MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlslem1 Structured version   Visualization version   GIF version

Theorem evlslem1 22038
Description: Lemma for evlseu 22039, give a formula for (the unique) polynomial evaluation homomorphism. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Proof shortened by AV, 26-Jul-2019.) (Revised by AV, 11-Apr-2024.)
Hypotheses
Ref Expression
evlslem1.p 𝑃 = (𝐼 mPoly 𝑅)
evlslem1.b 𝐵 = (Base‘𝑃)
evlslem1.c 𝐶 = (Base‘𝑆)
evlslem1.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlslem1.t 𝑇 = (mulGrp‘𝑆)
evlslem1.x = (.g𝑇)
evlslem1.m · = (.r𝑆)
evlslem1.v 𝑉 = (𝐼 mVar 𝑅)
evlslem1.e 𝐸 = (𝑝𝐵 ↦ (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
evlslem1.i (𝜑𝐼𝑊)
evlslem1.r (𝜑𝑅 ∈ CRing)
evlslem1.s (𝜑𝑆 ∈ CRing)
evlslem1.f (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
evlslem1.g (𝜑𝐺:𝐼𝐶)
evlslem1.a 𝐴 = (algSc‘𝑃)
Assertion
Ref Expression
evlslem1 (𝜑 → (𝐸 ∈ (𝑃 RingHom 𝑆) ∧ (𝐸𝐴) = 𝐹 ∧ (𝐸𝑉) = 𝐺))
Distinct variable groups:   𝑝,𝑏,𝐵   𝐶,𝑏,𝑝   𝜑,𝑏,𝑝   𝐹,𝑏,𝑝   𝑇,𝑏,𝑝   𝐷,𝑏,𝑝   ,𝑏,𝐼,𝑝   𝑅,𝑏,,𝑝   𝐺,𝑏,𝑝   𝑃,𝑏,𝑝   𝑆,𝑏,𝑝   · ,𝑏,𝑝   ,𝑏,𝑝
Allowed substitution hints:   𝜑()   𝐴(,𝑝,𝑏)   𝐵()   𝐶()   𝐷()   𝑃()   𝑆()   𝑇()   · ()   𝐸(,𝑝,𝑏)   ()   𝐹()   𝐺()   𝑉(,𝑝,𝑏)   𝑊(,𝑝,𝑏)

Proof of Theorem evlslem1
Dummy variables 𝑥 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlslem1.b . . 3 𝐵 = (Base‘𝑃)
2 eqid 2735 . . 3 (1r𝑃) = (1r𝑃)
3 eqid 2735 . . 3 (1r𝑆) = (1r𝑆)
4 eqid 2735 . . 3 (.r𝑃) = (.r𝑃)
5 evlslem1.m . . 3 · = (.r𝑆)
6 evlslem1.p . . . 4 𝑃 = (𝐼 mPoly 𝑅)
7 evlslem1.i . . . 4 (𝜑𝐼𝑊)
8 evlslem1.r . . . . 5 (𝜑𝑅 ∈ CRing)
98crngringd 20204 . . . 4 (𝜑𝑅 ∈ Ring)
106, 7, 9mplringd 21981 . . 3 (𝜑𝑃 ∈ Ring)
11 evlslem1.s . . . 4 (𝜑𝑆 ∈ CRing)
1211crngringd 20204 . . 3 (𝜑𝑆 ∈ Ring)
13 2fveq3 6880 . . . . . 6 (𝑥 = (1r𝑅) → (𝐸‘(𝐴𝑥)) = (𝐸‘(𝐴‘(1r𝑅))))
14 fveq2 6875 . . . . . 6 (𝑥 = (1r𝑅) → (𝐹𝑥) = (𝐹‘(1r𝑅)))
1513, 14eqeq12d 2751 . . . . 5 (𝑥 = (1r𝑅) → ((𝐸‘(𝐴𝑥)) = (𝐹𝑥) ↔ (𝐸‘(𝐴‘(1r𝑅))) = (𝐹‘(1r𝑅))))
16 evlslem1.d . . . . . . . . 9 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
17 eqid 2735 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
18 eqid 2735 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
19 evlslem1.a . . . . . . . . 9 𝐴 = (algSc‘𝑃)
207adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐼𝑊)
219adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
22 simpr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
236, 16, 17, 18, 19, 20, 21, 22mplascl 22020 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐴𝑥) = (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅))))
2423fveq2d 6879 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐸‘(𝐴𝑥)) = (𝐸‘(𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅)))))
25 evlslem1.c . . . . . . . 8 𝐶 = (Base‘𝑆)
26 evlslem1.t . . . . . . . 8 𝑇 = (mulGrp‘𝑆)
27 evlslem1.x . . . . . . . 8 = (.g𝑇)
28 evlslem1.v . . . . . . . 8 𝑉 = (𝐼 mVar 𝑅)
29 evlslem1.e . . . . . . . 8 𝐸 = (𝑝𝐵 ↦ (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
308adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ CRing)
3111adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑆 ∈ CRing)
32 evlslem1.f . . . . . . . . 9 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
3332adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐹 ∈ (𝑅 RingHom 𝑆))
34 evlslem1.g . . . . . . . . 9 (𝜑𝐺:𝐼𝐶)
3534adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐺:𝐼𝐶)
3616psrbag0 22018 . . . . . . . . . 10 (𝐼𝑊 → (𝐼 × {0}) ∈ 𝐷)
377, 36syl 17 . . . . . . . . 9 (𝜑 → (𝐼 × {0}) ∈ 𝐷)
3837adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐼 × {0}) ∈ 𝐷)
396, 1, 25, 18, 16, 26, 27, 5, 28, 29, 20, 30, 31, 33, 35, 17, 38, 22evlslem3 22036 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐸‘(𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅)))) = ((𝐹𝑥) · (𝑇 Σg ((𝐼 × {0}) ∘f 𝐺))))
40 0zd 12598 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → 0 ∈ ℤ)
41 fvexd 6890 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → (𝐺𝑥) ∈ V)
42 fconstmpt 5716 . . . . . . . . . . . . . . 15 (𝐼 × {0}) = (𝑥𝐼 ↦ 0)
4342a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (𝐼 × {0}) = (𝑥𝐼 ↦ 0))
4434feqmptd 6946 . . . . . . . . . . . . . 14 (𝜑𝐺 = (𝑥𝐼 ↦ (𝐺𝑥)))
457, 40, 41, 43, 44offval2 7689 . . . . . . . . . . . . 13 (𝜑 → ((𝐼 × {0}) ∘f 𝐺) = (𝑥𝐼 ↦ (0 (𝐺𝑥))))
4634ffvelcdmda 7073 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐼) → (𝐺𝑥) ∈ 𝐶)
4726, 25mgpbas 20103 . . . . . . . . . . . . . . . 16 𝐶 = (Base‘𝑇)
4826, 3ringidval 20141 . . . . . . . . . . . . . . . 16 (1r𝑆) = (0g𝑇)
4947, 48, 27mulg0 19055 . . . . . . . . . . . . . . 15 ((𝐺𝑥) ∈ 𝐶 → (0 (𝐺𝑥)) = (1r𝑆))
5046, 49syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → (0 (𝐺𝑥)) = (1r𝑆))
5150mpteq2dva 5214 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝐼 ↦ (0 (𝐺𝑥))) = (𝑥𝐼 ↦ (1r𝑆)))
5245, 51eqtrd 2770 . . . . . . . . . . . 12 (𝜑 → ((𝐼 × {0}) ∘f 𝐺) = (𝑥𝐼 ↦ (1r𝑆)))
5352oveq2d 7419 . . . . . . . . . . 11 (𝜑 → (𝑇 Σg ((𝐼 × {0}) ∘f 𝐺)) = (𝑇 Σg (𝑥𝐼 ↦ (1r𝑆))))
5426crngmgp 20199 . . . . . . . . . . . . . 14 (𝑆 ∈ CRing → 𝑇 ∈ CMnd)
5511, 54syl 17 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ CMnd)
5655cmnmndd 19783 . . . . . . . . . . . 12 (𝜑𝑇 ∈ Mnd)
5748gsumz 18812 . . . . . . . . . . . 12 ((𝑇 ∈ Mnd ∧ 𝐼𝑊) → (𝑇 Σg (𝑥𝐼 ↦ (1r𝑆))) = (1r𝑆))
5856, 7, 57syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑇 Σg (𝑥𝐼 ↦ (1r𝑆))) = (1r𝑆))
5953, 58eqtrd 2770 . . . . . . . . . 10 (𝜑 → (𝑇 Σg ((𝐼 × {0}) ∘f 𝐺)) = (1r𝑆))
6059adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑇 Σg ((𝐼 × {0}) ∘f 𝐺)) = (1r𝑆))
6160oveq2d 7419 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐹𝑥) · (𝑇 Σg ((𝐼 × {0}) ∘f 𝐺))) = ((𝐹𝑥) · (1r𝑆)))
6218, 25rhmf 20443 . . . . . . . . . . 11 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶𝐶)
6332, 62syl 17 . . . . . . . . . 10 (𝜑𝐹:(Base‘𝑅)⟶𝐶)
6463ffvelcdmda 7073 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐹𝑥) ∈ 𝐶)
6525, 5, 3ringridm 20228 . . . . . . . . 9 ((𝑆 ∈ Ring ∧ (𝐹𝑥) ∈ 𝐶) → ((𝐹𝑥) · (1r𝑆)) = (𝐹𝑥))
6612, 64, 65syl2an2r 685 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐹𝑥) · (1r𝑆)) = (𝐹𝑥))
6761, 66eqtrd 2770 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐹𝑥) · (𝑇 Σg ((𝐼 × {0}) ∘f 𝐺))) = (𝐹𝑥))
6824, 39, 673eqtrd 2774 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐸‘(𝐴𝑥)) = (𝐹𝑥))
6968ralrimiva 3132 . . . . 5 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)(𝐸‘(𝐴𝑥)) = (𝐹𝑥))
70 eqid 2735 . . . . . . 7 (1r𝑅) = (1r𝑅)
7118, 70ringidcl 20223 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
729, 71syl 17 . . . . 5 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
7315, 69, 72rspcdva 3602 . . . 4 (𝜑 → (𝐸‘(𝐴‘(1r𝑅))) = (𝐹‘(1r𝑅)))
746mplassa 21980 . . . . . . . . 9 ((𝐼𝑊𝑅 ∈ CRing) → 𝑃 ∈ AssAlg)
757, 8, 74syl2anc 584 . . . . . . . 8 (𝜑𝑃 ∈ AssAlg)
76 eqid 2735 . . . . . . . . 9 (Scalar‘𝑃) = (Scalar‘𝑃)
7719, 76asclrhm 21848 . . . . . . . 8 (𝑃 ∈ AssAlg → 𝐴 ∈ ((Scalar‘𝑃) RingHom 𝑃))
7875, 77syl 17 . . . . . . 7 (𝜑𝐴 ∈ ((Scalar‘𝑃) RingHom 𝑃))
796, 7, 8mplsca 21971 . . . . . . . 8 (𝜑𝑅 = (Scalar‘𝑃))
8079oveq1d 7418 . . . . . . 7 (𝜑 → (𝑅 RingHom 𝑃) = ((Scalar‘𝑃) RingHom 𝑃))
8178, 80eleqtrrd 2837 . . . . . 6 (𝜑𝐴 ∈ (𝑅 RingHom 𝑃))
8270, 2rhm1 20447 . . . . . 6 (𝐴 ∈ (𝑅 RingHom 𝑃) → (𝐴‘(1r𝑅)) = (1r𝑃))
8381, 82syl 17 . . . . 5 (𝜑 → (𝐴‘(1r𝑅)) = (1r𝑃))
8483fveq2d 6879 . . . 4 (𝜑 → (𝐸‘(𝐴‘(1r𝑅))) = (𝐸‘(1r𝑃)))
8570, 3rhm1 20447 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r𝑅)) = (1r𝑆))
8632, 85syl 17 . . . 4 (𝜑 → (𝐹‘(1r𝑅)) = (1r𝑆))
8773, 84, 863eqtr3d 2778 . . 3 (𝜑 → (𝐸‘(1r𝑃)) = (1r𝑆))
88 eqid 2735 . . . . 5 (+g𝑃) = (+g𝑃)
89 eqid 2735 . . . . 5 (+g𝑆) = (+g𝑆)
9010ringgrpd 20200 . . . . 5 (𝜑𝑃 ∈ Grp)
9112ringgrpd 20200 . . . . 5 (𝜑𝑆 ∈ Grp)
92 eqid 2735 . . . . . . 7 (0g𝑆) = (0g𝑆)
93 ringcmn 20240 . . . . . . . . 9 (𝑆 ∈ Ring → 𝑆 ∈ CMnd)
9412, 93syl 17 . . . . . . . 8 (𝜑𝑆 ∈ CMnd)
9594adantr 480 . . . . . . 7 ((𝜑𝑝𝐵) → 𝑆 ∈ CMnd)
96 ovex 7436 . . . . . . . . 9 (ℕ0m 𝐼) ∈ V
9716, 96rabex2 5311 . . . . . . . 8 𝐷 ∈ V
9897a1i 11 . . . . . . 7 ((𝜑𝑝𝐵) → 𝐷 ∈ V)
997adantr 480 . . . . . . . . 9 ((𝜑𝑝𝐵) → 𝐼𝑊)
1008adantr 480 . . . . . . . . 9 ((𝜑𝑝𝐵) → 𝑅 ∈ CRing)
10111adantr 480 . . . . . . . . 9 ((𝜑𝑝𝐵) → 𝑆 ∈ CRing)
10232adantr 480 . . . . . . . . 9 ((𝜑𝑝𝐵) → 𝐹 ∈ (𝑅 RingHom 𝑆))
10334adantr 480 . . . . . . . . 9 ((𝜑𝑝𝐵) → 𝐺:𝐼𝐶)
104 simpr 484 . . . . . . . . 9 ((𝜑𝑝𝐵) → 𝑝𝐵)
1056, 1, 25, 16, 26, 27, 5, 28, 29, 99, 100, 101, 102, 103, 104evlslem6 22037 . . . . . . . 8 ((𝜑𝑝𝐵) → ((𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶 ∧ (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆)))
106105simpld 494 . . . . . . 7 ((𝜑𝑝𝐵) → (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶)
107105simprd 495 . . . . . . 7 ((𝜑𝑝𝐵) → (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆))
10825, 92, 95, 98, 106, 107gsumcl 19894 . . . . . 6 ((𝜑𝑝𝐵) → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) ∈ 𝐶)
109108, 29fmptd 7103 . . . . 5 (𝜑𝐸:𝐵𝐶)
110 eqid 2735 . . . . . . . . . . . . . . . . 17 (+g𝑅) = (+g𝑅)
111 simplrl 776 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑥𝐵)
112 simplrr 777 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑦𝐵)
1136, 1, 110, 88, 111, 112mpladd 21967 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝑥(+g𝑃)𝑦) = (𝑥f (+g𝑅)𝑦))
114113fveq1d 6877 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝑥(+g𝑃)𝑦)‘𝑏) = ((𝑥f (+g𝑅)𝑦)‘𝑏))
115 simprl 770 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
1166, 18, 1, 16, 115mplelf 21956 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥:𝐷⟶(Base‘𝑅))
117116ffnd 6706 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 Fn 𝐷)
118117adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑥 Fn 𝐷)
119 simprr 772 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
1206, 18, 1, 16, 119mplelf 21956 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦:𝐷⟶(Base‘𝑅))
121120ffnd 6706 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 Fn 𝐷)
122121adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑦 Fn 𝐷)
12397a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝐷 ∈ V)
124 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑏𝐷)
125 fnfvof 7686 . . . . . . . . . . . . . . . 16 (((𝑥 Fn 𝐷𝑦 Fn 𝐷) ∧ (𝐷 ∈ V ∧ 𝑏𝐷)) → ((𝑥f (+g𝑅)𝑦)‘𝑏) = ((𝑥𝑏)(+g𝑅)(𝑦𝑏)))
126118, 122, 123, 124, 125syl22anc 838 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝑥f (+g𝑅)𝑦)‘𝑏) = ((𝑥𝑏)(+g𝑅)(𝑦𝑏)))
127114, 126eqtrd 2770 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝑥(+g𝑃)𝑦)‘𝑏) = ((𝑥𝑏)(+g𝑅)(𝑦𝑏)))
128127fveq2d 6879 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) = (𝐹‘((𝑥𝑏)(+g𝑅)(𝑦𝑏))))
129 rhmghm 20442 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
13032, 129syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))
131130ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
132116ffvelcdmda 7073 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝑥𝑏) ∈ (Base‘𝑅))
133120ffvelcdmda 7073 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝑦𝑏) ∈ (Base‘𝑅))
13418, 110, 89ghmlin 19202 . . . . . . . . . . . . . 14 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝑥𝑏) ∈ (Base‘𝑅) ∧ (𝑦𝑏) ∈ (Base‘𝑅)) → (𝐹‘((𝑥𝑏)(+g𝑅)(𝑦𝑏))) = ((𝐹‘(𝑥𝑏))(+g𝑆)(𝐹‘(𝑦𝑏))))
135131, 132, 133, 134syl3anc 1373 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝐹‘((𝑥𝑏)(+g𝑅)(𝑦𝑏))) = ((𝐹‘(𝑥𝑏))(+g𝑆)(𝐹‘(𝑦𝑏))))
136128, 135eqtrd 2770 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) = ((𝐹‘(𝑥𝑏))(+g𝑆)(𝐹‘(𝑦𝑏))))
137136oveq1d 7418 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))) = (((𝐹‘(𝑥𝑏))(+g𝑆)(𝐹‘(𝑦𝑏))) · (𝑇 Σg (𝑏f 𝐺))))
13812ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑆 ∈ Ring)
13963ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝐹:(Base‘𝑅)⟶𝐶)
140139, 132ffvelcdmd 7074 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝐹‘(𝑥𝑏)) ∈ 𝐶)
141139, 133ffvelcdmd 7074 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝐹‘(𝑦𝑏)) ∈ 𝐶)
14255ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑇 ∈ CMnd)
14334ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝐺:𝐼𝐶)
14416, 47, 27, 142, 124, 143psrbagev2 22034 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝑇 Σg (𝑏f 𝐺)) ∈ 𝐶)
14525, 89, 5ringdir 20220 . . . . . . . . . . . 12 ((𝑆 ∈ Ring ∧ ((𝐹‘(𝑥𝑏)) ∈ 𝐶 ∧ (𝐹‘(𝑦𝑏)) ∈ 𝐶 ∧ (𝑇 Σg (𝑏f 𝐺)) ∈ 𝐶)) → (((𝐹‘(𝑥𝑏))(+g𝑆)(𝐹‘(𝑦𝑏))) · (𝑇 Σg (𝑏f 𝐺))) = (((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))(+g𝑆)((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
146138, 140, 141, 144, 145syl13anc 1374 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (((𝐹‘(𝑥𝑏))(+g𝑆)(𝐹‘(𝑦𝑏))) · (𝑇 Σg (𝑏f 𝐺))) = (((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))(+g𝑆)((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
147137, 146eqtrd 2770 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))) = (((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))(+g𝑆)((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
148147mpteq2dva 5214 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ (((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))(+g𝑆)((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
14997a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐷 ∈ V)
150 ovexd 7438 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺))) ∈ V)
151 ovexd 7438 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))) ∈ V)
152 eqidd 2736 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
153 eqidd 2736 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
154149, 150, 151, 152, 153offval2 7689 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) ∘f (+g𝑆)(𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = (𝑏𝐷 ↦ (((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))(+g𝑆)((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
155148, 154eqtr4d 2773 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = ((𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) ∘f (+g𝑆)(𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
156155oveq2d 7419 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = (𝑆 Σg ((𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) ∘f (+g𝑆)(𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))))
15794adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑆 ∈ CMnd)
1587adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐼𝑊)
1598adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑅 ∈ CRing)
16011adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑆 ∈ CRing)
16132adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐹 ∈ (𝑅 RingHom 𝑆))
16234adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐺:𝐼𝐶)
1636, 1, 25, 16, 26, 27, 5, 28, 29, 158, 159, 160, 161, 162, 115evlslem6 22037 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶 ∧ (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆)))
164163simpld 494 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶)
1656, 1, 25, 16, 26, 27, 5, 28, 29, 158, 159, 160, 161, 162, 119evlslem6 22037 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶 ∧ (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆)))
166165simpld 494 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶)
167163simprd 495 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆))
168165simprd 495 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆))
16925, 92, 89, 157, 149, 164, 166, 167, 168gsumadd 19902 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg ((𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) ∘f (+g𝑆)(𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))) = ((𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))(+g𝑆)(𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))))
170156, 169eqtrd 2770 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = ((𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))(+g𝑆)(𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))))
17190adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ Grp)
1721, 88grpcl 18922 . . . . . . . 8 ((𝑃 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝑃)𝑦) ∈ 𝐵)
173171, 115, 119, 172syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑃)𝑦) ∈ 𝐵)
174 fveq1 6874 . . . . . . . . . . . 12 (𝑝 = (𝑥(+g𝑃)𝑦) → (𝑝𝑏) = ((𝑥(+g𝑃)𝑦)‘𝑏))
175174fveq2d 6879 . . . . . . . . . . 11 (𝑝 = (𝑥(+g𝑃)𝑦) → (𝐹‘(𝑝𝑏)) = (𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)))
176175oveq1d 7418 . . . . . . . . . 10 (𝑝 = (𝑥(+g𝑃)𝑦) → ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))) = ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))
177176mpteq2dv 5215 . . . . . . . . 9 (𝑝 = (𝑥(+g𝑃)𝑦) → (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
178177oveq2d 7419 . . . . . . . 8 (𝑝 = (𝑥(+g𝑃)𝑦) → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
179 ovex 7436 . . . . . . . 8 (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) ∈ V
180178, 29, 179fvmpt 6985 . . . . . . 7 ((𝑥(+g𝑃)𝑦) ∈ 𝐵 → (𝐸‘(𝑥(+g𝑃)𝑦)) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
181173, 180syl 17 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘(𝑥(+g𝑃)𝑦)) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
182 fveq1 6874 . . . . . . . . . . . . 13 (𝑝 = 𝑥 → (𝑝𝑏) = (𝑥𝑏))
183182fveq2d 6879 . . . . . . . . . . . 12 (𝑝 = 𝑥 → (𝐹‘(𝑝𝑏)) = (𝐹‘(𝑥𝑏)))
184183oveq1d 7418 . . . . . . . . . . 11 (𝑝 = 𝑥 → ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))) = ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺))))
185184mpteq2dv 5215 . . . . . . . . . 10 (𝑝 = 𝑥 → (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
186185oveq2d 7419 . . . . . . . . 9 (𝑝 = 𝑥 → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
187 ovex 7436 . . . . . . . . 9 (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) ∈ V
188186, 29, 187fvmpt 6985 . . . . . . . 8 (𝑥𝐵 → (𝐸𝑥) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
189115, 188syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸𝑥) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
190 fveq1 6874 . . . . . . . . . . . . 13 (𝑝 = 𝑦 → (𝑝𝑏) = (𝑦𝑏))
191190fveq2d 6879 . . . . . . . . . . . 12 (𝑝 = 𝑦 → (𝐹‘(𝑝𝑏)) = (𝐹‘(𝑦𝑏)))
192191oveq1d 7418 . . . . . . . . . . 11 (𝑝 = 𝑦 → ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))) = ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))
193192mpteq2dv 5215 . . . . . . . . . 10 (𝑝 = 𝑦 → (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
194193oveq2d 7419 . . . . . . . . 9 (𝑝 = 𝑦 → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
195 ovex 7436 . . . . . . . . 9 (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) ∈ V
196194, 29, 195fvmpt 6985 . . . . . . . 8 (𝑦𝐵 → (𝐸𝑦) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
197196ad2antll 729 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸𝑦) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
198189, 197oveq12d 7421 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐸𝑥)(+g𝑆)(𝐸𝑦)) = ((𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))(+g𝑆)(𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))))
199170, 181, 1983eqtr4d 2780 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘(𝑥(+g𝑃)𝑦)) = ((𝐸𝑥)(+g𝑆)(𝐸𝑦)))
2001, 25, 88, 89, 90, 91, 109, 199isghmd 19206 . . . 4 (𝜑𝐸 ∈ (𝑃 GrpHom 𝑆))
201 eqid 2735 . . . . . . . . . . 11 (mulGrp‘𝑅) = (mulGrp‘𝑅)
202201, 26rhmmhm 20437 . . . . . . . . . 10 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom 𝑇))
20332, 202syl 17 . . . . . . . . 9 (𝜑𝐹 ∈ ((mulGrp‘𝑅) MndHom 𝑇))
204203adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom 𝑇))
205 simprll 778 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑥𝐵)
2066, 18, 1, 16, 205mplelf 21956 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑥:𝐷⟶(Base‘𝑅))
207 simprrl 780 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑧𝐷)
208206, 207ffvelcdmd 7074 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝑥𝑧) ∈ (Base‘𝑅))
209 simprlr 779 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑦𝐵)
2106, 18, 1, 16, 209mplelf 21956 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑦:𝐷⟶(Base‘𝑅))
211 simprrr 781 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑤𝐷)
212210, 211ffvelcdmd 7074 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝑦𝑤) ∈ (Base‘𝑅))
213201, 18mgpbas 20103 . . . . . . . . 9 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
214 eqid 2735 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
215201, 214mgpplusg 20102 . . . . . . . . 9 (.r𝑅) = (+g‘(mulGrp‘𝑅))
21626, 5mgpplusg 20102 . . . . . . . . 9 · = (+g𝑇)
217213, 215, 216mhmlin 18769 . . . . . . . 8 ((𝐹 ∈ ((mulGrp‘𝑅) MndHom 𝑇) ∧ (𝑥𝑧) ∈ (Base‘𝑅) ∧ (𝑦𝑤) ∈ (Base‘𝑅)) → (𝐹‘((𝑥𝑧)(.r𝑅)(𝑦𝑤))) = ((𝐹‘(𝑥𝑧)) · (𝐹‘(𝑦𝑤))))
218204, 208, 212, 217syl3anc 1373 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐹‘((𝑥𝑧)(.r𝑅)(𝑦𝑤))) = ((𝐹‘(𝑥𝑧)) · (𝐹‘(𝑦𝑤))))
21956ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → 𝑇 ∈ Mnd)
220 simprl 770 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑧𝐷)
22116psrbagf 21876 . . . . . . . . . . . . . . 15 (𝑧𝐷𝑧:𝐼⟶ℕ0)
222220, 221syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑧:𝐼⟶ℕ0)
223222ffvelcdmda 7073 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝑧𝑣) ∈ ℕ0)
22416psrbagf 21876 . . . . . . . . . . . . . . 15 (𝑤𝐷𝑤:𝐼⟶ℕ0)
225224ad2antll 729 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑤:𝐼⟶ℕ0)
226225ffvelcdmda 7073 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝑤𝑣) ∈ ℕ0)
22734adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝐺:𝐼𝐶)
228227ffvelcdmda 7073 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝐺𝑣) ∈ 𝐶)
22947, 27, 216mulgnn0dir 19085 . . . . . . . . . . . . 13 ((𝑇 ∈ Mnd ∧ ((𝑧𝑣) ∈ ℕ0 ∧ (𝑤𝑣) ∈ ℕ0 ∧ (𝐺𝑣) ∈ 𝐶)) → (((𝑧𝑣) + (𝑤𝑣)) (𝐺𝑣)) = (((𝑧𝑣) (𝐺𝑣)) · ((𝑤𝑣) (𝐺𝑣))))
230219, 223, 226, 228, 229syl13anc 1374 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (((𝑧𝑣) + (𝑤𝑣)) (𝐺𝑣)) = (((𝑧𝑣) (𝐺𝑣)) · ((𝑤𝑣) (𝐺𝑣))))
231230mpteq2dva 5214 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑣𝐼 ↦ (((𝑧𝑣) + (𝑤𝑣)) (𝐺𝑣))) = (𝑣𝐼 ↦ (((𝑧𝑣) (𝐺𝑣)) · ((𝑤𝑣) (𝐺𝑣)))))
2327adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝐼𝑊)
233 ovexd 7438 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → ((𝑧𝑣) + (𝑤𝑣)) ∈ V)
234 fvexd 6890 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝐺𝑣) ∈ V)
235222ffnd 6706 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑧 Fn 𝐼)
236225ffnd 6706 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑤 Fn 𝐼)
237 inidm 4202 . . . . . . . . . . . . 13 (𝐼𝐼) = 𝐼
238 eqidd 2736 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝑧𝑣) = (𝑧𝑣))
239 eqidd 2736 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝑤𝑣) = (𝑤𝑣))
240235, 236, 232, 232, 237, 238, 239offval 7678 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑧f + 𝑤) = (𝑣𝐼 ↦ ((𝑧𝑣) + (𝑤𝑣))))
24134feqmptd 6946 . . . . . . . . . . . . 13 (𝜑𝐺 = (𝑣𝐼 ↦ (𝐺𝑣)))
242241adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝐺 = (𝑣𝐼 ↦ (𝐺𝑣)))
243232, 233, 234, 240, 242offval2 7689 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → ((𝑧f + 𝑤) ∘f 𝐺) = (𝑣𝐼 ↦ (((𝑧𝑣) + (𝑤𝑣)) (𝐺𝑣))))
244 ovexd 7438 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → ((𝑧𝑣) (𝐺𝑣)) ∈ V)
245 ovexd 7438 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → ((𝑤𝑣) (𝐺𝑣)) ∈ V)
24634ffnd 6706 . . . . . . . . . . . . . 14 (𝜑𝐺 Fn 𝐼)
247246adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝐺 Fn 𝐼)
248 eqidd 2736 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝐺𝑣) = (𝐺𝑣))
249235, 247, 232, 232, 237, 238, 248offval 7678 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑧f 𝐺) = (𝑣𝐼 ↦ ((𝑧𝑣) (𝐺𝑣))))
250236, 247, 232, 232, 237, 239, 248offval 7678 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑤f 𝐺) = (𝑣𝐼 ↦ ((𝑤𝑣) (𝐺𝑣))))
251232, 244, 245, 249, 250offval2 7689 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → ((𝑧f 𝐺) ∘f · (𝑤f 𝐺)) = (𝑣𝐼 ↦ (((𝑧𝑣) (𝐺𝑣)) · ((𝑤𝑣) (𝐺𝑣)))))
252231, 243, 2513eqtr4d 2780 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → ((𝑧f + 𝑤) ∘f 𝐺) = ((𝑧f 𝐺) ∘f · (𝑤f 𝐺)))
253252oveq2d 7419 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑇 Σg ((𝑧f + 𝑤) ∘f 𝐺)) = (𝑇 Σg ((𝑧f 𝐺) ∘f · (𝑤f 𝐺))))
25455adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑇 ∈ CMnd)
25516, 47, 27, 48, 254, 220, 227psrbagev1 22033 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → ((𝑧f 𝐺):𝐼𝐶 ∧ (𝑧f 𝐺) finSupp (1r𝑆)))
256255simpld 494 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑧f 𝐺):𝐼𝐶)
257 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑤𝐷)
25816, 47, 27, 48, 254, 257, 227psrbagev1 22033 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → ((𝑤f 𝐺):𝐼𝐶 ∧ (𝑤f 𝐺) finSupp (1r𝑆)))
259258simpld 494 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑤f 𝐺):𝐼𝐶)
260255simprd 495 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑧f 𝐺) finSupp (1r𝑆))
261258simprd 495 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑤f 𝐺) finSupp (1r𝑆))
26247, 48, 216, 254, 232, 256, 259, 260, 261gsumadd 19902 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑇 Σg ((𝑧f 𝐺) ∘f · (𝑤f 𝐺))) = ((𝑇 Σg (𝑧f 𝐺)) · (𝑇 Σg (𝑤f 𝐺))))
263253, 262eqtrd 2770 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑇 Σg ((𝑧f + 𝑤) ∘f 𝐺)) = ((𝑇 Σg (𝑧f 𝐺)) · (𝑇 Σg (𝑤f 𝐺))))
264263adantrl 716 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝑇 Σg ((𝑧f + 𝑤) ∘f 𝐺)) = ((𝑇 Σg (𝑧f 𝐺)) · (𝑇 Σg (𝑤f 𝐺))))
265218, 264oveq12d 7421 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → ((𝐹‘((𝑥𝑧)(.r𝑅)(𝑦𝑤))) · (𝑇 Σg ((𝑧f + 𝑤) ∘f 𝐺))) = (((𝐹‘(𝑥𝑧)) · (𝐹‘(𝑦𝑤))) · ((𝑇 Σg (𝑧f 𝐺)) · (𝑇 Σg (𝑤f 𝐺)))))
26655adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑇 ∈ CMnd)
26763adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝐹:(Base‘𝑅)⟶𝐶)
268267, 208ffvelcdmd 7074 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐹‘(𝑥𝑧)) ∈ 𝐶)
269267, 212ffvelcdmd 7074 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐹‘(𝑦𝑤)) ∈ 𝐶)
27016, 47, 27, 254, 220, 227psrbagev2 22034 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑇 Σg (𝑧f 𝐺)) ∈ 𝐶)
271270adantrl 716 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝑇 Σg (𝑧f 𝐺)) ∈ 𝐶)
27216, 47, 27, 254, 257, 227psrbagev2 22034 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑇 Σg (𝑤f 𝐺)) ∈ 𝐶)
273272adantrl 716 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝑇 Σg (𝑤f 𝐺)) ∈ 𝐶)
27447, 216cmn4 19780 . . . . . . 7 ((𝑇 ∈ CMnd ∧ ((𝐹‘(𝑥𝑧)) ∈ 𝐶 ∧ (𝐹‘(𝑦𝑤)) ∈ 𝐶) ∧ ((𝑇 Σg (𝑧f 𝐺)) ∈ 𝐶 ∧ (𝑇 Σg (𝑤f 𝐺)) ∈ 𝐶)) → (((𝐹‘(𝑥𝑧)) · (𝐹‘(𝑦𝑤))) · ((𝑇 Σg (𝑧f 𝐺)) · (𝑇 Σg (𝑤f 𝐺)))) = (((𝐹‘(𝑥𝑧)) · (𝑇 Σg (𝑧f 𝐺))) · ((𝐹‘(𝑦𝑤)) · (𝑇 Σg (𝑤f 𝐺)))))
275266, 268, 269, 271, 273, 274syl122anc 1381 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (((𝐹‘(𝑥𝑧)) · (𝐹‘(𝑦𝑤))) · ((𝑇 Σg (𝑧f 𝐺)) · (𝑇 Σg (𝑤f 𝐺)))) = (((𝐹‘(𝑥𝑧)) · (𝑇 Σg (𝑧f 𝐺))) · ((𝐹‘(𝑦𝑤)) · (𝑇 Σg (𝑤f 𝐺)))))
276265, 275eqtrd 2770 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → ((𝐹‘((𝑥𝑧)(.r𝑅)(𝑦𝑤))) · (𝑇 Σg ((𝑧f + 𝑤) ∘f 𝐺))) = (((𝐹‘(𝑥𝑧)) · (𝑇 Σg (𝑧f 𝐺))) · ((𝐹‘(𝑦𝑤)) · (𝑇 Σg (𝑤f 𝐺)))))
2777adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝐼𝑊)
2788adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑅 ∈ CRing)
27911adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑆 ∈ CRing)
28032adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝐹 ∈ (𝑅 RingHom 𝑆))
28134adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝐺:𝐼𝐶)
28216psrbagaddcl 21882 . . . . . . 7 ((𝑧𝐷𝑤𝐷) → (𝑧f + 𝑤) ∈ 𝐷)
283282ad2antll 729 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝑧f + 𝑤) ∈ 𝐷)
2849adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑅 ∈ Ring)
28518, 214ringcl 20208 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥𝑧) ∈ (Base‘𝑅) ∧ (𝑦𝑤) ∈ (Base‘𝑅)) → ((𝑥𝑧)(.r𝑅)(𝑦𝑤)) ∈ (Base‘𝑅))
286284, 208, 212, 285syl3anc 1373 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → ((𝑥𝑧)(.r𝑅)(𝑦𝑤)) ∈ (Base‘𝑅))
2876, 1, 25, 18, 16, 26, 27, 5, 28, 29, 277, 278, 279, 280, 281, 17, 283, 286evlslem3 22036 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐸‘(𝑣𝐷 ↦ if(𝑣 = (𝑧f + 𝑤), ((𝑥𝑧)(.r𝑅)(𝑦𝑤)), (0g𝑅)))) = ((𝐹‘((𝑥𝑧)(.r𝑅)(𝑦𝑤))) · (𝑇 Σg ((𝑧f + 𝑤) ∘f 𝐺))))
2886, 1, 25, 18, 16, 26, 27, 5, 28, 29, 277, 278, 279, 280, 281, 17, 207, 208evlslem3 22036 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐸‘(𝑣𝐷 ↦ if(𝑣 = 𝑧, (𝑥𝑧), (0g𝑅)))) = ((𝐹‘(𝑥𝑧)) · (𝑇 Σg (𝑧f 𝐺))))
2896, 1, 25, 18, 16, 26, 27, 5, 28, 29, 277, 278, 279, 280, 281, 17, 211, 212evlslem3 22036 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐸‘(𝑣𝐷 ↦ if(𝑣 = 𝑤, (𝑦𝑤), (0g𝑅)))) = ((𝐹‘(𝑦𝑤)) · (𝑇 Σg (𝑤f 𝐺))))
290288, 289oveq12d 7421 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → ((𝐸‘(𝑣𝐷 ↦ if(𝑣 = 𝑧, (𝑥𝑧), (0g𝑅)))) · (𝐸‘(𝑣𝐷 ↦ if(𝑣 = 𝑤, (𝑦𝑤), (0g𝑅))))) = (((𝐹‘(𝑥𝑧)) · (𝑇 Σg (𝑧f 𝐺))) · ((𝐹‘(𝑦𝑤)) · (𝑇 Σg (𝑤f 𝐺)))))
291276, 287, 2903eqtr4d 2780 . . . 4 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐸‘(𝑣𝐷 ↦ if(𝑣 = (𝑧f + 𝑤), ((𝑥𝑧)(.r𝑅)(𝑦𝑤)), (0g𝑅)))) = ((𝐸‘(𝑣𝐷 ↦ if(𝑣 = 𝑧, (𝑥𝑧), (0g𝑅)))) · (𝐸‘(𝑣𝐷 ↦ if(𝑣 = 𝑤, (𝑦𝑤), (0g𝑅))))))
2926, 1, 5, 17, 16, 7, 8, 11, 200, 291evlslem2 22035 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘(𝑥(.r𝑃)𝑦)) = ((𝐸𝑥) · (𝐸𝑦)))
2931, 2, 3, 4, 5, 10, 12, 87, 292, 25, 88, 89, 109, 199isrhmd 20446 . 2 (𝜑𝐸 ∈ (𝑃 RingHom 𝑆))
294 ovex 7436 . . . . . 6 (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) ∈ V
295294, 29fnmpti 6680 . . . . 5 𝐸 Fn 𝐵
296295a1i 11 . . . 4 (𝜑𝐸 Fn 𝐵)
29718, 1rhmf 20443 . . . . . 6 (𝐴 ∈ (𝑅 RingHom 𝑃) → 𝐴:(Base‘𝑅)⟶𝐵)
29881, 297syl 17 . . . . 5 (𝜑𝐴:(Base‘𝑅)⟶𝐵)
299298ffnd 6706 . . . 4 (𝜑𝐴 Fn (Base‘𝑅))
300298frnd 6713 . . . 4 (𝜑 → ran 𝐴𝐵)
301 fnco 6655 . . . 4 ((𝐸 Fn 𝐵𝐴 Fn (Base‘𝑅) ∧ ran 𝐴𝐵) → (𝐸𝐴) Fn (Base‘𝑅))
302296, 299, 300, 301syl3anc 1373 . . 3 (𝜑 → (𝐸𝐴) Fn (Base‘𝑅))
30363ffnd 6706 . . 3 (𝜑𝐹 Fn (Base‘𝑅))
304 fvco2 6975 . . . . 5 ((𝐴 Fn (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐸𝐴)‘𝑥) = (𝐸‘(𝐴𝑥)))
305299, 304sylan 580 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐸𝐴)‘𝑥) = (𝐸‘(𝐴𝑥)))
306305, 68eqtrd 2770 . . 3 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐸𝐴)‘𝑥) = (𝐹𝑥))
307302, 303, 306eqfnfvd 7023 . 2 (𝜑 → (𝐸𝐴) = 𝐹)
3086, 28, 1, 7, 9mvrf2 21951 . . . . 5 (𝜑𝑉:𝐼𝐵)
309308ffnd 6706 . . . 4 (𝜑𝑉 Fn 𝐼)
310308frnd 6713 . . . 4 (𝜑 → ran 𝑉𝐵)
311 fnco 6655 . . . 4 ((𝐸 Fn 𝐵𝑉 Fn 𝐼 ∧ ran 𝑉𝐵) → (𝐸𝑉) Fn 𝐼)
312296, 309, 310, 311syl3anc 1373 . . 3 (𝜑 → (𝐸𝑉) Fn 𝐼)
313 fvco2 6975 . . . . 5 ((𝑉 Fn 𝐼𝑥𝐼) → ((𝐸𝑉)‘𝑥) = (𝐸‘(𝑉𝑥)))
314309, 313sylan 580 . . . 4 ((𝜑𝑥𝐼) → ((𝐸𝑉)‘𝑥) = (𝐸‘(𝑉𝑥)))
3157adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐼𝑊)
3168adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑅 ∈ CRing)
317 simpr 484 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑥𝐼)
31828, 16, 17, 70, 315, 316, 317mvrval 21940 . . . . . 6 ((𝜑𝑥𝐼) → (𝑉𝑥) = (𝑦𝐷 ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅))))
319318fveq2d 6879 . . . . 5 ((𝜑𝑥𝐼) → (𝐸‘(𝑉𝑥)) = (𝐸‘(𝑦𝐷 ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅)))))
32011adantr 480 . . . . . 6 ((𝜑𝑥𝐼) → 𝑆 ∈ CRing)
32132adantr 480 . . . . . 6 ((𝜑𝑥𝐼) → 𝐹 ∈ (𝑅 RingHom 𝑆))
32234adantr 480 . . . . . 6 ((𝜑𝑥𝐼) → 𝐺:𝐼𝐶)
32316psrbagsn 22019 . . . . . . . 8 (𝐼𝑊 → (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∈ 𝐷)
3247, 323syl 17 . . . . . . 7 (𝜑 → (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∈ 𝐷)
325324adantr 480 . . . . . 6 ((𝜑𝑥𝐼) → (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∈ 𝐷)
32672adantr 480 . . . . . 6 ((𝜑𝑥𝐼) → (1r𝑅) ∈ (Base‘𝑅))
3276, 1, 25, 18, 16, 26, 27, 5, 28, 29, 315, 316, 320, 321, 322, 17, 325, 326evlslem3 22036 . . . . 5 ((𝜑𝑥𝐼) → (𝐸‘(𝑦𝐷 ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅)))) = ((𝐹‘(1r𝑅)) · (𝑇 Σg ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f 𝐺))))
32886adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → (𝐹‘(1r𝑅)) = (1r𝑆))
329 1nn0 12515 . . . . . . . . . . . . . 14 1 ∈ ℕ0
330 0nn0 12514 . . . . . . . . . . . . . 14 0 ∈ ℕ0
331329, 330ifcli 4548 . . . . . . . . . . . . 13 if(𝑧 = 𝑥, 1, 0) ∈ ℕ0
332331a1i 11 . . . . . . . . . . . 12 ((𝜑𝑧𝐼) → if(𝑧 = 𝑥, 1, 0) ∈ ℕ0)
33334ffvelcdmda 7073 . . . . . . . . . . . 12 ((𝜑𝑧𝐼) → (𝐺𝑧) ∈ 𝐶)
334 eqidd 2736 . . . . . . . . . . . 12 (𝜑 → (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)))
33534feqmptd 6946 . . . . . . . . . . . 12 (𝜑𝐺 = (𝑧𝐼 ↦ (𝐺𝑧)))
3367, 332, 333, 334, 335offval2 7689 . . . . . . . . . . 11 (𝜑 → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f 𝐺) = (𝑧𝐼 ↦ (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧))))
337 oveq1 7410 . . . . . . . . . . . . . 14 (1 = if(𝑧 = 𝑥, 1, 0) → (1 (𝐺𝑧)) = (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧)))
338337eqeq1d 2737 . . . . . . . . . . . . 13 (1 = if(𝑧 = 𝑥, 1, 0) → ((1 (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) ↔ (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))))
339 oveq1 7410 . . . . . . . . . . . . . 14 (0 = if(𝑧 = 𝑥, 1, 0) → (0 (𝐺𝑧)) = (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧)))
340339eqeq1d 2737 . . . . . . . . . . . . 13 (0 = if(𝑧 = 𝑥, 1, 0) → ((0 (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) ↔ (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))))
341333adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝐼) ∧ 𝑧 = 𝑥) → (𝐺𝑧) ∈ 𝐶)
34247, 27mulg1 19062 . . . . . . . . . . . . . . 15 ((𝐺𝑧) ∈ 𝐶 → (1 (𝐺𝑧)) = (𝐺𝑧))
343341, 342syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐼) ∧ 𝑧 = 𝑥) → (1 (𝐺𝑧)) = (𝐺𝑧))
344 iftrue 4506 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (𝐺𝑧))
345344adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐼) ∧ 𝑧 = 𝑥) → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (𝐺𝑧))
346343, 345eqtr4d 2773 . . . . . . . . . . . . 13 (((𝜑𝑧𝐼) ∧ 𝑧 = 𝑥) → (1 (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))
34747, 48, 27mulg0 19055 . . . . . . . . . . . . . . . 16 ((𝐺𝑧) ∈ 𝐶 → (0 (𝐺𝑧)) = (1r𝑆))
348333, 347syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐼) → (0 (𝐺𝑧)) = (1r𝑆))
349348adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐼) ∧ ¬ 𝑧 = 𝑥) → (0 (𝐺𝑧)) = (1r𝑆))
350 iffalse 4509 . . . . . . . . . . . . . . 15 𝑧 = 𝑥 → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (1r𝑆))
351350adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐼) ∧ ¬ 𝑧 = 𝑥) → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (1r𝑆))
352349, 351eqtr4d 2773 . . . . . . . . . . . . 13 (((𝜑𝑧𝐼) ∧ ¬ 𝑧 = 𝑥) → (0 (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))
353338, 340, 346, 352ifbothda 4539 . . . . . . . . . . . 12 ((𝜑𝑧𝐼) → (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))
354353mpteq2dva 5214 . . . . . . . . . . 11 (𝜑 → (𝑧𝐼 ↦ (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧))) = (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))))
355336, 354eqtrd 2770 . . . . . . . . . 10 (𝜑 → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f 𝐺) = (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))))
356355adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐼) → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f 𝐺) = (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))))
357356oveq2d 7419 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝑇 Σg ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f 𝐺)) = (𝑇 Σg (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))))
35856adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐼) → 𝑇 ∈ Mnd)
359333adantlr 715 . . . . . . . . . . 11 (((𝜑𝑥𝐼) ∧ 𝑧𝐼) → (𝐺𝑧) ∈ 𝐶)
36025, 3ringidcl 20223 . . . . . . . . . . . . 13 (𝑆 ∈ Ring → (1r𝑆) ∈ 𝐶)
36112, 360syl 17 . . . . . . . . . . . 12 (𝜑 → (1r𝑆) ∈ 𝐶)
362361ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥𝐼) ∧ 𝑧𝐼) → (1r𝑆) ∈ 𝐶)
363359, 362ifcld 4547 . . . . . . . . . 10 (((𝜑𝑥𝐼) ∧ 𝑧𝐼) → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) ∈ 𝐶)
364363fmpttd 7104 . . . . . . . . 9 ((𝜑𝑥𝐼) → (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))):𝐼𝐶)
365 eldifsnneq 4767 . . . . . . . . . . . 12 (𝑧 ∈ (𝐼 ∖ {𝑥}) → ¬ 𝑧 = 𝑥)
366365, 350syl 17 . . . . . . . . . . 11 (𝑧 ∈ (𝐼 ∖ {𝑥}) → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (1r𝑆))
367366adantl 481 . . . . . . . . . 10 (((𝜑𝑥𝐼) ∧ 𝑧 ∈ (𝐼 ∖ {𝑥})) → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (1r𝑆))
368367, 315suppss2 8197 . . . . . . . . 9 ((𝜑𝑥𝐼) → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))) supp (1r𝑆)) ⊆ {𝑥})
36947, 48, 358, 315, 317, 364, 368gsumpt 19941 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝑇 Σg (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))) = ((𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))‘𝑥))
370 fveq2 6875 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝐺𝑧) = (𝐺𝑥))
371344, 370eqtrd 2770 . . . . . . . . . 10 (𝑧 = 𝑥 → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (𝐺𝑥))
372 eqid 2735 . . . . . . . . . 10 (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))) = (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))
373 fvex 6888 . . . . . . . . . 10 (𝐺𝑥) ∈ V
374371, 372, 373fvmpt 6985 . . . . . . . . 9 (𝑥𝐼 → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))‘𝑥) = (𝐺𝑥))
375374adantl 481 . . . . . . . 8 ((𝜑𝑥𝐼) → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))‘𝑥) = (𝐺𝑥))
376357, 369, 3753eqtrd 2774 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑇 Σg ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f 𝐺)) = (𝐺𝑥))
377328, 376oveq12d 7421 . . . . . 6 ((𝜑𝑥𝐼) → ((𝐹‘(1r𝑅)) · (𝑇 Σg ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f 𝐺))) = ((1r𝑆) · (𝐺𝑥)))
37825, 5, 3ringlidm 20227 . . . . . . 7 ((𝑆 ∈ Ring ∧ (𝐺𝑥) ∈ 𝐶) → ((1r𝑆) · (𝐺𝑥)) = (𝐺𝑥))
37912, 46, 378syl2an2r 685 . . . . . 6 ((𝜑𝑥𝐼) → ((1r𝑆) · (𝐺𝑥)) = (𝐺𝑥))
380377, 379eqtrd 2770 . . . . 5 ((𝜑𝑥𝐼) → ((𝐹‘(1r𝑅)) · (𝑇 Σg ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f 𝐺))) = (𝐺𝑥))
381319, 327, 3803eqtrd 2774 . . . 4 ((𝜑𝑥𝐼) → (𝐸‘(𝑉𝑥)) = (𝐺𝑥))
382314, 381eqtrd 2770 . . 3 ((𝜑𝑥𝐼) → ((𝐸𝑉)‘𝑥) = (𝐺𝑥))
383312, 246, 382eqfnfvd 7023 . 2 (𝜑 → (𝐸𝑉) = 𝐺)
384293, 307, 3833jca 1128 1 (𝜑 → (𝐸 ∈ (𝑃 RingHom 𝑆) ∧ (𝐸𝐴) = 𝐹 ∧ (𝐸𝑉) = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459  cdif 3923  wss 3926  ifcif 4500  {csn 4601   class class class wbr 5119  cmpt 5201   × cxp 5652  ccnv 5653  ran crn 5655  cima 5657  ccom 5658   Fn wfn 6525  wf 6526  cfv 6530  (class class class)co 7403  f cof 7667  m cmap 8838  Fincfn 8957   finSupp cfsupp 9371  0cc0 11127  1c1 11128   + caddc 11130  cn 12238  0cn0 12499  cz 12586  Basecbs 17226  +gcplusg 17269  .rcmulr 17270  Scalarcsca 17272  0gc0g 17451   Σg cgsu 17452  Mndcmnd 18710   MndHom cmhm 18757  Grpcgrp 18914  .gcmg 19048   GrpHom cghm 19193  CMndccmn 19759  mulGrpcmgp 20098  1rcur 20139  Ringcrg 20191  CRingccrg 20192   RingHom crh 20427  AssAlgcasa 21808  algSccascl 21810   mVar cmvr 21863   mPoly cmpl 21864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-ofr 7670  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-sup 9452  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-fzo 13670  df-seq 14018  df-hash 14347  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-hom 17293  df-cco 17294  df-0g 17453  df-gsum 17454  df-prds 17459  df-pws 17461  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-submnd 18760  df-grp 18917  df-minusg 18918  df-sbg 18919  df-mulg 19049  df-subg 19104  df-ghm 19194  df-cntz 19298  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-ring 20193  df-cring 20194  df-rhm 20430  df-subrng 20504  df-subrg 20528  df-lmod 20817  df-lss 20887  df-assa 21811  df-ascl 21813  df-psr 21867  df-mvr 21868  df-mpl 21869
This theorem is referenced by:  evlseu  22039  evlsval3  42529
  Copyright terms: Public domain W3C validator