MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlslem1 Structured version   Visualization version   GIF version

Theorem evlslem1 22129
Description: Lemma for evlseu 22130, give a formula for (the unique) polynomial evaluation homomorphism. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Proof shortened by AV, 26-Jul-2019.) (Revised by AV, 11-Apr-2024.)
Hypotheses
Ref Expression
evlslem1.p 𝑃 = (𝐼 mPoly 𝑅)
evlslem1.b 𝐵 = (Base‘𝑃)
evlslem1.c 𝐶 = (Base‘𝑆)
evlslem1.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlslem1.t 𝑇 = (mulGrp‘𝑆)
evlslem1.x = (.g𝑇)
evlslem1.m · = (.r𝑆)
evlslem1.v 𝑉 = (𝐼 mVar 𝑅)
evlslem1.e 𝐸 = (𝑝𝐵 ↦ (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
evlslem1.i (𝜑𝐼𝑊)
evlslem1.r (𝜑𝑅 ∈ CRing)
evlslem1.s (𝜑𝑆 ∈ CRing)
evlslem1.f (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
evlslem1.g (𝜑𝐺:𝐼𝐶)
evlslem1.a 𝐴 = (algSc‘𝑃)
Assertion
Ref Expression
evlslem1 (𝜑 → (𝐸 ∈ (𝑃 RingHom 𝑆) ∧ (𝐸𝐴) = 𝐹 ∧ (𝐸𝑉) = 𝐺))
Distinct variable groups:   𝑝,𝑏,𝐵   𝐶,𝑏,𝑝   𝜑,𝑏,𝑝   𝐹,𝑏,𝑝   𝑇,𝑏,𝑝   𝐷,𝑏,𝑝   ,𝑏,𝐼,𝑝   𝑅,𝑏,,𝑝   𝐺,𝑏,𝑝   𝑃,𝑏,𝑝   𝑆,𝑏,𝑝   · ,𝑏,𝑝   ,𝑏,𝑝
Allowed substitution hints:   𝜑()   𝐴(,𝑝,𝑏)   𝐵()   𝐶()   𝐷()   𝑃()   𝑆()   𝑇()   · ()   𝐸(,𝑝,𝑏)   ()   𝐹()   𝐺()   𝑉(,𝑝,𝑏)   𝑊(,𝑝,𝑏)

Proof of Theorem evlslem1
Dummy variables 𝑥 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlslem1.b . . 3 𝐵 = (Base‘𝑃)
2 eqid 2740 . . 3 (1r𝑃) = (1r𝑃)
3 eqid 2740 . . 3 (1r𝑆) = (1r𝑆)
4 eqid 2740 . . 3 (.r𝑃) = (.r𝑃)
5 evlslem1.m . . 3 · = (.r𝑆)
6 evlslem1.p . . . 4 𝑃 = (𝐼 mPoly 𝑅)
7 evlslem1.i . . . 4 (𝜑𝐼𝑊)
8 evlslem1.r . . . . 5 (𝜑𝑅 ∈ CRing)
98crngringd 20273 . . . 4 (𝜑𝑅 ∈ Ring)
106, 7, 9mplringd 22066 . . 3 (𝜑𝑃 ∈ Ring)
11 evlslem1.s . . . 4 (𝜑𝑆 ∈ CRing)
1211crngringd 20273 . . 3 (𝜑𝑆 ∈ Ring)
13 2fveq3 6925 . . . . . 6 (𝑥 = (1r𝑅) → (𝐸‘(𝐴𝑥)) = (𝐸‘(𝐴‘(1r𝑅))))
14 fveq2 6920 . . . . . 6 (𝑥 = (1r𝑅) → (𝐹𝑥) = (𝐹‘(1r𝑅)))
1513, 14eqeq12d 2756 . . . . 5 (𝑥 = (1r𝑅) → ((𝐸‘(𝐴𝑥)) = (𝐹𝑥) ↔ (𝐸‘(𝐴‘(1r𝑅))) = (𝐹‘(1r𝑅))))
16 evlslem1.d . . . . . . . . 9 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
17 eqid 2740 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
18 eqid 2740 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
19 evlslem1.a . . . . . . . . 9 𝐴 = (algSc‘𝑃)
207adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐼𝑊)
219adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
22 simpr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
236, 16, 17, 18, 19, 20, 21, 22mplascl 22111 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐴𝑥) = (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅))))
2423fveq2d 6924 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐸‘(𝐴𝑥)) = (𝐸‘(𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅)))))
25 evlslem1.c . . . . . . . 8 𝐶 = (Base‘𝑆)
26 evlslem1.t . . . . . . . 8 𝑇 = (mulGrp‘𝑆)
27 evlslem1.x . . . . . . . 8 = (.g𝑇)
28 evlslem1.v . . . . . . . 8 𝑉 = (𝐼 mVar 𝑅)
29 evlslem1.e . . . . . . . 8 𝐸 = (𝑝𝐵 ↦ (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
308adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ CRing)
3111adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑆 ∈ CRing)
32 evlslem1.f . . . . . . . . 9 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
3332adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐹 ∈ (𝑅 RingHom 𝑆))
34 evlslem1.g . . . . . . . . 9 (𝜑𝐺:𝐼𝐶)
3534adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐺:𝐼𝐶)
3616psrbag0 22109 . . . . . . . . . 10 (𝐼𝑊 → (𝐼 × {0}) ∈ 𝐷)
377, 36syl 17 . . . . . . . . 9 (𝜑 → (𝐼 × {0}) ∈ 𝐷)
3837adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐼 × {0}) ∈ 𝐷)
396, 1, 25, 18, 16, 26, 27, 5, 28, 29, 20, 30, 31, 33, 35, 17, 38, 22evlslem3 22127 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐸‘(𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅)))) = ((𝐹𝑥) · (𝑇 Σg ((𝐼 × {0}) ∘f 𝐺))))
40 0zd 12651 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → 0 ∈ ℤ)
41 fvexd 6935 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → (𝐺𝑥) ∈ V)
42 fconstmpt 5762 . . . . . . . . . . . . . . 15 (𝐼 × {0}) = (𝑥𝐼 ↦ 0)
4342a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (𝐼 × {0}) = (𝑥𝐼 ↦ 0))
4434feqmptd 6990 . . . . . . . . . . . . . 14 (𝜑𝐺 = (𝑥𝐼 ↦ (𝐺𝑥)))
457, 40, 41, 43, 44offval2 7734 . . . . . . . . . . . . 13 (𝜑 → ((𝐼 × {0}) ∘f 𝐺) = (𝑥𝐼 ↦ (0 (𝐺𝑥))))
4634ffvelcdmda 7118 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐼) → (𝐺𝑥) ∈ 𝐶)
4726, 25mgpbas 20167 . . . . . . . . . . . . . . . 16 𝐶 = (Base‘𝑇)
4826, 3ringidval 20210 . . . . . . . . . . . . . . . 16 (1r𝑆) = (0g𝑇)
4947, 48, 27mulg0 19114 . . . . . . . . . . . . . . 15 ((𝐺𝑥) ∈ 𝐶 → (0 (𝐺𝑥)) = (1r𝑆))
5046, 49syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → (0 (𝐺𝑥)) = (1r𝑆))
5150mpteq2dva 5266 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝐼 ↦ (0 (𝐺𝑥))) = (𝑥𝐼 ↦ (1r𝑆)))
5245, 51eqtrd 2780 . . . . . . . . . . . 12 (𝜑 → ((𝐼 × {0}) ∘f 𝐺) = (𝑥𝐼 ↦ (1r𝑆)))
5352oveq2d 7464 . . . . . . . . . . 11 (𝜑 → (𝑇 Σg ((𝐼 × {0}) ∘f 𝐺)) = (𝑇 Σg (𝑥𝐼 ↦ (1r𝑆))))
5426crngmgp 20268 . . . . . . . . . . . . . 14 (𝑆 ∈ CRing → 𝑇 ∈ CMnd)
5511, 54syl 17 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ CMnd)
5655cmnmndd 19846 . . . . . . . . . . . 12 (𝜑𝑇 ∈ Mnd)
5748gsumz 18871 . . . . . . . . . . . 12 ((𝑇 ∈ Mnd ∧ 𝐼𝑊) → (𝑇 Σg (𝑥𝐼 ↦ (1r𝑆))) = (1r𝑆))
5856, 7, 57syl2anc 583 . . . . . . . . . . 11 (𝜑 → (𝑇 Σg (𝑥𝐼 ↦ (1r𝑆))) = (1r𝑆))
5953, 58eqtrd 2780 . . . . . . . . . 10 (𝜑 → (𝑇 Σg ((𝐼 × {0}) ∘f 𝐺)) = (1r𝑆))
6059adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑇 Σg ((𝐼 × {0}) ∘f 𝐺)) = (1r𝑆))
6160oveq2d 7464 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐹𝑥) · (𝑇 Σg ((𝐼 × {0}) ∘f 𝐺))) = ((𝐹𝑥) · (1r𝑆)))
6218, 25rhmf 20511 . . . . . . . . . . 11 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶𝐶)
6332, 62syl 17 . . . . . . . . . 10 (𝜑𝐹:(Base‘𝑅)⟶𝐶)
6463ffvelcdmda 7118 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐹𝑥) ∈ 𝐶)
6525, 5, 3ringridm 20293 . . . . . . . . 9 ((𝑆 ∈ Ring ∧ (𝐹𝑥) ∈ 𝐶) → ((𝐹𝑥) · (1r𝑆)) = (𝐹𝑥))
6612, 64, 65syl2an2r 684 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐹𝑥) · (1r𝑆)) = (𝐹𝑥))
6761, 66eqtrd 2780 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐹𝑥) · (𝑇 Σg ((𝐼 × {0}) ∘f 𝐺))) = (𝐹𝑥))
6824, 39, 673eqtrd 2784 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐸‘(𝐴𝑥)) = (𝐹𝑥))
6968ralrimiva 3152 . . . . 5 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)(𝐸‘(𝐴𝑥)) = (𝐹𝑥))
70 eqid 2740 . . . . . . 7 (1r𝑅) = (1r𝑅)
7118, 70ringidcl 20289 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
729, 71syl 17 . . . . 5 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
7315, 69, 72rspcdva 3636 . . . 4 (𝜑 → (𝐸‘(𝐴‘(1r𝑅))) = (𝐹‘(1r𝑅)))
746mplassa 22065 . . . . . . . . 9 ((𝐼𝑊𝑅 ∈ CRing) → 𝑃 ∈ AssAlg)
757, 8, 74syl2anc 583 . . . . . . . 8 (𝜑𝑃 ∈ AssAlg)
76 eqid 2740 . . . . . . . . 9 (Scalar‘𝑃) = (Scalar‘𝑃)
7719, 76asclrhm 21933 . . . . . . . 8 (𝑃 ∈ AssAlg → 𝐴 ∈ ((Scalar‘𝑃) RingHom 𝑃))
7875, 77syl 17 . . . . . . 7 (𝜑𝐴 ∈ ((Scalar‘𝑃) RingHom 𝑃))
796, 7, 8mplsca 22056 . . . . . . . 8 (𝜑𝑅 = (Scalar‘𝑃))
8079oveq1d 7463 . . . . . . 7 (𝜑 → (𝑅 RingHom 𝑃) = ((Scalar‘𝑃) RingHom 𝑃))
8178, 80eleqtrrd 2847 . . . . . 6 (𝜑𝐴 ∈ (𝑅 RingHom 𝑃))
8270, 2rhm1 20515 . . . . . 6 (𝐴 ∈ (𝑅 RingHom 𝑃) → (𝐴‘(1r𝑅)) = (1r𝑃))
8381, 82syl 17 . . . . 5 (𝜑 → (𝐴‘(1r𝑅)) = (1r𝑃))
8483fveq2d 6924 . . . 4 (𝜑 → (𝐸‘(𝐴‘(1r𝑅))) = (𝐸‘(1r𝑃)))
8570, 3rhm1 20515 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r𝑅)) = (1r𝑆))
8632, 85syl 17 . . . 4 (𝜑 → (𝐹‘(1r𝑅)) = (1r𝑆))
8773, 84, 863eqtr3d 2788 . . 3 (𝜑 → (𝐸‘(1r𝑃)) = (1r𝑆))
88 eqid 2740 . . . . 5 (+g𝑃) = (+g𝑃)
89 eqid 2740 . . . . 5 (+g𝑆) = (+g𝑆)
9010ringgrpd 20269 . . . . 5 (𝜑𝑃 ∈ Grp)
9112ringgrpd 20269 . . . . 5 (𝜑𝑆 ∈ Grp)
92 eqid 2740 . . . . . . 7 (0g𝑆) = (0g𝑆)
93 ringcmn 20305 . . . . . . . . 9 (𝑆 ∈ Ring → 𝑆 ∈ CMnd)
9412, 93syl 17 . . . . . . . 8 (𝜑𝑆 ∈ CMnd)
9594adantr 480 . . . . . . 7 ((𝜑𝑝𝐵) → 𝑆 ∈ CMnd)
96 ovex 7481 . . . . . . . . 9 (ℕ0m 𝐼) ∈ V
9716, 96rabex2 5359 . . . . . . . 8 𝐷 ∈ V
9897a1i 11 . . . . . . 7 ((𝜑𝑝𝐵) → 𝐷 ∈ V)
997adantr 480 . . . . . . . . 9 ((𝜑𝑝𝐵) → 𝐼𝑊)
1008adantr 480 . . . . . . . . 9 ((𝜑𝑝𝐵) → 𝑅 ∈ CRing)
10111adantr 480 . . . . . . . . 9 ((𝜑𝑝𝐵) → 𝑆 ∈ CRing)
10232adantr 480 . . . . . . . . 9 ((𝜑𝑝𝐵) → 𝐹 ∈ (𝑅 RingHom 𝑆))
10334adantr 480 . . . . . . . . 9 ((𝜑𝑝𝐵) → 𝐺:𝐼𝐶)
104 simpr 484 . . . . . . . . 9 ((𝜑𝑝𝐵) → 𝑝𝐵)
1056, 1, 25, 16, 26, 27, 5, 28, 29, 99, 100, 101, 102, 103, 104evlslem6 22128 . . . . . . . 8 ((𝜑𝑝𝐵) → ((𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶 ∧ (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆)))
106105simpld 494 . . . . . . 7 ((𝜑𝑝𝐵) → (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶)
107105simprd 495 . . . . . . 7 ((𝜑𝑝𝐵) → (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆))
10825, 92, 95, 98, 106, 107gsumcl 19957 . . . . . 6 ((𝜑𝑝𝐵) → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) ∈ 𝐶)
109108, 29fmptd 7148 . . . . 5 (𝜑𝐸:𝐵𝐶)
110 eqid 2740 . . . . . . . . . . . . . . . . 17 (+g𝑅) = (+g𝑅)
111 simplrl 776 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑥𝐵)
112 simplrr 777 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑦𝐵)
1136, 1, 110, 88, 111, 112mpladd 22052 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝑥(+g𝑃)𝑦) = (𝑥f (+g𝑅)𝑦))
114113fveq1d 6922 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝑥(+g𝑃)𝑦)‘𝑏) = ((𝑥f (+g𝑅)𝑦)‘𝑏))
115 simprl 770 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
1166, 18, 1, 16, 115mplelf 22041 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥:𝐷⟶(Base‘𝑅))
117116ffnd 6748 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 Fn 𝐷)
118117adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑥 Fn 𝐷)
119 simprr 772 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
1206, 18, 1, 16, 119mplelf 22041 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦:𝐷⟶(Base‘𝑅))
121120ffnd 6748 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 Fn 𝐷)
122121adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑦 Fn 𝐷)
12397a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝐷 ∈ V)
124 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑏𝐷)
125 fnfvof 7731 . . . . . . . . . . . . . . . 16 (((𝑥 Fn 𝐷𝑦 Fn 𝐷) ∧ (𝐷 ∈ V ∧ 𝑏𝐷)) → ((𝑥f (+g𝑅)𝑦)‘𝑏) = ((𝑥𝑏)(+g𝑅)(𝑦𝑏)))
126118, 122, 123, 124, 125syl22anc 838 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝑥f (+g𝑅)𝑦)‘𝑏) = ((𝑥𝑏)(+g𝑅)(𝑦𝑏)))
127114, 126eqtrd 2780 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝑥(+g𝑃)𝑦)‘𝑏) = ((𝑥𝑏)(+g𝑅)(𝑦𝑏)))
128127fveq2d 6924 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) = (𝐹‘((𝑥𝑏)(+g𝑅)(𝑦𝑏))))
129 rhmghm 20510 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
13032, 129syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))
131130ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
132116ffvelcdmda 7118 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝑥𝑏) ∈ (Base‘𝑅))
133120ffvelcdmda 7118 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝑦𝑏) ∈ (Base‘𝑅))
13418, 110, 89ghmlin 19261 . . . . . . . . . . . . . 14 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝑥𝑏) ∈ (Base‘𝑅) ∧ (𝑦𝑏) ∈ (Base‘𝑅)) → (𝐹‘((𝑥𝑏)(+g𝑅)(𝑦𝑏))) = ((𝐹‘(𝑥𝑏))(+g𝑆)(𝐹‘(𝑦𝑏))))
135131, 132, 133, 134syl3anc 1371 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝐹‘((𝑥𝑏)(+g𝑅)(𝑦𝑏))) = ((𝐹‘(𝑥𝑏))(+g𝑆)(𝐹‘(𝑦𝑏))))
136128, 135eqtrd 2780 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) = ((𝐹‘(𝑥𝑏))(+g𝑆)(𝐹‘(𝑦𝑏))))
137136oveq1d 7463 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))) = (((𝐹‘(𝑥𝑏))(+g𝑆)(𝐹‘(𝑦𝑏))) · (𝑇 Σg (𝑏f 𝐺))))
13812ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑆 ∈ Ring)
13963ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝐹:(Base‘𝑅)⟶𝐶)
140139, 132ffvelcdmd 7119 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝐹‘(𝑥𝑏)) ∈ 𝐶)
141139, 133ffvelcdmd 7119 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝐹‘(𝑦𝑏)) ∈ 𝐶)
14255ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑇 ∈ CMnd)
14334ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝐺:𝐼𝐶)
14416, 47, 27, 142, 124, 143psrbagev2 22125 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝑇 Σg (𝑏f 𝐺)) ∈ 𝐶)
14525, 89, 5ringdir 20288 . . . . . . . . . . . 12 ((𝑆 ∈ Ring ∧ ((𝐹‘(𝑥𝑏)) ∈ 𝐶 ∧ (𝐹‘(𝑦𝑏)) ∈ 𝐶 ∧ (𝑇 Σg (𝑏f 𝐺)) ∈ 𝐶)) → (((𝐹‘(𝑥𝑏))(+g𝑆)(𝐹‘(𝑦𝑏))) · (𝑇 Σg (𝑏f 𝐺))) = (((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))(+g𝑆)((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
146138, 140, 141, 144, 145syl13anc 1372 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (((𝐹‘(𝑥𝑏))(+g𝑆)(𝐹‘(𝑦𝑏))) · (𝑇 Σg (𝑏f 𝐺))) = (((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))(+g𝑆)((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
147137, 146eqtrd 2780 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))) = (((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))(+g𝑆)((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
148147mpteq2dva 5266 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ (((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))(+g𝑆)((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
14997a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐷 ∈ V)
150 ovexd 7483 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺))) ∈ V)
151 ovexd 7483 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))) ∈ V)
152 eqidd 2741 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
153 eqidd 2741 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
154149, 150, 151, 152, 153offval2 7734 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) ∘f (+g𝑆)(𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = (𝑏𝐷 ↦ (((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))(+g𝑆)((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
155148, 154eqtr4d 2783 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = ((𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) ∘f (+g𝑆)(𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
156155oveq2d 7464 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = (𝑆 Σg ((𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) ∘f (+g𝑆)(𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))))
15794adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑆 ∈ CMnd)
1587adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐼𝑊)
1598adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑅 ∈ CRing)
16011adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑆 ∈ CRing)
16132adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐹 ∈ (𝑅 RingHom 𝑆))
16234adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐺:𝐼𝐶)
1636, 1, 25, 16, 26, 27, 5, 28, 29, 158, 159, 160, 161, 162, 115evlslem6 22128 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶 ∧ (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆)))
164163simpld 494 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶)
1656, 1, 25, 16, 26, 27, 5, 28, 29, 158, 159, 160, 161, 162, 119evlslem6 22128 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶 ∧ (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆)))
166165simpld 494 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶)
167163simprd 495 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆))
168165simprd 495 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆))
16925, 92, 89, 157, 149, 164, 166, 167, 168gsumadd 19965 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg ((𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) ∘f (+g𝑆)(𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))) = ((𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))(+g𝑆)(𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))))
170156, 169eqtrd 2780 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = ((𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))(+g𝑆)(𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))))
17190adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ Grp)
1721, 88grpcl 18981 . . . . . . . 8 ((𝑃 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝑃)𝑦) ∈ 𝐵)
173171, 115, 119, 172syl3anc 1371 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑃)𝑦) ∈ 𝐵)
174 fveq1 6919 . . . . . . . . . . . 12 (𝑝 = (𝑥(+g𝑃)𝑦) → (𝑝𝑏) = ((𝑥(+g𝑃)𝑦)‘𝑏))
175174fveq2d 6924 . . . . . . . . . . 11 (𝑝 = (𝑥(+g𝑃)𝑦) → (𝐹‘(𝑝𝑏)) = (𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)))
176175oveq1d 7463 . . . . . . . . . 10 (𝑝 = (𝑥(+g𝑃)𝑦) → ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))) = ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))
177176mpteq2dv 5268 . . . . . . . . 9 (𝑝 = (𝑥(+g𝑃)𝑦) → (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
178177oveq2d 7464 . . . . . . . 8 (𝑝 = (𝑥(+g𝑃)𝑦) → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
179 ovex 7481 . . . . . . . 8 (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) ∈ V
180178, 29, 179fvmpt 7029 . . . . . . 7 ((𝑥(+g𝑃)𝑦) ∈ 𝐵 → (𝐸‘(𝑥(+g𝑃)𝑦)) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
181173, 180syl 17 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘(𝑥(+g𝑃)𝑦)) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
182 fveq1 6919 . . . . . . . . . . . . 13 (𝑝 = 𝑥 → (𝑝𝑏) = (𝑥𝑏))
183182fveq2d 6924 . . . . . . . . . . . 12 (𝑝 = 𝑥 → (𝐹‘(𝑝𝑏)) = (𝐹‘(𝑥𝑏)))
184183oveq1d 7463 . . . . . . . . . . 11 (𝑝 = 𝑥 → ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))) = ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺))))
185184mpteq2dv 5268 . . . . . . . . . 10 (𝑝 = 𝑥 → (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
186185oveq2d 7464 . . . . . . . . 9 (𝑝 = 𝑥 → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
187 ovex 7481 . . . . . . . . 9 (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) ∈ V
188186, 29, 187fvmpt 7029 . . . . . . . 8 (𝑥𝐵 → (𝐸𝑥) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
189115, 188syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸𝑥) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
190 fveq1 6919 . . . . . . . . . . . . 13 (𝑝 = 𝑦 → (𝑝𝑏) = (𝑦𝑏))
191190fveq2d 6924 . . . . . . . . . . . 12 (𝑝 = 𝑦 → (𝐹‘(𝑝𝑏)) = (𝐹‘(𝑦𝑏)))
192191oveq1d 7463 . . . . . . . . . . 11 (𝑝 = 𝑦 → ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))) = ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))
193192mpteq2dv 5268 . . . . . . . . . 10 (𝑝 = 𝑦 → (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
194193oveq2d 7464 . . . . . . . . 9 (𝑝 = 𝑦 → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
195 ovex 7481 . . . . . . . . 9 (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) ∈ V
196194, 29, 195fvmpt 7029 . . . . . . . 8 (𝑦𝐵 → (𝐸𝑦) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
197196ad2antll 728 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸𝑦) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
198189, 197oveq12d 7466 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐸𝑥)(+g𝑆)(𝐸𝑦)) = ((𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))(+g𝑆)(𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))))
199170, 181, 1983eqtr4d 2790 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘(𝑥(+g𝑃)𝑦)) = ((𝐸𝑥)(+g𝑆)(𝐸𝑦)))
2001, 25, 88, 89, 90, 91, 109, 199isghmd 19265 . . . 4 (𝜑𝐸 ∈ (𝑃 GrpHom 𝑆))
201 eqid 2740 . . . . . . . . . . 11 (mulGrp‘𝑅) = (mulGrp‘𝑅)
202201, 26rhmmhm 20505 . . . . . . . . . 10 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom 𝑇))
20332, 202syl 17 . . . . . . . . 9 (𝜑𝐹 ∈ ((mulGrp‘𝑅) MndHom 𝑇))
204203adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom 𝑇))
205 simprll 778 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑥𝐵)
2066, 18, 1, 16, 205mplelf 22041 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑥:𝐷⟶(Base‘𝑅))
207 simprrl 780 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑧𝐷)
208206, 207ffvelcdmd 7119 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝑥𝑧) ∈ (Base‘𝑅))
209 simprlr 779 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑦𝐵)
2106, 18, 1, 16, 209mplelf 22041 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑦:𝐷⟶(Base‘𝑅))
211 simprrr 781 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑤𝐷)
212210, 211ffvelcdmd 7119 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝑦𝑤) ∈ (Base‘𝑅))
213201, 18mgpbas 20167 . . . . . . . . 9 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
214 eqid 2740 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
215201, 214mgpplusg 20165 . . . . . . . . 9 (.r𝑅) = (+g‘(mulGrp‘𝑅))
21626, 5mgpplusg 20165 . . . . . . . . 9 · = (+g𝑇)
217213, 215, 216mhmlin 18828 . . . . . . . 8 ((𝐹 ∈ ((mulGrp‘𝑅) MndHom 𝑇) ∧ (𝑥𝑧) ∈ (Base‘𝑅) ∧ (𝑦𝑤) ∈ (Base‘𝑅)) → (𝐹‘((𝑥𝑧)(.r𝑅)(𝑦𝑤))) = ((𝐹‘(𝑥𝑧)) · (𝐹‘(𝑦𝑤))))
218204, 208, 212, 217syl3anc 1371 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐹‘((𝑥𝑧)(.r𝑅)(𝑦𝑤))) = ((𝐹‘(𝑥𝑧)) · (𝐹‘(𝑦𝑤))))
21956ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → 𝑇 ∈ Mnd)
220 simprl 770 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑧𝐷)
22116psrbagf 21961 . . . . . . . . . . . . . . 15 (𝑧𝐷𝑧:𝐼⟶ℕ0)
222220, 221syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑧:𝐼⟶ℕ0)
223222ffvelcdmda 7118 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝑧𝑣) ∈ ℕ0)
22416psrbagf 21961 . . . . . . . . . . . . . . 15 (𝑤𝐷𝑤:𝐼⟶ℕ0)
225224ad2antll 728 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑤:𝐼⟶ℕ0)
226225ffvelcdmda 7118 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝑤𝑣) ∈ ℕ0)
22734adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝐺:𝐼𝐶)
228227ffvelcdmda 7118 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝐺𝑣) ∈ 𝐶)
22947, 27, 216mulgnn0dir 19144 . . . . . . . . . . . . 13 ((𝑇 ∈ Mnd ∧ ((𝑧𝑣) ∈ ℕ0 ∧ (𝑤𝑣) ∈ ℕ0 ∧ (𝐺𝑣) ∈ 𝐶)) → (((𝑧𝑣) + (𝑤𝑣)) (𝐺𝑣)) = (((𝑧𝑣) (𝐺𝑣)) · ((𝑤𝑣) (𝐺𝑣))))
230219, 223, 226, 228, 229syl13anc 1372 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (((𝑧𝑣) + (𝑤𝑣)) (𝐺𝑣)) = (((𝑧𝑣) (𝐺𝑣)) · ((𝑤𝑣) (𝐺𝑣))))
231230mpteq2dva 5266 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑣𝐼 ↦ (((𝑧𝑣) + (𝑤𝑣)) (𝐺𝑣))) = (𝑣𝐼 ↦ (((𝑧𝑣) (𝐺𝑣)) · ((𝑤𝑣) (𝐺𝑣)))))
2327adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝐼𝑊)
233 ovexd 7483 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → ((𝑧𝑣) + (𝑤𝑣)) ∈ V)
234 fvexd 6935 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝐺𝑣) ∈ V)
235222ffnd 6748 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑧 Fn 𝐼)
236225ffnd 6748 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑤 Fn 𝐼)
237 inidm 4248 . . . . . . . . . . . . 13 (𝐼𝐼) = 𝐼
238 eqidd 2741 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝑧𝑣) = (𝑧𝑣))
239 eqidd 2741 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝑤𝑣) = (𝑤𝑣))
240235, 236, 232, 232, 237, 238, 239offval 7723 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑧f + 𝑤) = (𝑣𝐼 ↦ ((𝑧𝑣) + (𝑤𝑣))))
24134feqmptd 6990 . . . . . . . . . . . . 13 (𝜑𝐺 = (𝑣𝐼 ↦ (𝐺𝑣)))
242241adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝐺 = (𝑣𝐼 ↦ (𝐺𝑣)))
243232, 233, 234, 240, 242offval2 7734 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → ((𝑧f + 𝑤) ∘f 𝐺) = (𝑣𝐼 ↦ (((𝑧𝑣) + (𝑤𝑣)) (𝐺𝑣))))
244 ovexd 7483 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → ((𝑧𝑣) (𝐺𝑣)) ∈ V)
245 ovexd 7483 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → ((𝑤𝑣) (𝐺𝑣)) ∈ V)
24634ffnd 6748 . . . . . . . . . . . . . 14 (𝜑𝐺 Fn 𝐼)
247246adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝐺 Fn 𝐼)
248 eqidd 2741 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝐺𝑣) = (𝐺𝑣))
249235, 247, 232, 232, 237, 238, 248offval 7723 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑧f 𝐺) = (𝑣𝐼 ↦ ((𝑧𝑣) (𝐺𝑣))))
250236, 247, 232, 232, 237, 239, 248offval 7723 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑤f 𝐺) = (𝑣𝐼 ↦ ((𝑤𝑣) (𝐺𝑣))))
251232, 244, 245, 249, 250offval2 7734 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → ((𝑧f 𝐺) ∘f · (𝑤f 𝐺)) = (𝑣𝐼 ↦ (((𝑧𝑣) (𝐺𝑣)) · ((𝑤𝑣) (𝐺𝑣)))))
252231, 243, 2513eqtr4d 2790 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → ((𝑧f + 𝑤) ∘f 𝐺) = ((𝑧f 𝐺) ∘f · (𝑤f 𝐺)))
253252oveq2d 7464 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑇 Σg ((𝑧f + 𝑤) ∘f 𝐺)) = (𝑇 Σg ((𝑧f 𝐺) ∘f · (𝑤f 𝐺))))
25455adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑇 ∈ CMnd)
25516, 47, 27, 48, 254, 220, 227psrbagev1 22124 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → ((𝑧f 𝐺):𝐼𝐶 ∧ (𝑧f 𝐺) finSupp (1r𝑆)))
256255simpld 494 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑧f 𝐺):𝐼𝐶)
257 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑤𝐷)
25816, 47, 27, 48, 254, 257, 227psrbagev1 22124 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → ((𝑤f 𝐺):𝐼𝐶 ∧ (𝑤f 𝐺) finSupp (1r𝑆)))
259258simpld 494 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑤f 𝐺):𝐼𝐶)
260255simprd 495 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑧f 𝐺) finSupp (1r𝑆))
261258simprd 495 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑤f 𝐺) finSupp (1r𝑆))
26247, 48, 216, 254, 232, 256, 259, 260, 261gsumadd 19965 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑇 Σg ((𝑧f 𝐺) ∘f · (𝑤f 𝐺))) = ((𝑇 Σg (𝑧f 𝐺)) · (𝑇 Σg (𝑤f 𝐺))))
263253, 262eqtrd 2780 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑇 Σg ((𝑧f + 𝑤) ∘f 𝐺)) = ((𝑇 Σg (𝑧f 𝐺)) · (𝑇 Σg (𝑤f 𝐺))))
264263adantrl 715 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝑇 Σg ((𝑧f + 𝑤) ∘f 𝐺)) = ((𝑇 Σg (𝑧f 𝐺)) · (𝑇 Σg (𝑤f 𝐺))))
265218, 264oveq12d 7466 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → ((𝐹‘((𝑥𝑧)(.r𝑅)(𝑦𝑤))) · (𝑇 Σg ((𝑧f + 𝑤) ∘f 𝐺))) = (((𝐹‘(𝑥𝑧)) · (𝐹‘(𝑦𝑤))) · ((𝑇 Σg (𝑧f 𝐺)) · (𝑇 Σg (𝑤f 𝐺)))))
26655adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑇 ∈ CMnd)
26763adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝐹:(Base‘𝑅)⟶𝐶)
268267, 208ffvelcdmd 7119 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐹‘(𝑥𝑧)) ∈ 𝐶)
269267, 212ffvelcdmd 7119 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐹‘(𝑦𝑤)) ∈ 𝐶)
27016, 47, 27, 254, 220, 227psrbagev2 22125 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑇 Σg (𝑧f 𝐺)) ∈ 𝐶)
271270adantrl 715 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝑇 Σg (𝑧f 𝐺)) ∈ 𝐶)
27216, 47, 27, 254, 257, 227psrbagev2 22125 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑇 Σg (𝑤f 𝐺)) ∈ 𝐶)
273272adantrl 715 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝑇 Σg (𝑤f 𝐺)) ∈ 𝐶)
27447, 216cmn4 19843 . . . . . . 7 ((𝑇 ∈ CMnd ∧ ((𝐹‘(𝑥𝑧)) ∈ 𝐶 ∧ (𝐹‘(𝑦𝑤)) ∈ 𝐶) ∧ ((𝑇 Σg (𝑧f 𝐺)) ∈ 𝐶 ∧ (𝑇 Σg (𝑤f 𝐺)) ∈ 𝐶)) → (((𝐹‘(𝑥𝑧)) · (𝐹‘(𝑦𝑤))) · ((𝑇 Σg (𝑧f 𝐺)) · (𝑇 Σg (𝑤f 𝐺)))) = (((𝐹‘(𝑥𝑧)) · (𝑇 Σg (𝑧f 𝐺))) · ((𝐹‘(𝑦𝑤)) · (𝑇 Σg (𝑤f 𝐺)))))
275266, 268, 269, 271, 273, 274syl122anc 1379 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (((𝐹‘(𝑥𝑧)) · (𝐹‘(𝑦𝑤))) · ((𝑇 Σg (𝑧f 𝐺)) · (𝑇 Σg (𝑤f 𝐺)))) = (((𝐹‘(𝑥𝑧)) · (𝑇 Σg (𝑧f 𝐺))) · ((𝐹‘(𝑦𝑤)) · (𝑇 Σg (𝑤f 𝐺)))))
276265, 275eqtrd 2780 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → ((𝐹‘((𝑥𝑧)(.r𝑅)(𝑦𝑤))) · (𝑇 Σg ((𝑧f + 𝑤) ∘f 𝐺))) = (((𝐹‘(𝑥𝑧)) · (𝑇 Σg (𝑧f 𝐺))) · ((𝐹‘(𝑦𝑤)) · (𝑇 Σg (𝑤f 𝐺)))))
2777adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝐼𝑊)
2788adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑅 ∈ CRing)
27911adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑆 ∈ CRing)
28032adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝐹 ∈ (𝑅 RingHom 𝑆))
28134adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝐺:𝐼𝐶)
28216psrbagaddcl 21967 . . . . . . 7 ((𝑧𝐷𝑤𝐷) → (𝑧f + 𝑤) ∈ 𝐷)
283282ad2antll 728 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝑧f + 𝑤) ∈ 𝐷)
2849adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑅 ∈ Ring)
28518, 214ringcl 20277 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥𝑧) ∈ (Base‘𝑅) ∧ (𝑦𝑤) ∈ (Base‘𝑅)) → ((𝑥𝑧)(.r𝑅)(𝑦𝑤)) ∈ (Base‘𝑅))
286284, 208, 212, 285syl3anc 1371 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → ((𝑥𝑧)(.r𝑅)(𝑦𝑤)) ∈ (Base‘𝑅))
2876, 1, 25, 18, 16, 26, 27, 5, 28, 29, 277, 278, 279, 280, 281, 17, 283, 286evlslem3 22127 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐸‘(𝑣𝐷 ↦ if(𝑣 = (𝑧f + 𝑤), ((𝑥𝑧)(.r𝑅)(𝑦𝑤)), (0g𝑅)))) = ((𝐹‘((𝑥𝑧)(.r𝑅)(𝑦𝑤))) · (𝑇 Σg ((𝑧f + 𝑤) ∘f 𝐺))))
2886, 1, 25, 18, 16, 26, 27, 5, 28, 29, 277, 278, 279, 280, 281, 17, 207, 208evlslem3 22127 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐸‘(𝑣𝐷 ↦ if(𝑣 = 𝑧, (𝑥𝑧), (0g𝑅)))) = ((𝐹‘(𝑥𝑧)) · (𝑇 Σg (𝑧f 𝐺))))
2896, 1, 25, 18, 16, 26, 27, 5, 28, 29, 277, 278, 279, 280, 281, 17, 211, 212evlslem3 22127 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐸‘(𝑣𝐷 ↦ if(𝑣 = 𝑤, (𝑦𝑤), (0g𝑅)))) = ((𝐹‘(𝑦𝑤)) · (𝑇 Σg (𝑤f 𝐺))))
290288, 289oveq12d 7466 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → ((𝐸‘(𝑣𝐷 ↦ if(𝑣 = 𝑧, (𝑥𝑧), (0g𝑅)))) · (𝐸‘(𝑣𝐷 ↦ if(𝑣 = 𝑤, (𝑦𝑤), (0g𝑅))))) = (((𝐹‘(𝑥𝑧)) · (𝑇 Σg (𝑧f 𝐺))) · ((𝐹‘(𝑦𝑤)) · (𝑇 Σg (𝑤f 𝐺)))))
291276, 287, 2903eqtr4d 2790 . . . 4 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐸‘(𝑣𝐷 ↦ if(𝑣 = (𝑧f + 𝑤), ((𝑥𝑧)(.r𝑅)(𝑦𝑤)), (0g𝑅)))) = ((𝐸‘(𝑣𝐷 ↦ if(𝑣 = 𝑧, (𝑥𝑧), (0g𝑅)))) · (𝐸‘(𝑣𝐷 ↦ if(𝑣 = 𝑤, (𝑦𝑤), (0g𝑅))))))
2926, 1, 5, 17, 16, 7, 8, 11, 200, 291evlslem2 22126 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘(𝑥(.r𝑃)𝑦)) = ((𝐸𝑥) · (𝐸𝑦)))
2931, 2, 3, 4, 5, 10, 12, 87, 292, 25, 88, 89, 109, 199isrhmd 20514 . 2 (𝜑𝐸 ∈ (𝑃 RingHom 𝑆))
294 ovex 7481 . . . . . 6 (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) ∈ V
295294, 29fnmpti 6723 . . . . 5 𝐸 Fn 𝐵
296295a1i 11 . . . 4 (𝜑𝐸 Fn 𝐵)
29718, 1rhmf 20511 . . . . . 6 (𝐴 ∈ (𝑅 RingHom 𝑃) → 𝐴:(Base‘𝑅)⟶𝐵)
29881, 297syl 17 . . . . 5 (𝜑𝐴:(Base‘𝑅)⟶𝐵)
299298ffnd 6748 . . . 4 (𝜑𝐴 Fn (Base‘𝑅))
300298frnd 6755 . . . 4 (𝜑 → ran 𝐴𝐵)
301 fnco 6697 . . . 4 ((𝐸 Fn 𝐵𝐴 Fn (Base‘𝑅) ∧ ran 𝐴𝐵) → (𝐸𝐴) Fn (Base‘𝑅))
302296, 299, 300, 301syl3anc 1371 . . 3 (𝜑 → (𝐸𝐴) Fn (Base‘𝑅))
30363ffnd 6748 . . 3 (𝜑𝐹 Fn (Base‘𝑅))
304 fvco2 7019 . . . . 5 ((𝐴 Fn (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐸𝐴)‘𝑥) = (𝐸‘(𝐴𝑥)))
305299, 304sylan 579 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐸𝐴)‘𝑥) = (𝐸‘(𝐴𝑥)))
306305, 68eqtrd 2780 . . 3 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐸𝐴)‘𝑥) = (𝐹𝑥))
307302, 303, 306eqfnfvd 7067 . 2 (𝜑 → (𝐸𝐴) = 𝐹)
3086, 28, 1, 7, 9mvrf2 22036 . . . . 5 (𝜑𝑉:𝐼𝐵)
309308ffnd 6748 . . . 4 (𝜑𝑉 Fn 𝐼)
310308frnd 6755 . . . 4 (𝜑 → ran 𝑉𝐵)
311 fnco 6697 . . . 4 ((𝐸 Fn 𝐵𝑉 Fn 𝐼 ∧ ran 𝑉𝐵) → (𝐸𝑉) Fn 𝐼)
312296, 309, 310, 311syl3anc 1371 . . 3 (𝜑 → (𝐸𝑉) Fn 𝐼)
313 fvco2 7019 . . . . 5 ((𝑉 Fn 𝐼𝑥𝐼) → ((𝐸𝑉)‘𝑥) = (𝐸‘(𝑉𝑥)))
314309, 313sylan 579 . . . 4 ((𝜑𝑥𝐼) → ((𝐸𝑉)‘𝑥) = (𝐸‘(𝑉𝑥)))
3157adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐼𝑊)
3168adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑅 ∈ CRing)
317 simpr 484 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑥𝐼)
31828, 16, 17, 70, 315, 316, 317mvrval 22025 . . . . . 6 ((𝜑𝑥𝐼) → (𝑉𝑥) = (𝑦𝐷 ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅))))
319318fveq2d 6924 . . . . 5 ((𝜑𝑥𝐼) → (𝐸‘(𝑉𝑥)) = (𝐸‘(𝑦𝐷 ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅)))))
32011adantr 480 . . . . . 6 ((𝜑𝑥𝐼) → 𝑆 ∈ CRing)
32132adantr 480 . . . . . 6 ((𝜑𝑥𝐼) → 𝐹 ∈ (𝑅 RingHom 𝑆))
32234adantr 480 . . . . . 6 ((𝜑𝑥𝐼) → 𝐺:𝐼𝐶)
32316psrbagsn 22110 . . . . . . . 8 (𝐼𝑊 → (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∈ 𝐷)
3247, 323syl 17 . . . . . . 7 (𝜑 → (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∈ 𝐷)
325324adantr 480 . . . . . 6 ((𝜑𝑥𝐼) → (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∈ 𝐷)
32672adantr 480 . . . . . 6 ((𝜑𝑥𝐼) → (1r𝑅) ∈ (Base‘𝑅))
3276, 1, 25, 18, 16, 26, 27, 5, 28, 29, 315, 316, 320, 321, 322, 17, 325, 326evlslem3 22127 . . . . 5 ((𝜑𝑥𝐼) → (𝐸‘(𝑦𝐷 ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅)))) = ((𝐹‘(1r𝑅)) · (𝑇 Σg ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f 𝐺))))
32886adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → (𝐹‘(1r𝑅)) = (1r𝑆))
329 1nn0 12569 . . . . . . . . . . . . . 14 1 ∈ ℕ0
330 0nn0 12568 . . . . . . . . . . . . . 14 0 ∈ ℕ0
331329, 330ifcli 4595 . . . . . . . . . . . . 13 if(𝑧 = 𝑥, 1, 0) ∈ ℕ0
332331a1i 11 . . . . . . . . . . . 12 ((𝜑𝑧𝐼) → if(𝑧 = 𝑥, 1, 0) ∈ ℕ0)
33334ffvelcdmda 7118 . . . . . . . . . . . 12 ((𝜑𝑧𝐼) → (𝐺𝑧) ∈ 𝐶)
334 eqidd 2741 . . . . . . . . . . . 12 (𝜑 → (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)))
33534feqmptd 6990 . . . . . . . . . . . 12 (𝜑𝐺 = (𝑧𝐼 ↦ (𝐺𝑧)))
3367, 332, 333, 334, 335offval2 7734 . . . . . . . . . . 11 (𝜑 → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f 𝐺) = (𝑧𝐼 ↦ (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧))))
337 oveq1 7455 . . . . . . . . . . . . . 14 (1 = if(𝑧 = 𝑥, 1, 0) → (1 (𝐺𝑧)) = (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧)))
338337eqeq1d 2742 . . . . . . . . . . . . 13 (1 = if(𝑧 = 𝑥, 1, 0) → ((1 (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) ↔ (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))))
339 oveq1 7455 . . . . . . . . . . . . . 14 (0 = if(𝑧 = 𝑥, 1, 0) → (0 (𝐺𝑧)) = (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧)))
340339eqeq1d 2742 . . . . . . . . . . . . 13 (0 = if(𝑧 = 𝑥, 1, 0) → ((0 (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) ↔ (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))))
341333adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝐼) ∧ 𝑧 = 𝑥) → (𝐺𝑧) ∈ 𝐶)
34247, 27mulg1 19121 . . . . . . . . . . . . . . 15 ((𝐺𝑧) ∈ 𝐶 → (1 (𝐺𝑧)) = (𝐺𝑧))
343341, 342syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐼) ∧ 𝑧 = 𝑥) → (1 (𝐺𝑧)) = (𝐺𝑧))
344 iftrue 4554 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (𝐺𝑧))
345344adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐼) ∧ 𝑧 = 𝑥) → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (𝐺𝑧))
346343, 345eqtr4d 2783 . . . . . . . . . . . . 13 (((𝜑𝑧𝐼) ∧ 𝑧 = 𝑥) → (1 (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))
34747, 48, 27mulg0 19114 . . . . . . . . . . . . . . . 16 ((𝐺𝑧) ∈ 𝐶 → (0 (𝐺𝑧)) = (1r𝑆))
348333, 347syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐼) → (0 (𝐺𝑧)) = (1r𝑆))
349348adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐼) ∧ ¬ 𝑧 = 𝑥) → (0 (𝐺𝑧)) = (1r𝑆))
350 iffalse 4557 . . . . . . . . . . . . . . 15 𝑧 = 𝑥 → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (1r𝑆))
351350adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐼) ∧ ¬ 𝑧 = 𝑥) → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (1r𝑆))
352349, 351eqtr4d 2783 . . . . . . . . . . . . 13 (((𝜑𝑧𝐼) ∧ ¬ 𝑧 = 𝑥) → (0 (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))
353338, 340, 346, 352ifbothda 4586 . . . . . . . . . . . 12 ((𝜑𝑧𝐼) → (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))
354353mpteq2dva 5266 . . . . . . . . . . 11 (𝜑 → (𝑧𝐼 ↦ (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧))) = (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))))
355336, 354eqtrd 2780 . . . . . . . . . 10 (𝜑 → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f 𝐺) = (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))))
356355adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐼) → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f 𝐺) = (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))))
357356oveq2d 7464 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝑇 Σg ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f 𝐺)) = (𝑇 Σg (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))))
35856adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐼) → 𝑇 ∈ Mnd)
359333adantlr 714 . . . . . . . . . . 11 (((𝜑𝑥𝐼) ∧ 𝑧𝐼) → (𝐺𝑧) ∈ 𝐶)
36025, 3ringidcl 20289 . . . . . . . . . . . . 13 (𝑆 ∈ Ring → (1r𝑆) ∈ 𝐶)
36112, 360syl 17 . . . . . . . . . . . 12 (𝜑 → (1r𝑆) ∈ 𝐶)
362361ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑥𝐼) ∧ 𝑧𝐼) → (1r𝑆) ∈ 𝐶)
363359, 362ifcld 4594 . . . . . . . . . 10 (((𝜑𝑥𝐼) ∧ 𝑧𝐼) → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) ∈ 𝐶)
364363fmpttd 7149 . . . . . . . . 9 ((𝜑𝑥𝐼) → (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))):𝐼𝐶)
365 eldifsnneq 4816 . . . . . . . . . . . 12 (𝑧 ∈ (𝐼 ∖ {𝑥}) → ¬ 𝑧 = 𝑥)
366365, 350syl 17 . . . . . . . . . . 11 (𝑧 ∈ (𝐼 ∖ {𝑥}) → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (1r𝑆))
367366adantl 481 . . . . . . . . . 10 (((𝜑𝑥𝐼) ∧ 𝑧 ∈ (𝐼 ∖ {𝑥})) → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (1r𝑆))
368367, 315suppss2 8241 . . . . . . . . 9 ((𝜑𝑥𝐼) → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))) supp (1r𝑆)) ⊆ {𝑥})
36947, 48, 358, 315, 317, 364, 368gsumpt 20004 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝑇 Σg (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))) = ((𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))‘𝑥))
370 fveq2 6920 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝐺𝑧) = (𝐺𝑥))
371344, 370eqtrd 2780 . . . . . . . . . 10 (𝑧 = 𝑥 → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (𝐺𝑥))
372 eqid 2740 . . . . . . . . . 10 (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))) = (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))
373 fvex 6933 . . . . . . . . . 10 (𝐺𝑥) ∈ V
374371, 372, 373fvmpt 7029 . . . . . . . . 9 (𝑥𝐼 → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))‘𝑥) = (𝐺𝑥))
375374adantl 481 . . . . . . . 8 ((𝜑𝑥𝐼) → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))‘𝑥) = (𝐺𝑥))
376357, 369, 3753eqtrd 2784 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑇 Σg ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f 𝐺)) = (𝐺𝑥))
377328, 376oveq12d 7466 . . . . . 6 ((𝜑𝑥𝐼) → ((𝐹‘(1r𝑅)) · (𝑇 Σg ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f 𝐺))) = ((1r𝑆) · (𝐺𝑥)))
37825, 5, 3ringlidm 20292 . . . . . . 7 ((𝑆 ∈ Ring ∧ (𝐺𝑥) ∈ 𝐶) → ((1r𝑆) · (𝐺𝑥)) = (𝐺𝑥))
37912, 46, 378syl2an2r 684 . . . . . 6 ((𝜑𝑥𝐼) → ((1r𝑆) · (𝐺𝑥)) = (𝐺𝑥))
380377, 379eqtrd 2780 . . . . 5 ((𝜑𝑥𝐼) → ((𝐹‘(1r𝑅)) · (𝑇 Σg ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f 𝐺))) = (𝐺𝑥))
381319, 327, 3803eqtrd 2784 . . . 4 ((𝜑𝑥𝐼) → (𝐸‘(𝑉𝑥)) = (𝐺𝑥))
382314, 381eqtrd 2780 . . 3 ((𝜑𝑥𝐼) → ((𝐸𝑉)‘𝑥) = (𝐺𝑥))
383312, 246, 382eqfnfvd 7067 . 2 (𝜑 → (𝐸𝑉) = 𝐺)
384293, 307, 3833jca 1128 1 (𝜑 → (𝐸 ∈ (𝑃 RingHom 𝑆) ∧ (𝐸𝐴) = 𝐹 ∧ (𝐸𝑉) = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  cdif 3973  wss 3976  ifcif 4548  {csn 4648   class class class wbr 5166  cmpt 5249   × cxp 5698  ccnv 5699  ran crn 5701  cima 5703  ccom 5704   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  m cmap 8884  Fincfn 9003   finSupp cfsupp 9431  0cc0 11184  1c1 11185   + caddc 11187  cn 12293  0cn0 12553  cz 12639  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  Scalarcsca 17314  0gc0g 17499   Σg cgsu 17500  Mndcmnd 18772   MndHom cmhm 18816  Grpcgrp 18973  .gcmg 19107   GrpHom cghm 19252  CMndccmn 19822  mulGrpcmgp 20161  1rcur 20208  Ringcrg 20260  CRingccrg 20261   RingHom crh 20495  AssAlgcasa 21893  algSccascl 21895   mVar cmvr 21948   mPoly cmpl 21949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-lmod 20882  df-lss 20953  df-assa 21896  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954
This theorem is referenced by:  evlseu  22130  evlsval3  42514
  Copyright terms: Public domain W3C validator