 34, 36, 38, 20, 41, 25evlslem3 20287 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐸‘(𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅)))) = ((𝐹𝑥) · (𝑇 Σg ((𝐼 × {0}) ∘f 𝐺))))
43 0zd 11987 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → 0 ∈ ℤ)
44 fvexd 6679 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → (𝐺𝑥) ∈ V)
45 fconstmpt 5608 . . . . . . . . . . . . . . 15 (𝐼 × {0}) = (𝑥𝐼 ↦ 0)
4645a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (𝐼 × {0}) = (𝑥𝐼 ↦ 0))
4737feqmptd 6727 . . . . . . . . . . . . . 14 (𝜑𝐺 = (𝑥𝐼 ↦ (𝐺𝑥)))
486, 43, 44, 46, 47offval2 7420 . . . . . . . . . . . . 13 (𝜑 → ((𝐼 × {0}) ∘f 𝐺) = (𝑥𝐼 ↦ (0 (𝐺𝑥))))
4937ffvelrnda 6845 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐼) → (𝐺𝑥) ∈ 𝐶)
5029, 28mgpbas 19239 . . . . . . . . . . . . . . . 16 𝐶 = (Base‘𝑇)
5129, 3ringidval 19247 . . . . . . . . . . . . . . . 16 (1r𝑆) = (0g𝑇)
5250, 51, 30mulg0 18225 . . . . . . . . . . . . . . 15 ((𝐺𝑥) ∈ 𝐶 → (0 (𝐺𝑥)) = (1r𝑆))
5349, 52syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → (0 (𝐺𝑥)) = (1r𝑆))
5453mpteq2dva 5153 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝐼 ↦ (0 (𝐺𝑥))) = (𝑥𝐼 ↦ (1r𝑆)))
5548, 54eqtrd 2856 . . . . . . . . . . . 12 (𝜑 → ((𝐼 × {0}) ∘f 𝐺) = (𝑥𝐼 ↦ (1r𝑆)))
5655oveq2d 7166 . . . . . . . . . . 11 (𝜑 → (𝑇 Σg ((𝐼 × {0}) ∘f 𝐺)) = (𝑇 Σg (𝑥𝐼 ↦ (1r𝑆))))
5729crngmgp 19299 . . . . . . . . . . . . . 14 (𝑆 ∈ CRing → 𝑇 ∈ CMnd)
5813, 57syl 17 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ CMnd)
59 cmnmnd 18916 . . . . . . . . . . . . 13 (𝑇 ∈ CMnd → 𝑇 ∈ Mnd)
6058, 59syl 17 . . . . . . . . . . . 12 (𝜑𝑇 ∈ Mnd)
6151gsumz 17994 . . . . . . . . . . . 12 ((𝑇 ∈ Mnd ∧ 𝐼 ∈ V) → (𝑇 Σg (𝑥𝐼 ↦ (1r𝑆))) = (1r𝑆))
6260, 6, 61syl2anc 586 . . . . . . . . . . 11 (𝜑 → (𝑇 Σg (𝑥𝐼 ↦ (1r𝑆))) = (1r𝑆))
6356, 62eqtrd 2856 . . . . . . . . . 10 (𝜑 → (𝑇 Σg ((𝐼 × {0}) ∘f 𝐺)) = (1r𝑆))
6463adantr 483 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑇 Σg ((𝐼 × {0}) ∘f 𝐺)) = (1r𝑆))
6564oveq2d 7166 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐹𝑥) · (𝑇 Σg ((𝐼 × {0}) ∘f 𝐺))) = ((𝐹𝑥) · (1r𝑆)))
6621, 28rhmf 19472 . . . . . . . . . . 11 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶𝐶)
6735, 66syl 17 . . . . . . . . . 10 (𝜑𝐹:(Base‘𝑅)⟶𝐶)
6867ffvelrnda 6845 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐹𝑥) ∈ 𝐶)
6928, 5, 3ringridm 19316 . . . . . . . . 9 ((𝑆 ∈ Ring ∧ (𝐹𝑥) ∈ 𝐶) → ((𝐹𝑥) · (1r𝑆)) = (𝐹𝑥))
7015, 68, 69syl2an2r 683 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐹𝑥) · (1r𝑆)) = (𝐹𝑥))
7165, 70eqtrd 2856 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐹𝑥) · (𝑇 Σg ((𝐼 × {0}) ∘f 𝐺))) = (𝐹𝑥))
7227, 42, 713eqtrd 2860 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐸‘(𝐴𝑥)) = (𝐹𝑥))
7372ralrimiva 3182 . . . . 5 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)(𝐸‘(𝐴𝑥)) = (𝐹𝑥))
74 eqid 2821 . . . . . . 7 (1r𝑅) = (1r𝑅)
7521, 74ringidcl 19312 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
769, 75syl 17 . . . . 5 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
7718, 73, 76rspcdva 3624 . . . 4 (𝜑 → (𝐸‘(𝐴‘(1r𝑅))) = (𝐹‘(1r𝑅)))
7810mplassa 20229 . . . . . . . . 9 ((𝐼 ∈ V ∧ 𝑅 ∈ CRing) → 𝑃 ∈ AssAlg)
796, 7, 78syl2anc 586 . . . . . . . 8 (𝜑𝑃 ∈ AssAlg)
80 eqid 2821 . . . . . . . . 9 (Scalar‘𝑃) = (Scalar‘𝑃)
8122, 80asclrhm 20113 . . . . . . . 8 (𝑃 ∈ AssAlg → 𝐴 ∈ ((Scalar‘𝑃) RingHom 𝑃))
8279, 81syl 17 . . . . . . 7 (𝜑𝐴 ∈ ((Scalar‘𝑃) RingHom 𝑃))
8310, 6, 7mplsca 20219 . . . . . . . 8 (𝜑𝑅 = (Scalar‘𝑃))
8483oveq1d 7165 . . . . . . 7 (𝜑 → (𝑅 RingHom 𝑃) = ((Scalar‘𝑃) RingHom 𝑃))
8582, 84eleqtrrd 2916 . . . . . 6 (𝜑𝐴 ∈ (𝑅 RingHom 𝑃))
8674, 2rhm1 19476 . . . . . 6 (𝐴 ∈ (𝑅 RingHom 𝑃) → (𝐴‘(1r𝑅)) = (1r𝑃))
8785, 86syl 17 . . . . 5 (𝜑 → (𝐴‘(1r𝑅)) = (1r𝑃))
8887fveq2d 6668 . . . 4 (𝜑 → (𝐸‘(𝐴‘(1r𝑅))) = (𝐸‘(1r𝑃)))
8974, 3rhm1 19476 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r𝑅)) = (1r𝑆))
9035, 89syl 17 . . . 4 (𝜑 → (𝐹‘(1r𝑅)) = (1r𝑆))
9177, 88, 903eqtr3d 2864 . . 3 (𝜑 → (𝐸‘(1r𝑃)) = (1r𝑆))
92 eqid 2821 . . . . 5 (+g𝑃) = (+g𝑃)
93 eqid 2821 . . . . 5 (+g𝑆) = (+g𝑆)
94 ringgrp 19296 . . . . . 6 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
9512, 94syl 17 . . . . 5 (𝜑𝑃 ∈ Grp)
96 ringgrp 19296 . . . . . 6 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
9715, 96syl 17 . . . . 5 (𝜑𝑆 ∈ Grp)
98 eqid 2821 . . . . . . 7 (0g𝑆) = (0g𝑆)
99 ringcmn 19325 . . . . . . . . 9 (𝑆 ∈ Ring → 𝑆 ∈ CMnd)
10015, 99syl 17 . . . . . . . 8 (𝜑𝑆 ∈ CMnd)
101100adantr 483 . . . . . . 7 ((𝜑𝑝𝐵) → 𝑆 ∈ CMnd)
102 ovex 7183 . . . . . . . . 9 (ℕ0m 𝐼) ∈ V
10319, 102rabex2 5229 . . . . . . . 8 𝐷 ∈ V
104103a1i 11 . . . . . . 7 ((𝜑𝑝𝐵) → 𝐷 ∈ V)
1056adantr 483 . . . . . . . . 9 ((𝜑𝑝𝐵) → 𝐼 ∈ V)
1067adantr 483 . . . . . . . . 9 ((𝜑𝑝𝐵) → 𝑅 ∈ CRing)
10713adantr 483 . . . . . . . . 9 ((𝜑𝑝𝐵) → 𝑆 ∈ CRing)
10835adantr 483 . . . . . . . . 9 ((𝜑𝑝𝐵) → 𝐹 ∈ (𝑅 RingHom 𝑆))
10937adantr 483 . . . . . . . . 9 ((𝜑𝑝𝐵) → 𝐺:𝐼𝐶)
110 simpr 487 . . . . . . . . 9 ((𝜑𝑝𝐵) → 𝑝𝐵)
11110, 1, 28, 19, 29, 30, 5, 31, 32, 105, 106, 107, 108, 109, 110evlslem6 20288 . . . . . . . 8 ((𝜑𝑝𝐵) → ((𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶 ∧ (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆)))
112111simpld 497 . . . . . . 7 ((𝜑𝑝𝐵) → (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶)
113111simprd 498 . . . . . . 7 ((𝜑𝑝𝐵) → (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆))
11428, 98, 101, 104, 112, 113gsumcl 19029 . . . . . 6 ((𝜑𝑝𝐵) → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) ∈ 𝐶)
115114, 32fmptd 6872 . . . . 5 (𝜑𝐸:𝐵𝐶)
116 eqid 2821 . . . . . . . . . . . . . . . . 17 (+g𝑅) = (+g𝑅)
117 simplrl 775 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑥𝐵)
118 simplrr 776 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑦𝐵)
11910, 1, 116, 92, 117, 118mpladd 20216 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝑥(+g𝑃)𝑦) = (𝑥f (+g𝑅)𝑦))
120119fveq1d 6666 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝑥(+g𝑃)𝑦)‘𝑏) = ((𝑥f (+g𝑅)𝑦)‘𝑏))
121 simprl 769 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
12210, 21, 1, 19, 121mplelf 20207 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥:𝐷⟶(Base‘𝑅))
123122ffnd 6509 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 Fn 𝐷)
124123adantr 483 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑥 Fn 𝐷)
125 simprr 771 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
12610, 21, 1, 19, 125mplelf 20207 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦:𝐷⟶(Base‘𝑅))
127126ffnd 6509 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 Fn 𝐷)
128127adantr 483 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑦 Fn 𝐷)
129103a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝐷 ∈ V)
130 simpr 487 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑏𝐷)
131 fnfvof 7417 . . . . . . . . . . . . . . . 16 (((𝑥 Fn 𝐷𝑦 Fn 𝐷) ∧ (𝐷 ∈ V ∧ 𝑏𝐷)) → ((𝑥f (+g𝑅)𝑦)‘𝑏) = ((𝑥𝑏)(+g𝑅)(𝑦𝑏)))
132124, 128, 129, 130, 131syl22anc 836 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝑥f (+g𝑅)𝑦)‘𝑏) = ((𝑥𝑏)(+g𝑅)(𝑦𝑏)))
133120, 132eqtrd 2856 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝑥(+g𝑃)𝑦)‘𝑏) = ((𝑥𝑏)(+g𝑅)(𝑦𝑏)))
134133fveq2d 6668 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) = (𝐹‘((𝑥𝑏)(+g𝑅)(𝑦𝑏))))
135 rhmghm 19471 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
13635, 135syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))
137136ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
138122ffvelrnda 6845 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝑥𝑏) ∈ (Base‘𝑅))
139126ffvelrnda 6845 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝑦𝑏) ∈ (Base‘𝑅))
14021, 116, 93ghmlin 18357 . . . . . . . . . . . . . 14 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝑥𝑏) ∈ (Base‘𝑅) ∧ (𝑦𝑏) ∈ (Base‘𝑅)) → (𝐹‘((𝑥𝑏)(+g𝑅)(𝑦𝑏))) = ((𝐹‘(𝑥𝑏))(+g𝑆)(𝐹‘(𝑦𝑏))))
141137, 138, 139, 140syl3anc 1367 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝐹‘((𝑥𝑏)(+g𝑅)(𝑦𝑏))) = ((𝐹‘(𝑥𝑏))(+g𝑆)(𝐹‘(𝑦𝑏))))
142134, 141eqtrd 2856 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) = ((𝐹‘(𝑥𝑏))(+g𝑆)(𝐹‘(𝑦𝑏))))
143142oveq1d 7165 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))) = (((𝐹‘(𝑥𝑏))(+g𝑆)(𝐹‘(𝑦𝑏))) · (𝑇 Σg (𝑏f 𝐺))))
14415ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑆 ∈ Ring)
14567ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝐹:(Base‘𝑅)⟶𝐶)
146145, 138ffvelrnd 6846 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝐹‘(𝑥𝑏)) ∈ 𝐶)
147145, 139ffvelrnd 6846 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝐹‘(𝑦𝑏)) ∈ 𝐶)
14858ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑇 ∈ CMnd)
14937ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝐺:𝐼𝐶)
1506ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝐼 ∈ V)
15119, 50, 30, 148, 130, 149, 150psrbagev2 20285 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝑇 Σg (𝑏f 𝐺)) ∈ 𝐶)
15228, 93, 5ringdir 19311 . . . . . . . . . . . 12 ((𝑆 ∈ Ring ∧ ((𝐹‘(𝑥𝑏)) ∈ 𝐶 ∧ (𝐹‘(𝑦𝑏)) ∈ 𝐶 ∧ (𝑇 Σg (𝑏f 𝐺)) ∈ 𝐶)) → (((𝐹‘(𝑥𝑏))(+g𝑆)(𝐹‘(𝑦𝑏))) · (𝑇 Σg (𝑏f 𝐺))) = (((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))(+g𝑆)((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
153144, 146, 147, 151, 152syl13anc 1368 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (((𝐹‘(𝑥𝑏))(+g𝑆)(𝐹‘(𝑦𝑏))) · (𝑇 Σg (𝑏f 𝐺))) = (((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))(+g𝑆)((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
154143, 153eqtrd 2856 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))) = (((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))(+g𝑆)((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
155154mpteq2dva 5153 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ (((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))(+g𝑆)((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
156103a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐷 ∈ V)
157 ovexd 7185 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺))) ∈ V)
158 ovexd 7185 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))) ∈ V)
159 eqidd 2822 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
160 eqidd 2822 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
161156, 157, 158, 159, 160offval2 7420 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) ∘f (+g𝑆)(𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = (𝑏𝐷 ↦ (((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))(+g𝑆)((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
162155, 161eqtr4d 2859 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = ((𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) ∘f (+g𝑆)(𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
163162oveq2d 7166 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = (𝑆 Σg ((𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) ∘f (+g𝑆)(𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))))
164100adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑆 ∈ CMnd)
1656adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐼 ∈ V)
1667adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑅 ∈ CRing)
16713adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑆 ∈ CRing)
16835adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐹 ∈ (𝑅 RingHom 𝑆))
16937adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐺:𝐼𝐶)
17010, 1, 28, 19, 29, 30, 5, 31, 32, 165, 166, 167, 168, 169, 121evlslem6 20288 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶 ∧ (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆)))
171170simpld 497 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶)
17210, 1, 28, 19, 29, 30, 5, 31, 32, 165, 166, 167, 168, 169, 125evlslem6 20288 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶 ∧ (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆)))
173172simpld 497 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶)
174170simprd 498 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆))
175172simprd 498 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆))
17628, 98, 93, 164, 156, 171, 173, 174, 175gsumadd 19037 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg ((𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) ∘f (+g𝑆)(𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))) = ((𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))(+g𝑆)(𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))))
177163, 176eqtrd 2856 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = ((𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))(+g𝑆)(𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))))
17895adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ Grp)
1791, 92grpcl 18105 . . . . . . . 8 ((𝑃 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝑃)𝑦) ∈ 𝐵)
180178, 121, 125, 179syl3anc 1367 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑃)𝑦) ∈ 𝐵)
181 fveq1 6663 . . . . . . . . . . . 12 (𝑝 = (𝑥(+g𝑃)𝑦) → (𝑝𝑏) = ((𝑥(+g𝑃)𝑦)‘𝑏))
182181fveq2d 6668 . . . . . . . . . . 11 (𝑝 = (𝑥(+g𝑃)𝑦) → (𝐹‘(𝑝𝑏)) = (𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)))
183182oveq1d 7165 . . . . . . . . . 10 (𝑝 = (𝑥(+g𝑃)𝑦) → ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))) = ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))
184183mpteq2dv 5154 . . . . . . . . 9 (𝑝 = (𝑥(+g𝑃)𝑦) → (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
185184oveq2d 7166 . . . . . . . 8 (𝑝 = (𝑥(+g𝑃)𝑦) → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
186 ovex 7183 . . . . . . . 8 (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) ∈ V
187185, 32, 186fvmpt 6762 . . . . . . 7 ((𝑥(+g𝑃)𝑦) ∈ 𝐵 → (𝐸‘(𝑥(+g𝑃)𝑦)) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
188180, 187syl 17 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘(𝑥(+g𝑃)𝑦)) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
189 fveq1 6663 . . . . . . . . . . . . 13 (𝑝 = 𝑥 → (𝑝𝑏) = (𝑥𝑏))
190189fveq2d 6668 . . . . . . . . . . . 12 (𝑝 = 𝑥 → (𝐹‘(𝑝𝑏)) = (𝐹‘(𝑥𝑏)))
191190oveq1d 7165 . . . . . . . . . . 11 (𝑝 = 𝑥 → ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))) = ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺))))
192191mpteq2dv 5154 . . . . . . . . . 10 (𝑝 = 𝑥 → (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
193192oveq2d 7166 . . . . . . . . 9 (𝑝 = 𝑥 → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
194 ovex 7183 . . . . . . . . 9 (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) ∈ V
195193, 32, 194fvmpt 6762 . . . . . . . 8 (𝑥𝐵 → (𝐸𝑥) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
196121, 195syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸𝑥) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
197 fveq1 6663 . . . . . . . . . . . . 13 (𝑝 = 𝑦 → (𝑝𝑏) = (𝑦𝑏))
198197fveq2d 6668 . . . . . . . . . . . 12 (𝑝 = 𝑦 → (𝐹‘(𝑝𝑏)) = (𝐹‘(𝑦𝑏)))
199198oveq1d 7165 . . . . . . . . . . 11 (𝑝 = 𝑦 → ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))) = ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))
200199mpteq2dv 5154 . . . . . . . . . 10 (𝑝 = 𝑦 → (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
201200oveq2d 7166 . . . . . . . . 9 (𝑝 = 𝑦 → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
202 ovex 7183 . . . . . . . . 9 (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) ∈ V
203201, 32, 202fvmpt 6762 . . . . . . . 8 (𝑦𝐵 → (𝐸𝑦) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
204203ad2antll 727 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸𝑦) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
205196, 204oveq12d 7168 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐸𝑥)(+g𝑆)(𝐸𝑦)) = ((𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))(+g𝑆)(𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))))
206177, 188, 2053eqtr4d 2866 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘(𝑥(+g𝑃)𝑦)) = ((𝐸𝑥)(+g𝑆)(𝐸𝑦)))
2071, 28, 92, 93, 95, 97, 115, 206isghmd 18361 . . . 4 (𝜑𝐸 ∈ (𝑃 GrpHom 𝑆))
208 eqid 2821 . . . . . . . . . . 11 (mulGrp‘𝑅) = (mulGrp‘𝑅)
209208, 29rhmmhm 19468 . . . . . . . . . 10 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom 𝑇))
21035, 209syl 17 . . . . . . . . 9 (𝜑𝐹 ∈ ((mulGrp‘𝑅) MndHom 𝑇))
211210adantr 483 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom 𝑇))
212 simprll 777 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑥𝐵)
21310, 21, 1, 19, 212mplelf 20207 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑥:𝐷⟶(Base‘𝑅))
214 simprrl 779 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑧𝐷)
215213, 214ffvelrnd 6846 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝑥𝑧) ∈ (Base‘𝑅))
216 simprlr 778 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑦𝐵)
21710, 21, 1, 19, 216mplelf 20207 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑦:𝐷⟶(Base‘𝑅))
218 simprrr 780 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑤𝐷)
219217, 218ffvelrnd 6846 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝑦𝑤) ∈ (Base‘𝑅))
220208, 21mgpbas 19239 . . . . . . . . 9 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
221 eqid 2821 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
222208, 221mgpplusg 19237 . . . . . . . . 9 (.r𝑅) = (+g‘(mulGrp‘𝑅))
22329, 5mgpplusg 19237 . . . . . . . . 9 · = (+g𝑇)
224220, 222, 223mhmlin 17957 . . . . . . . 8 ((𝐹 ∈ ((mulGrp‘𝑅) MndHom 𝑇) ∧ (𝑥𝑧) ∈ (Base‘𝑅) ∧ (𝑦𝑤) ∈ (Base‘𝑅)) → (𝐹‘((𝑥𝑧)(.r𝑅)(𝑦𝑤))) = ((𝐹‘(𝑥𝑧)) · (𝐹‘(𝑦𝑤))))
225211, 215, 219, 224syl3anc 1367 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐹‘((𝑥𝑧)(.r𝑅)(𝑦𝑤))) = ((𝐹‘(𝑥𝑧)) · (𝐹‘(𝑦𝑤))))
22660ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → 𝑇 ∈ Mnd)
227 simprl 769 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑧𝐷)
22819psrbagf 20139 . . . . . . . . . . . . . . 15 ((𝐼 ∈ V ∧ 𝑧𝐷) → 𝑧:𝐼⟶ℕ0)
2296, 227, 228syl2an2r 683 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑧:𝐼⟶ℕ0)
230229ffvelrnda 6845 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝑧𝑣) ∈ ℕ0)
231 simprr 771 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑤𝐷)
23219psrbagf 20139 . . . . . . . . . . . . . . 15 ((𝐼 ∈ V ∧ 𝑤𝐷) → 𝑤:𝐼⟶ℕ0)
2336, 231, 232syl2an2r 683 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑤:𝐼⟶ℕ0)
234233ffvelrnda 6845 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝑤𝑣) ∈ ℕ0)
23537adantr 483 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝐺:𝐼𝐶)
236235ffvelrnda 6845 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝐺𝑣) ∈ 𝐶)
23750, 30, 223mulgnn0dir 18251 . . . . . . . . . . . . 13 ((𝑇 ∈ Mnd ∧ ((𝑧𝑣) ∈ ℕ0 ∧ (𝑤𝑣) ∈ ℕ0 ∧ (𝐺𝑣) ∈ 𝐶)) → (((𝑧𝑣) + (𝑤𝑣)) (𝐺𝑣)) = (((𝑧𝑣) (𝐺𝑣)) · ((𝑤𝑣) (𝐺𝑣))))
238226, 230, 234, 236, 237syl13anc 1368 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (((𝑧𝑣) + (𝑤𝑣)) (𝐺𝑣)) = (((𝑧𝑣) (𝐺𝑣)) · ((𝑤𝑣) (𝐺𝑣))))
239238mpteq2dva 5153 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑣𝐼 ↦ (((𝑧𝑣) + (𝑤𝑣)) (𝐺𝑣))) = (𝑣𝐼 ↦ (((𝑧𝑣) (𝐺𝑣)) · ((𝑤𝑣) (𝐺𝑣)))))
2406adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝐼 ∈ V)
241 ovexd 7185 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → ((𝑧𝑣) + (𝑤𝑣)) ∈ V)
242 fvexd 6679 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝐺𝑣) ∈ V)
243229ffnd 6509 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑧 Fn 𝐼)
244233ffnd 6509 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑤 Fn 𝐼)
245 inidm 4194 . . . . . . . . . . . . 13 (𝐼𝐼) = 𝐼
246 eqidd 2822 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝑧𝑣) = (𝑧𝑣))
247 eqidd 2822 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝑤𝑣) = (𝑤𝑣))
248243, 244, 240, 240, 245, 246, 247offval 7410 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑧f + 𝑤) = (𝑣𝐼 ↦ ((𝑧𝑣) + (𝑤𝑣))))
24937feqmptd 6727 . . . . . . . . . . . . 13 (𝜑𝐺 = (𝑣𝐼 ↦ (𝐺𝑣)))
250249adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝐺 = (𝑣𝐼 ↦ (𝐺𝑣)))
251240, 241, 242, 248, 250offval2 7420 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → ((𝑧f + 𝑤) ∘f 𝐺) = (𝑣𝐼 ↦ (((𝑧𝑣) + (𝑤𝑣)) (𝐺𝑣))))
252 ovexd 7185 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → ((𝑧𝑣) (𝐺𝑣)) ∈ V)
253 ovexd 7185 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → ((𝑤𝑣) (𝐺𝑣)) ∈ V)
25437ffnd 6509 . . . . . . . . . . . . . 14 (𝜑𝐺 Fn 𝐼)
255254adantr 483 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝐺 Fn 𝐼)
256 eqidd 2822 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝐺𝑣) = (𝐺𝑣))
257243, 255, 240, 240, 245, 246, 256offval 7410 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑧f 𝐺) = (𝑣𝐼 ↦ ((𝑧𝑣) (𝐺𝑣))))
258244, 255, 240, 240, 245, 247, 256offval 7410 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑤f 𝐺) = (𝑣𝐼 ↦ ((𝑤𝑣) (𝐺𝑣))))
259240, 252, 253, 257, 258offval2 7420 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → ((𝑧f 𝐺) ∘f · (𝑤f 𝐺)) = (𝑣𝐼 ↦ (((𝑧𝑣) (𝐺𝑣)) · ((𝑤𝑣) (𝐺𝑣)))))
260239, 251, 2593eqtr4d 2866 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → ((𝑧f + 𝑤) ∘f 𝐺) = ((𝑧f 𝐺) ∘f · (𝑤f 𝐺)))
261260oveq2d 7166 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑇 Σg ((𝑧f + 𝑤) ∘f 𝐺)) = (𝑇 Σg ((𝑧f 𝐺) ∘f · (𝑤f 𝐺))))
26258adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑇 ∈ CMnd)
26319, 50, 30, 51, 262, 227, 235, 240psrbagev1 20284 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → ((𝑧f 𝐺):𝐼𝐶 ∧ (𝑧f 𝐺) finSupp (1r𝑆)))
264263simpld 497 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑧f 𝐺):𝐼𝐶)
26519, 50, 30, 51, 262, 231, 235, 240psrbagev1 20284 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → ((𝑤f 𝐺):𝐼𝐶 ∧ (𝑤f 𝐺) finSupp (1r𝑆)))
266265simpld 497 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑤f 𝐺):𝐼𝐶)
267263simprd 498 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑧f 𝐺) finSupp (1r𝑆))
268265simprd 498 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑤f 𝐺) finSupp (1r𝑆))
26950, 51, 223, 262, 240, 264, 266, 267, 268gsumadd 19037 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑇 Σg ((𝑧f 𝐺) ∘f · (𝑤f 𝐺))) = ((𝑇 Σg (𝑧f 𝐺)) · (𝑇 Σg (𝑤f 𝐺))))
270261, 269eqtrd 2856 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑇 Σg ((𝑧f + 𝑤) ∘f 𝐺)) = ((𝑇 Σg (𝑧f 𝐺)) · (𝑇 Σg (𝑤f 𝐺))))
271270adantrl 714 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝑇 Σg ((𝑧f + 𝑤) ∘f 𝐺)) = ((𝑇 Σg (𝑧f 𝐺)) · (𝑇 Σg (𝑤f 𝐺))))
272225, 271oveq12d 7168 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → ((𝐹‘((𝑥𝑧)(.r𝑅)(𝑦𝑤))) · (𝑇 Σg ((𝑧f + 𝑤) ∘f 𝐺))) = (((𝐹‘(𝑥𝑧)) · (𝐹‘(𝑦𝑤))) · ((𝑇 Σg (𝑧f 𝐺)) · (𝑇 Σg (𝑤f 𝐺)))))
27358adantr 483 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑇 ∈ CMnd)
27467adantr 483 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝐹:(Base‘𝑅)⟶𝐶)
275274, 215ffvelrnd 6846 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐹‘(𝑥𝑧)) ∈ 𝐶)
276274, 219ffvelrnd 6846 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐹‘(𝑦𝑤)) ∈ 𝐶)
27719, 50, 30, 262, 227, 235, 240psrbagev2 20285 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑇 Σg (𝑧f 𝐺)) ∈ 𝐶)
278277adantrl 714 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝑇 Σg (𝑧f 𝐺)) ∈ 𝐶)
27919, 50, 30, 262, 231, 235, 240psrbagev2 20285 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑇 Σg (𝑤f 𝐺)) ∈ 𝐶)
280279adantrl 714 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝑇 Σg (𝑤f 𝐺)) ∈ 𝐶)
28150, 223cmn4 18920 . . . . . . 7 ((𝑇 ∈ CMnd ∧ ((𝐹‘(𝑥𝑧)) ∈ 𝐶 ∧ (𝐹‘(𝑦𝑤)) ∈ 𝐶) ∧ ((𝑇 Σg (𝑧f 𝐺)) ∈ 𝐶 ∧ (𝑇 Σg (𝑤f 𝐺)) ∈ 𝐶)) → (((𝐹‘(𝑥𝑧)) · (𝐹‘(𝑦𝑤))) · ((𝑇 Σg (𝑧f 𝐺)) · (𝑇 Σg (𝑤f 𝐺)))) = (((𝐹‘(𝑥𝑧)) · (𝑇 Σg (𝑧f 𝐺))) · ((𝐹‘(𝑦𝑤)) · (𝑇 Σg (𝑤f 𝐺)))))
282273, 275, 276, 278, 280, 281syl122anc 1375 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (((𝐹‘(𝑥𝑧)) · (𝐹‘(𝑦𝑤))) · ((𝑇 Σg (𝑧f 𝐺)) · (𝑇 Σg (𝑤f 𝐺)))) = (((𝐹‘(𝑥𝑧)) · (𝑇 Σg (𝑧f 𝐺))) · ((𝐹‘(𝑦𝑤)) · (𝑇 Σg (𝑤f 𝐺)))))
283272, 282eqtrd 2856 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → ((𝐹‘((𝑥𝑧)(.r𝑅)(𝑦𝑤))) · (𝑇 Σg ((𝑧f + 𝑤) ∘f 𝐺))) = (((𝐹‘(𝑥𝑧)) · (𝑇 Σg (𝑧f 𝐺))) · ((𝐹‘(𝑦𝑤)) · (𝑇 Σg (𝑤f 𝐺)))))
2846adantr 483 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝐼 ∈ V)
2857adantr 483 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑅 ∈ CRing)
28613adantr 483 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑆 ∈ CRing)
28735adantr 483 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝐹 ∈ (𝑅 RingHom 𝑆))
28837adantr 483 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝐺:𝐼𝐶)
28919psrbagaddcl 20144 . . . . . . 7 ((𝐼 ∈ V ∧ 𝑧𝐷𝑤𝐷) → (𝑧f + 𝑤) ∈ 𝐷)
290284, 214, 218, 289syl3anc 1367 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝑧f + 𝑤) ∈ 𝐷)
2919adantr 483 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑅 ∈ Ring)
29221, 221ringcl 19305 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥𝑧) ∈ (Base‘𝑅) ∧ (𝑦𝑤) ∈ (Base‘𝑅)) → ((𝑥𝑧)(.r𝑅)(𝑦𝑤)) ∈ (Base‘𝑅))
293291, 215, 219, 292syl3anc 1367 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → ((𝑥𝑧)(.r𝑅)(𝑦𝑤)) ∈ (Base‘𝑅))
29410, 1, 28, 21, 19, 29, 30, 5, 31, 32, 284, 285, 286, 287, 288, 20, 290, 293evlslem3 20287 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐸‘(𝑣𝐷 ↦ if(𝑣 = (𝑧f + 𝑤), ((𝑥𝑧)(.r𝑅)(𝑦𝑤)), (0g𝑅)))) = ((𝐹‘((𝑥𝑧)(.r𝑅)(𝑦𝑤))) · (𝑇 Σg ((𝑧f + 𝑤) ∘f 𝐺))))
29510, 1, 28, 21, 19, 29, 30, 5, 31, 32, 284, 285, 286, 287, 288, 20, 214, 215evlslem3 20287 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐸‘(𝑣𝐷 ↦ if(𝑣 = 𝑧, (𝑥𝑧), (0g𝑅)))) = ((𝐹‘(𝑥𝑧)) · (𝑇 Σg (𝑧f 𝐺))))
29610, 1, 28, 21, 19, 29, 30, 5, 31, 32, 284, 285, 286, 287, 288, 20, 218, 219evlslem3 20287 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐸‘(𝑣𝐷 ↦ if(𝑣 = 𝑤, (𝑦𝑤), (0g𝑅)))) = ((𝐹‘(𝑦𝑤)) · (𝑇 Σg (𝑤f 𝐺))))
297295, 296oveq12d 7168 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → ((𝐸‘(𝑣𝐷 ↦ if(𝑣 = 𝑧, (𝑥𝑧), (0g𝑅)))) · (𝐸‘(𝑣𝐷 ↦ if(𝑣 = 𝑤, (𝑦𝑤), (0g𝑅))))) = (((𝐹‘(𝑥𝑧)) · (𝑇 Σg (𝑧f 𝐺))) · ((𝐹‘(𝑦𝑤)) · (𝑇 Σg (𝑤f 𝐺)))))
298283, 294, 2973eqtr4d 2866 . . . 4 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐸‘(𝑣𝐷 ↦ if(𝑣 = (𝑧f + 𝑤), ((𝑥𝑧)(.r𝑅)(𝑦𝑤)), (0g𝑅)))) = ((𝐸‘(𝑣𝐷 ↦ if(𝑣 = 𝑧, (𝑥𝑧), (0g𝑅)))) · (𝐸‘(𝑣𝐷 ↦ if(𝑣 = 𝑤, (𝑦𝑤), (0g𝑅))))))
29910, 1, 5, 20, 19, 6, 7, 13, 207, 298evlslem2 20286 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘(𝑥(.r𝑃)𝑦)) = ((𝐸𝑥) · (𝐸𝑦)))
3001, 2, 3, 4, 5, 12, 15, 91, 299, 28, 92, 93, 115, 206isrhmd 19475 . 2 (𝜑𝐸 ∈ (𝑃 RingHom 𝑆))
301 ovex 7183 . . . . . 6 (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) ∈ V
302301, 32fnmpti 6485 . . . . 5 𝐸 Fn 𝐵
303302a1i 11 . . . 4 (𝜑𝐸 Fn 𝐵)
30421, 1rhmf 19472 . . . . . 6 (𝐴 ∈ (𝑅 RingHom 𝑃) → 𝐴:(Base‘𝑅)⟶𝐵)
30585, 304syl 17 . . . . 5 (𝜑𝐴:(Base‘𝑅)⟶𝐵)
306305ffnd 6509 . . . 4 (𝜑𝐴 Fn (Base‘𝑅))
307305frnd 6515 . . . 4 (𝜑 → ran 𝐴𝐵)
308 fnco 6459 . . . 4 ((𝐸 Fn 𝐵𝐴 Fn (Base‘𝑅) ∧ ran 𝐴𝐵) → (𝐸𝐴) Fn (Base‘𝑅))
309303, 306, 307, 308syl3anc 1367 . . 3 (𝜑 → (𝐸𝐴) Fn (Base‘𝑅))
31067ffnd 6509 . . 3 (𝜑𝐹 Fn (Base‘𝑅))
311 fvco2 6752 . . . . 5 ((𝐴 Fn (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐸𝐴)‘𝑥) = (𝐸‘(𝐴𝑥)))
312306, 311sylan 582 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐸𝐴)‘𝑥) = (𝐸‘(𝐴𝑥)))
313312, 72eqtrd 2856 . . 3 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐸𝐴)‘𝑥) = (𝐹𝑥))
314309, 310, 313eqfnfvd 6799 . 2 (𝜑 → (𝐸𝐴) = 𝐹)
31510, 31, 1, 6, 9mvrf2 20266 . . . . 5 (𝜑𝑉:𝐼𝐵)
316315ffnd 6509 . . . 4 (𝜑𝑉 Fn 𝐼)
317315frnd 6515 . . . 4 (𝜑 → ran 𝑉𝐵)
318 fnco 6459 . . . 4 ((𝐸 Fn 𝐵𝑉 Fn 𝐼 ∧ ran 𝑉𝐵) → (𝐸𝑉) Fn 𝐼)
319303, 316, 317, 318syl3anc 1367 . . 3 (𝜑 → (𝐸𝑉) Fn 𝐼)
320 fvco2 6752 . . . . 5 ((𝑉 Fn 𝐼𝑥𝐼) → ((𝐸𝑉)‘𝑥) = (𝐸‘(𝑉𝑥)))
321316, 320sylan 582 . . . 4 ((𝜑𝑥𝐼) → ((𝐸𝑉)‘𝑥) = (𝐸‘(𝑉𝑥)))
3226adantr 483 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐼 ∈ V)
3237adantr 483 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑅 ∈ CRing)
324 simpr 487 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑥𝐼)
32531, 19, 20, 74, 322, 323, 324mvrval 20195 . . . . . 6 ((𝜑𝑥𝐼) → (𝑉𝑥) = (𝑦𝐷 ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅))))
326325fveq2d 6668 . . . . 5 ((𝜑𝑥𝐼) → (𝐸‘(𝑉𝑥)) = (𝐸‘(𝑦𝐷 ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅)))))
32713adantr 483 . . . . . 6 ((𝜑𝑥𝐼) → 𝑆 ∈ CRing)
32835adantr 483 . . . . . 6 ((𝜑𝑥𝐼) → 𝐹 ∈ (𝑅 RingHom 𝑆))
32937adantr 483 . . . . . 6 ((𝜑𝑥𝐼) → 𝐺:𝐼𝐶)
33019psrbagsn 20269 . . . . . . . 8 (𝐼 ∈ V → (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∈ 𝐷)
3316, 330syl 17 . . . . . . 7 (𝜑 → (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∈ 𝐷)
332331adantr 483 . . . . . 6 ((𝜑𝑥𝐼) → (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∈ 𝐷)
33376adantr 483 . . . . . 6 ((𝜑𝑥𝐼) → (1r𝑅) ∈ (Base‘𝑅))
33410, 1, 28, 21, 19, 29, 30, 5, 31, 32, 322, 323, 327, 328, 329, 20, 332, 333evlslem3 20287 . . . . 5 ((𝜑𝑥𝐼) → (𝐸‘(𝑦𝐷 ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅)))) = ((𝐹‘(1r𝑅)) · (𝑇 Σg ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f 𝐺))))
33590adantr 483 . . . . . . 7 ((𝜑𝑥𝐼) → (𝐹‘(1r𝑅)) = (1r𝑆))
336 1nn0 11907 . . . . . . . . . . . . . 14 1 ∈ ℕ0
337 0nn0 11906 . . . . . . . . . . . . . 14 0 ∈ ℕ0
338336, 337ifcli 4512 . . . . . . . . . . . . 13 if(𝑧 = 𝑥, 1, 0) ∈ ℕ0
339338a1i 11 . . . . . . . . . . . 12 ((𝜑𝑧𝐼) → if(𝑧 = 𝑥, 1, 0) ∈ ℕ0)
34037ffvelrnda 6845 . . . . . . . . . . . 12 ((𝜑𝑧𝐼) → (𝐺𝑧) ∈ 𝐶)
341 eqidd 2822 . . . . . . . . . . . 12 (𝜑 → (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)))
34237feqmptd 6727 . . . . . . . . . . . 12 (𝜑𝐺 = (𝑧𝐼 ↦ (𝐺𝑧)))
3436, 339, 340, 341, 342offval2 7420 . . . . . . . . . . 11 (𝜑 → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f 𝐺) = (𝑧𝐼 ↦ (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧))))
344 oveq1 7157 . . . . . . . . . . . . . 14 (1 = if(𝑧 = 𝑥, 1, 0) → (1 (𝐺𝑧)) = (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧)))
345344eqeq1d 2823 . . . . . . . . . . . . 13 (1 = if(𝑧 = 𝑥, 1, 0) → ((1 (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) ↔ (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))))
346 oveq1 7157 . . . . . . . . . . . . . 14 (0 = if(𝑧 = 𝑥, 1, 0) → (0 (𝐺𝑧)) = (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧)))
347346eqeq1d 2823 . . . . . . . . . . . . 13 (0 = if(𝑧 = 𝑥, 1, 0) → ((0 (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) ↔ (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))))
348340adantr 483 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝐼) ∧ 𝑧 = 𝑥) → (𝐺𝑧) ∈ 𝐶)
34950, 30mulg1 18229 . . . . . . . . . . . . . . 15 ((𝐺𝑧) ∈ 𝐶 → (1 (𝐺𝑧)) = (𝐺𝑧))
350348, 349syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐼) ∧ 𝑧 = 𝑥) → (1 (𝐺𝑧)) = (𝐺𝑧))
351 iftrue 4472 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (𝐺𝑧))
352351adantl 484 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐼) ∧ 𝑧 = 𝑥) → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (𝐺𝑧))
353350, 352eqtr4d 2859 . . . . . . . . . . . . 13 (((𝜑𝑧𝐼) ∧ 𝑧 = 𝑥) → (1 (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))
35450, 51, 30mulg0 18225 . . . . . . . . . . . . . . . 16 ((𝐺𝑧) ∈ 𝐶 → (0 (𝐺𝑧)) = (1r𝑆))
355340, 354syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐼) → (0 (𝐺𝑧)) = (1r𝑆))
356355adantr 483 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐼) ∧ ¬ 𝑧 = 𝑥) → (0 (𝐺𝑧)) = (1r𝑆))
357 iffalse 4475 . . . . . . . . . . . . . . 15 𝑧 = 𝑥 → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (1r𝑆))
358357adantl 484 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐼) ∧ ¬ 𝑧 = 𝑥) → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (1r𝑆))
359356, 358eqtr4d 2859 . . . . . . . . . . . . 13 (((𝜑𝑧𝐼) ∧ ¬ 𝑧 = 𝑥) → (0 (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))
360345, 347, 353, 359ifbothda 4503 . . . . . . . . . . . 12 ((𝜑𝑧𝐼) → (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))
361360mpteq2dva 5153 . . . . . . . . . . 11 (𝜑 → (𝑧𝐼 ↦ (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧))) = (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))))
362343, 361eqtrd 2856 . . . . . . . . . 10 (𝜑 → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f 𝐺) = (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))))
363362adantr 483 . . . . . . . . 9 ((𝜑𝑥𝐼) → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f 𝐺) = (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))))
364363oveq2d 7166 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝑇 Σg ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f 𝐺)) = (𝑇 Σg (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))))
36560adantr 483 . . . . . . . . 9 ((𝜑𝑥𝐼) → 𝑇 ∈ Mnd)
366340adantlr 713 . . . . . . . . . . 11 (((𝜑𝑥𝐼) ∧ 𝑧𝐼) → (𝐺𝑧) ∈ 𝐶)
36728, 3ringidcl 19312 . . . . . . . . . . . . 13 (𝑆 ∈ Ring → (1r𝑆) ∈ 𝐶)
36815, 367syl 17 . . . . . . . . . . . 12 (𝜑 → (1r𝑆) ∈ 𝐶)
369368ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑥𝐼) ∧ 𝑧𝐼) → (1r𝑆) ∈ 𝐶)
370366, 369ifcld 4511 . . . . . . . . . 10 (((𝜑𝑥𝐼) ∧ 𝑧𝐼) → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) ∈ 𝐶)
371370fmpttd 6873 . . . . . . . . 9 ((𝜑𝑥𝐼) → (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))):𝐼𝐶)
372 eldifsnneq 4716 . . . . . . . . . . . 12 (𝑧 ∈ (𝐼 ∖ {𝑥}) → ¬ 𝑧 = 𝑥)
373372, 357syl 17 . . . . . . . . . . 11 (𝑧 ∈ (𝐼 ∖ {𝑥}) → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (1r𝑆))
374373adantl 484 . . . . . . . . . 10 (((𝜑𝑥𝐼) ∧ 𝑧 ∈ (𝐼 ∖ {𝑥})) → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (1r𝑆))
375374, 322suppss2 7858 . . . . . . . . 9 ((𝜑𝑥𝐼) → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))) supp (1r𝑆)) ⊆ {𝑥})
37650, 51, 365, 322, 324, 371, 375gsumpt 19076 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝑇 Σg (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))) = ((𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))‘𝑥))
377 fveq2 6664 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝐺𝑧) = (𝐺𝑥))
378351, 377eqtrd 2856 . . . . . . . . . 10 (𝑧 = 𝑥 → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (𝐺𝑥))
379 eqid 2821 . . . . . . . . . 10 (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))) = (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))
380 fvex 6677 . . . . . . . . . 10 (𝐺𝑥) ∈ V
381378, 379, 380fvmpt 6762 . . . . . . . . 9 (𝑥𝐼 → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))‘𝑥) = (𝐺𝑥))
382381adantl 484 . . . . . . . 8 ((𝜑𝑥𝐼) → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))‘𝑥) = (𝐺𝑥))
383364, 376, 3823eqtrd 2860 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑇 Σg ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f 𝐺)) = (𝐺𝑥))
384335, 383oveq12d 7168 . . . . . 6 ((𝜑𝑥𝐼) → ((𝐹‘(1r𝑅)) · (𝑇 Σg ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f 𝐺))) = ((1r𝑆) · (𝐺𝑥)))
38528, 5, 3ringlidm 19315 . . . . . . 7 ((𝑆 ∈ Ring ∧ (𝐺𝑥) ∈ 𝐶) → ((1r𝑆) · (𝐺𝑥)) = (𝐺𝑥))
38615, 49, 385syl2an2r 683 . . . . . 6 ((𝜑𝑥𝐼) → ((1r𝑆) · (𝐺𝑥)) = (𝐺𝑥))
387384, 386eqtrd 2856 . . . . 5 ((𝜑𝑥𝐼) → ((𝐹‘(1r𝑅)) · (𝑇 Σg ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f 𝐺))) = (𝐺𝑥))
388326, 334, 3873eqtrd 2860 . . . 4 ((𝜑𝑥𝐼) → (𝐸‘(𝑉𝑥)) = (𝐺𝑥))
389321, 388eqtrd 2856 . . 3 ((𝜑𝑥𝐼) → ((𝐸𝑉)‘𝑥) = (𝐺𝑥))
390319, 254, 389eqfnfvd 6799 . 2 (𝜑 → (𝐸𝑉) = 𝐺)
391300, 314, 3903jca 1124 1 (𝜑 → (𝐸 ∈ (𝑃 RingHom 𝑆) ∧ (𝐸𝐴) = 𝐹 ∧ (𝐸𝑉) = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  {crab 3142  Vcvv 3494  cdif 3932  wss 3935  ifcif 4466  {csn 4560   class class class wbr 5058  cmpt 5138   × cxp 5547  ccnv 5548  ran crn 5550  cima 5552  ccom 5553   Fn wfn 6344  wf 6345  cfv 6349  (class class class)co 7150  f cof 7401  m cmap 8400  Fincfn 8503   finSupp cfsupp 8827  0cc0 10531  1c1 10532   + caddc 10534  cn 11632  0cn0 11891  cz 11975  Basecbs 16477  +gcplusg 16559  .rcmulr 16560  Scalarcsca 16562  0gc0g 16707   Σg cgsu 16708  Mndcmnd 17905   MndHom cmhm 17948  Grpcgrp 18097  .gcmg 18218   GrpHom cghm 18349  CMndccmn 18900  mulGrpcmgp 19233  1rcur 19245  Ringcrg 19291  CRingccrg 19292   RingHom crh 19458  AssAlgcasa 20076  algSccascl 20078   mVar cmvr 20126   mPoly cmpl 20127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-ofr 7404  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-seq 13364  df-hash 13685  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-tset 16578  df-0g 16709  df-gsum 16710  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mulg 18219  df-subg 18270  df-ghm 18350  df-cntz 18441  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-cring 19294  df-rnghom 19461  df-subrg 19527  df-lmod 19630  df-lss 19698  df-assa 20079  df-ascl 20081  df-psr 20130  df-mvr 20131  df-mpl 20132
This theorem is referenced by:  evlseu  20290
  Copyright terms: Public domain W3C validator