Step | Hyp | Ref
| Expression |
1 | | evlslem1.b |
. . 3
⊢ 𝐵 = (Base‘𝑃) |
2 | | eqid 2738 |
. . 3
⊢
(1r‘𝑃) = (1r‘𝑃) |
3 | | eqid 2738 |
. . 3
⊢
(1r‘𝑆) = (1r‘𝑆) |
4 | | eqid 2738 |
. . 3
⊢
(.r‘𝑃) = (.r‘𝑃) |
5 | | evlslem1.m |
. . 3
⊢ · =
(.r‘𝑆) |
6 | | evlslem1.i |
. . . 4
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
7 | | evlslem1.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ CRing) |
8 | 7 | crngringd 19796 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
9 | | evlslem1.p |
. . . . 5
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
10 | 9 | mplring 21224 |
. . . 4
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Ring) |
11 | 6, 8, 10 | syl2anc 584 |
. . 3
⊢ (𝜑 → 𝑃 ∈ Ring) |
12 | | evlslem1.s |
. . . 4
⊢ (𝜑 → 𝑆 ∈ CRing) |
13 | 12 | crngringd 19796 |
. . 3
⊢ (𝜑 → 𝑆 ∈ Ring) |
14 | | 2fveq3 6779 |
. . . . . 6
⊢ (𝑥 = (1r‘𝑅) → (𝐸‘(𝐴‘𝑥)) = (𝐸‘(𝐴‘(1r‘𝑅)))) |
15 | | fveq2 6774 |
. . . . . 6
⊢ (𝑥 = (1r‘𝑅) → (𝐹‘𝑥) = (𝐹‘(1r‘𝑅))) |
16 | 14, 15 | eqeq12d 2754 |
. . . . 5
⊢ (𝑥 = (1r‘𝑅) → ((𝐸‘(𝐴‘𝑥)) = (𝐹‘𝑥) ↔ (𝐸‘(𝐴‘(1r‘𝑅))) = (𝐹‘(1r‘𝑅)))) |
17 | | evlslem1.d |
. . . . . . . . 9
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
18 | | eqid 2738 |
. . . . . . . . 9
⊢
(0g‘𝑅) = (0g‘𝑅) |
19 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑅) |
20 | | evlslem1.a |
. . . . . . . . 9
⊢ 𝐴 = (algSc‘𝑃) |
21 | 6 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → 𝐼 ∈ 𝑊) |
22 | 8 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring) |
23 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅)) |
24 | 9, 17, 18, 19, 20, 21, 22, 23 | mplascl 21272 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐴‘𝑥) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝑅)))) |
25 | 24 | fveq2d 6778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐸‘(𝐴‘𝑥)) = (𝐸‘(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝑅))))) |
26 | | evlslem1.c |
. . . . . . . 8
⊢ 𝐶 = (Base‘𝑆) |
27 | | evlslem1.t |
. . . . . . . 8
⊢ 𝑇 = (mulGrp‘𝑆) |
28 | | evlslem1.x |
. . . . . . . 8
⊢ ↑ =
(.g‘𝑇) |
29 | | evlslem1.v |
. . . . . . . 8
⊢ 𝑉 = (𝐼 mVar 𝑅) |
30 | | evlslem1.e |
. . . . . . . 8
⊢ 𝐸 = (𝑝 ∈ 𝐵 ↦ (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑝‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))))) |
31 | 7 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ CRing) |
32 | 12 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑆 ∈ CRing) |
33 | | evlslem1.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
34 | 33 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
35 | | evlslem1.g |
. . . . . . . . 9
⊢ (𝜑 → 𝐺:𝐼⟶𝐶) |
36 | 35 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → 𝐺:𝐼⟶𝐶) |
37 | 17 | psrbag0 21270 |
. . . . . . . . . 10
⊢ (𝐼 ∈ 𝑊 → (𝐼 × {0}) ∈ 𝐷) |
38 | 6, 37 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐼 × {0}) ∈ 𝐷) |
39 | 38 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐼 × {0}) ∈ 𝐷) |
40 | 9, 1, 26, 19, 17, 27, 28, 5, 29, 30, 21, 31, 32, 34, 36, 18, 39, 23 | evlslem3 21290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐸‘(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝑅)))) = ((𝐹‘𝑥) · (𝑇 Σg ((𝐼 × {0})
∘f ↑ 𝐺)))) |
41 | | 0zd 12331 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 0 ∈ ℤ) |
42 | | fvexd 6789 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈ V) |
43 | | fconstmpt 5649 |
. . . . . . . . . . . . . . 15
⊢ (𝐼 × {0}) = (𝑥 ∈ 𝐼 ↦ 0) |
44 | 43 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐼 × {0}) = (𝑥 ∈ 𝐼 ↦ 0)) |
45 | 35 | feqmptd 6837 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐼 ↦ (𝐺‘𝑥))) |
46 | 6, 41, 42, 44, 45 | offval2 7553 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐼 × {0}) ∘f ↑ 𝐺) = (𝑥 ∈ 𝐼 ↦ (0 ↑ (𝐺‘𝑥)))) |
47 | 35 | ffvelrnda 6961 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈ 𝐶) |
48 | 27, 26 | mgpbas 19726 |
. . . . . . . . . . . . . . . 16
⊢ 𝐶 = (Base‘𝑇) |
49 | 27, 3 | ringidval 19739 |
. . . . . . . . . . . . . . . 16
⊢
(1r‘𝑆) = (0g‘𝑇) |
50 | 48, 49, 28 | mulg0 18707 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺‘𝑥) ∈ 𝐶 → (0 ↑ (𝐺‘𝑥)) = (1r‘𝑆)) |
51 | 47, 50 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (0 ↑ (𝐺‘𝑥)) = (1r‘𝑆)) |
52 | 51 | mpteq2dva 5174 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (0 ↑ (𝐺‘𝑥))) = (𝑥 ∈ 𝐼 ↦ (1r‘𝑆))) |
53 | 46, 52 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐼 × {0}) ∘f ↑ 𝐺) = (𝑥 ∈ 𝐼 ↦ (1r‘𝑆))) |
54 | 53 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑇 Σg ((𝐼 × {0})
∘f ↑ 𝐺)) = (𝑇 Σg (𝑥 ∈ 𝐼 ↦ (1r‘𝑆)))) |
55 | 27 | crngmgp 19791 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ∈ CRing → 𝑇 ∈ CMnd) |
56 | 12, 55 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑇 ∈ CMnd) |
57 | 56 | cmnmndd 19409 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑇 ∈ Mnd) |
58 | 49 | gsumz 18474 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ Mnd ∧ 𝐼 ∈ 𝑊) → (𝑇 Σg (𝑥 ∈ 𝐼 ↦ (1r‘𝑆))) = (1r‘𝑆)) |
59 | 57, 6, 58 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑇 Σg (𝑥 ∈ 𝐼 ↦ (1r‘𝑆))) = (1r‘𝑆)) |
60 | 54, 59 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑇 Σg ((𝐼 × {0})
∘f ↑ 𝐺)) = (1r‘𝑆)) |
61 | 60 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑇 Σg ((𝐼 × {0})
∘f ↑ 𝐺)) = (1r‘𝑆)) |
62 | 61 | oveq2d 7291 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐹‘𝑥) · (𝑇 Σg ((𝐼 × {0})
∘f ↑ 𝐺))) = ((𝐹‘𝑥) ·
(1r‘𝑆))) |
63 | 19, 26 | rhmf 19970 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶𝐶) |
64 | 33, 63 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:(Base‘𝑅)⟶𝐶) |
65 | 64 | ffvelrnda 6961 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐹‘𝑥) ∈ 𝐶) |
66 | 26, 5, 3 | ringridm 19811 |
. . . . . . . . 9
⊢ ((𝑆 ∈ Ring ∧ (𝐹‘𝑥) ∈ 𝐶) → ((𝐹‘𝑥) ·
(1r‘𝑆)) =
(𝐹‘𝑥)) |
67 | 13, 65, 66 | syl2an2r 682 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐹‘𝑥) ·
(1r‘𝑆)) =
(𝐹‘𝑥)) |
68 | 62, 67 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐹‘𝑥) · (𝑇 Σg ((𝐼 × {0})
∘f ↑ 𝐺))) = (𝐹‘𝑥)) |
69 | 25, 40, 68 | 3eqtrd 2782 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐸‘(𝐴‘𝑥)) = (𝐹‘𝑥)) |
70 | 69 | ralrimiva 3103 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝑅)(𝐸‘(𝐴‘𝑥)) = (𝐹‘𝑥)) |
71 | | eqid 2738 |
. . . . . . 7
⊢
(1r‘𝑅) = (1r‘𝑅) |
72 | 19, 71 | ringidcl 19807 |
. . . . . 6
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) |
73 | 8, 72 | syl 17 |
. . . . 5
⊢ (𝜑 → (1r‘𝑅) ∈ (Base‘𝑅)) |
74 | 16, 70, 73 | rspcdva 3562 |
. . . 4
⊢ (𝜑 → (𝐸‘(𝐴‘(1r‘𝑅))) = (𝐹‘(1r‘𝑅))) |
75 | 9 | mplassa 21227 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ CRing) → 𝑃 ∈ AssAlg) |
76 | 6, 7, 75 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ AssAlg) |
77 | | eqid 2738 |
. . . . . . . . 9
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
78 | 20, 77 | asclrhm 21094 |
. . . . . . . 8
⊢ (𝑃 ∈ AssAlg → 𝐴 ∈ ((Scalar‘𝑃) RingHom 𝑃)) |
79 | 76, 78 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ((Scalar‘𝑃) RingHom 𝑃)) |
80 | 9, 6, 7 | mplsca 21217 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) |
81 | 80 | oveq1d 7290 |
. . . . . . 7
⊢ (𝜑 → (𝑅 RingHom 𝑃) = ((Scalar‘𝑃) RingHom 𝑃)) |
82 | 79, 81 | eleqtrrd 2842 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ (𝑅 RingHom 𝑃)) |
83 | 71, 2 | rhm1 19974 |
. . . . . 6
⊢ (𝐴 ∈ (𝑅 RingHom 𝑃) → (𝐴‘(1r‘𝑅)) = (1r‘𝑃)) |
84 | 82, 83 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐴‘(1r‘𝑅)) = (1r‘𝑃)) |
85 | 84 | fveq2d 6778 |
. . . 4
⊢ (𝜑 → (𝐸‘(𝐴‘(1r‘𝑅))) = (𝐸‘(1r‘𝑃))) |
86 | 71, 3 | rhm1 19974 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r‘𝑅)) = (1r‘𝑆)) |
87 | 33, 86 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐹‘(1r‘𝑅)) = (1r‘𝑆)) |
88 | 74, 85, 87 | 3eqtr3d 2786 |
. . 3
⊢ (𝜑 → (𝐸‘(1r‘𝑃)) = (1r‘𝑆)) |
89 | | eqid 2738 |
. . . . 5
⊢
(+g‘𝑃) = (+g‘𝑃) |
90 | | eqid 2738 |
. . . . 5
⊢
(+g‘𝑆) = (+g‘𝑆) |
91 | 11 | ringgrpd 19792 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ Grp) |
92 | 13 | ringgrpd 19792 |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ Grp) |
93 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘𝑆) = (0g‘𝑆) |
94 | | ringcmn 19820 |
. . . . . . . . 9
⊢ (𝑆 ∈ Ring → 𝑆 ∈ CMnd) |
95 | 13, 94 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ CMnd) |
96 | 95 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝑆 ∈ CMnd) |
97 | | ovex 7308 |
. . . . . . . . 9
⊢
(ℕ0 ↑m 𝐼) ∈ V |
98 | 17, 97 | rabex2 5258 |
. . . . . . . 8
⊢ 𝐷 ∈ V |
99 | 98 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝐷 ∈ V) |
100 | 6 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝐼 ∈ 𝑊) |
101 | 7 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝑅 ∈ CRing) |
102 | 12 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝑆 ∈ CRing) |
103 | 33 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
104 | 35 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝐺:𝐼⟶𝐶) |
105 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝑝 ∈ 𝐵) |
106 | 9, 1, 26, 17, 27, 28, 5, 29, 30, 100, 101, 102, 103, 104, 105 | evlslem6 21291 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → ((𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑝‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))):𝐷⟶𝐶 ∧ (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑝‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) finSupp
(0g‘𝑆))) |
107 | 106 | simpld 495 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑝‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))):𝐷⟶𝐶) |
108 | 106 | simprd 496 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑝‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) finSupp
(0g‘𝑆)) |
109 | 26, 93, 96, 99, 107, 108 | gsumcl 19516 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑝‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))))) ∈ 𝐶) |
110 | 109, 30 | fmptd 6988 |
. . . . 5
⊢ (𝜑 → 𝐸:𝐵⟶𝐶) |
111 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢
(+g‘𝑅) = (+g‘𝑅) |
112 | | simplrl 774 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑏 ∈ 𝐷) → 𝑥 ∈ 𝐵) |
113 | | simplrr 775 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑏 ∈ 𝐷) → 𝑦 ∈ 𝐵) |
114 | 9, 1, 111, 89, 112, 113 | mpladd 21213 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑏 ∈ 𝐷) → (𝑥(+g‘𝑃)𝑦) = (𝑥 ∘f
(+g‘𝑅)𝑦)) |
115 | 114 | fveq1d 6776 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑏 ∈ 𝐷) → ((𝑥(+g‘𝑃)𝑦)‘𝑏) = ((𝑥 ∘f
(+g‘𝑅)𝑦)‘𝑏)) |
116 | | simprl 768 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
117 | 9, 19, 1, 17, 116 | mplelf 21204 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥:𝐷⟶(Base‘𝑅)) |
118 | 117 | ffnd 6601 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 Fn 𝐷) |
119 | 118 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑏 ∈ 𝐷) → 𝑥 Fn 𝐷) |
120 | | simprr 770 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
121 | 9, 19, 1, 17, 120 | mplelf 21204 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦:𝐷⟶(Base‘𝑅)) |
122 | 121 | ffnd 6601 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 Fn 𝐷) |
123 | 122 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑏 ∈ 𝐷) → 𝑦 Fn 𝐷) |
124 | 98 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑏 ∈ 𝐷) → 𝐷 ∈ V) |
125 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑏 ∈ 𝐷) → 𝑏 ∈ 𝐷) |
126 | | fnfvof 7550 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 Fn 𝐷 ∧ 𝑦 Fn 𝐷) ∧ (𝐷 ∈ V ∧ 𝑏 ∈ 𝐷)) → ((𝑥 ∘f
(+g‘𝑅)𝑦)‘𝑏) = ((𝑥‘𝑏)(+g‘𝑅)(𝑦‘𝑏))) |
127 | 119, 123,
124, 125, 126 | syl22anc 836 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑏 ∈ 𝐷) → ((𝑥 ∘f
(+g‘𝑅)𝑦)‘𝑏) = ((𝑥‘𝑏)(+g‘𝑅)(𝑦‘𝑏))) |
128 | 115, 127 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑏 ∈ 𝐷) → ((𝑥(+g‘𝑃)𝑦)‘𝑏) = ((𝑥‘𝑏)(+g‘𝑅)(𝑦‘𝑏))) |
129 | 128 | fveq2d 6778 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑏 ∈ 𝐷) → (𝐹‘((𝑥(+g‘𝑃)𝑦)‘𝑏)) = (𝐹‘((𝑥‘𝑏)(+g‘𝑅)(𝑦‘𝑏)))) |
130 | | rhmghm 19969 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
131 | 33, 130 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
132 | 131 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑏 ∈ 𝐷) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
133 | 117 | ffvelrnda 6961 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑏 ∈ 𝐷) → (𝑥‘𝑏) ∈ (Base‘𝑅)) |
134 | 121 | ffvelrnda 6961 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑏 ∈ 𝐷) → (𝑦‘𝑏) ∈ (Base‘𝑅)) |
135 | 19, 111, 90 | ghmlin 18839 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝑥‘𝑏) ∈ (Base‘𝑅) ∧ (𝑦‘𝑏) ∈ (Base‘𝑅)) → (𝐹‘((𝑥‘𝑏)(+g‘𝑅)(𝑦‘𝑏))) = ((𝐹‘(𝑥‘𝑏))(+g‘𝑆)(𝐹‘(𝑦‘𝑏)))) |
136 | 132, 133,
134, 135 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑏 ∈ 𝐷) → (𝐹‘((𝑥‘𝑏)(+g‘𝑅)(𝑦‘𝑏))) = ((𝐹‘(𝑥‘𝑏))(+g‘𝑆)(𝐹‘(𝑦‘𝑏)))) |
137 | 129, 136 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑏 ∈ 𝐷) → (𝐹‘((𝑥(+g‘𝑃)𝑦)‘𝑏)) = ((𝐹‘(𝑥‘𝑏))(+g‘𝑆)(𝐹‘(𝑦‘𝑏)))) |
138 | 137 | oveq1d 7290 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑏 ∈ 𝐷) → ((𝐹‘((𝑥(+g‘𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))) = (((𝐹‘(𝑥‘𝑏))(+g‘𝑆)(𝐹‘(𝑦‘𝑏))) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) |
139 | 13 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑏 ∈ 𝐷) → 𝑆 ∈ Ring) |
140 | 64 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑏 ∈ 𝐷) → 𝐹:(Base‘𝑅)⟶𝐶) |
141 | 140, 133 | ffvelrnd 6962 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑏 ∈ 𝐷) → (𝐹‘(𝑥‘𝑏)) ∈ 𝐶) |
142 | 140, 134 | ffvelrnd 6962 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑏 ∈ 𝐷) → (𝐹‘(𝑦‘𝑏)) ∈ 𝐶) |
143 | 56 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑏 ∈ 𝐷) → 𝑇 ∈ CMnd) |
144 | 35 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑏 ∈ 𝐷) → 𝐺:𝐼⟶𝐶) |
145 | 17, 48, 28, 143, 125, 144 | psrbagev2 21287 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑏 ∈ 𝐷) → (𝑇 Σg (𝑏 ∘f ↑ 𝐺)) ∈ 𝐶) |
146 | 26, 90, 5 | ringdir 19806 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ Ring ∧ ((𝐹‘(𝑥‘𝑏)) ∈ 𝐶 ∧ (𝐹‘(𝑦‘𝑏)) ∈ 𝐶 ∧ (𝑇 Σg (𝑏 ∘f ↑ 𝐺)) ∈ 𝐶)) → (((𝐹‘(𝑥‘𝑏))(+g‘𝑆)(𝐹‘(𝑦‘𝑏))) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))) = (((𝐹‘(𝑥‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))(+g‘𝑆)((𝐹‘(𝑦‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))))) |
147 | 139, 141,
142, 145, 146 | syl13anc 1371 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑏 ∈ 𝐷) → (((𝐹‘(𝑥‘𝑏))(+g‘𝑆)(𝐹‘(𝑦‘𝑏))) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))) = (((𝐹‘(𝑥‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))(+g‘𝑆)((𝐹‘(𝑦‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))))) |
148 | 138, 147 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑏 ∈ 𝐷) → ((𝐹‘((𝑥(+g‘𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))) = (((𝐹‘(𝑥‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))(+g‘𝑆)((𝐹‘(𝑦‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))))) |
149 | 148 | mpteq2dva 5174 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑏 ∈ 𝐷 ↦ ((𝐹‘((𝑥(+g‘𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) = (𝑏 ∈ 𝐷 ↦ (((𝐹‘(𝑥‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))(+g‘𝑆)((𝐹‘(𝑦‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))))) |
150 | 98 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐷 ∈ V) |
151 | | ovexd 7310 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑏 ∈ 𝐷) → ((𝐹‘(𝑥‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))) ∈ V) |
152 | | ovexd 7310 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑏 ∈ 𝐷) → ((𝐹‘(𝑦‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))) ∈ V) |
153 | | eqidd 2739 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑥‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) = (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑥‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))))) |
154 | | eqidd 2739 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑦‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) = (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑦‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))))) |
155 | 150, 151,
152, 153, 154 | offval2 7553 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑥‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) ∘f
(+g‘𝑆)(𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑦‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))))) = (𝑏 ∈ 𝐷 ↦ (((𝐹‘(𝑥‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))(+g‘𝑆)((𝐹‘(𝑦‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))))) |
156 | 149, 155 | eqtr4d 2781 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑏 ∈ 𝐷 ↦ ((𝐹‘((𝑥(+g‘𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) = ((𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑥‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) ∘f
(+g‘𝑆)(𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑦‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))))) |
157 | 156 | oveq2d 7291 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘((𝑥(+g‘𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))))) = (𝑆 Σg ((𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑥‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) ∘f
(+g‘𝑆)(𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑦‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))))))) |
158 | 95 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑆 ∈ CMnd) |
159 | 6 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐼 ∈ 𝑊) |
160 | 7 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑅 ∈ CRing) |
161 | 12 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑆 ∈ CRing) |
162 | 33 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
163 | 35 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐺:𝐼⟶𝐶) |
164 | 9, 1, 26, 17, 27, 28, 5, 29, 30, 159, 160, 161, 162, 163, 116 | evlslem6 21291 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑥‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))):𝐷⟶𝐶 ∧ (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑥‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) finSupp
(0g‘𝑆))) |
165 | 164 | simpld 495 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑥‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))):𝐷⟶𝐶) |
166 | 9, 1, 26, 17, 27, 28, 5, 29, 30, 159, 160, 161, 162, 163, 120 | evlslem6 21291 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑦‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))):𝐷⟶𝐶 ∧ (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑦‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) finSupp
(0g‘𝑆))) |
167 | 166 | simpld 495 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑦‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))):𝐷⟶𝐶) |
168 | 164 | simprd 496 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑥‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) finSupp
(0g‘𝑆)) |
169 | 166 | simprd 496 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑦‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) finSupp
(0g‘𝑆)) |
170 | 26, 93, 90, 158, 150, 165, 167, 168, 169 | gsumadd 19524 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg ((𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑥‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) ∘f
(+g‘𝑆)(𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑦‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))))) = ((𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑥‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))))(+g‘𝑆)(𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑦‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))))))) |
171 | 157, 170 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘((𝑥(+g‘𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))))) = ((𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑥‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))))(+g‘𝑆)(𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑦‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))))))) |
172 | 91 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑃 ∈ Grp) |
173 | 1, 89 | grpcl 18585 |
. . . . . . . 8
⊢ ((𝑃 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝑃)𝑦) ∈ 𝐵) |
174 | 172, 116,
120, 173 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑃)𝑦) ∈ 𝐵) |
175 | | fveq1 6773 |
. . . . . . . . . . . 12
⊢ (𝑝 = (𝑥(+g‘𝑃)𝑦) → (𝑝‘𝑏) = ((𝑥(+g‘𝑃)𝑦)‘𝑏)) |
176 | 175 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ (𝑝 = (𝑥(+g‘𝑃)𝑦) → (𝐹‘(𝑝‘𝑏)) = (𝐹‘((𝑥(+g‘𝑃)𝑦)‘𝑏))) |
177 | 176 | oveq1d 7290 |
. . . . . . . . . 10
⊢ (𝑝 = (𝑥(+g‘𝑃)𝑦) → ((𝐹‘(𝑝‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))) = ((𝐹‘((𝑥(+g‘𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) |
178 | 177 | mpteq2dv 5176 |
. . . . . . . . 9
⊢ (𝑝 = (𝑥(+g‘𝑃)𝑦) → (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑝‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) = (𝑏 ∈ 𝐷 ↦ ((𝐹‘((𝑥(+g‘𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))))) |
179 | 178 | oveq2d 7291 |
. . . . . . . 8
⊢ (𝑝 = (𝑥(+g‘𝑃)𝑦) → (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑝‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))))) = (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘((𝑥(+g‘𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))))) |
180 | | ovex 7308 |
. . . . . . . 8
⊢ (𝑆 Σg
(𝑏 ∈ 𝐷 ↦ ((𝐹‘((𝑥(+g‘𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))))) ∈ V |
181 | 179, 30, 180 | fvmpt 6875 |
. . . . . . 7
⊢ ((𝑥(+g‘𝑃)𝑦) ∈ 𝐵 → (𝐸‘(𝑥(+g‘𝑃)𝑦)) = (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘((𝑥(+g‘𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))))) |
182 | 174, 181 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘(𝑥(+g‘𝑃)𝑦)) = (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘((𝑥(+g‘𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))))) |
183 | | fveq1 6773 |
. . . . . . . . . . . . 13
⊢ (𝑝 = 𝑥 → (𝑝‘𝑏) = (𝑥‘𝑏)) |
184 | 183 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ (𝑝 = 𝑥 → (𝐹‘(𝑝‘𝑏)) = (𝐹‘(𝑥‘𝑏))) |
185 | 184 | oveq1d 7290 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝑥 → ((𝐹‘(𝑝‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))) = ((𝐹‘(𝑥‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) |
186 | 185 | mpteq2dv 5176 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑥 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑝‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) = (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑥‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))))) |
187 | 186 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝑝 = 𝑥 → (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑝‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))))) = (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑥‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))))) |
188 | | ovex 7308 |
. . . . . . . . 9
⊢ (𝑆 Σg
(𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑥‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))))) ∈ V |
189 | 187, 30, 188 | fvmpt 6875 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐵 → (𝐸‘𝑥) = (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑥‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))))) |
190 | 116, 189 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘𝑥) = (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑥‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))))) |
191 | | fveq1 6773 |
. . . . . . . . . . . . 13
⊢ (𝑝 = 𝑦 → (𝑝‘𝑏) = (𝑦‘𝑏)) |
192 | 191 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ (𝑝 = 𝑦 → (𝐹‘(𝑝‘𝑏)) = (𝐹‘(𝑦‘𝑏))) |
193 | 192 | oveq1d 7290 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝑦 → ((𝐹‘(𝑝‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))) = ((𝐹‘(𝑦‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) |
194 | 193 | mpteq2dv 5176 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑦 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑝‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) = (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑦‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))))) |
195 | 194 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝑝 = 𝑦 → (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑝‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))))) = (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑦‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))))) |
196 | | ovex 7308 |
. . . . . . . . 9
⊢ (𝑆 Σg
(𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑦‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))))) ∈ V |
197 | 195, 30, 196 | fvmpt 6875 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐵 → (𝐸‘𝑦) = (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑦‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))))) |
198 | 197 | ad2antll 726 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘𝑦) = (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑦‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))))) |
199 | 190, 198 | oveq12d 7293 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐸‘𝑥)(+g‘𝑆)(𝐸‘𝑦)) = ((𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑥‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))))(+g‘𝑆)(𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑦‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))))))) |
200 | 171, 182,
199 | 3eqtr4d 2788 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘(𝑥(+g‘𝑃)𝑦)) = ((𝐸‘𝑥)(+g‘𝑆)(𝐸‘𝑦))) |
201 | 1, 26, 89, 90, 91, 92, 110, 200 | isghmd 18843 |
. . . 4
⊢ (𝜑 → 𝐸 ∈ (𝑃 GrpHom 𝑆)) |
202 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
203 | 202, 27 | rhmmhm 19966 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom 𝑇)) |
204 | 33, 203 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ ((mulGrp‘𝑅) MndHom 𝑇)) |
205 | 204 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom 𝑇)) |
206 | | simprll 776 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → 𝑥 ∈ 𝐵) |
207 | 9, 19, 1, 17, 206 | mplelf 21204 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → 𝑥:𝐷⟶(Base‘𝑅)) |
208 | | simprrl 778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → 𝑧 ∈ 𝐷) |
209 | 207, 208 | ffvelrnd 6962 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → (𝑥‘𝑧) ∈ (Base‘𝑅)) |
210 | | simprlr 777 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → 𝑦 ∈ 𝐵) |
211 | 9, 19, 1, 17, 210 | mplelf 21204 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → 𝑦:𝐷⟶(Base‘𝑅)) |
212 | | simprrr 779 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → 𝑤 ∈ 𝐷) |
213 | 211, 212 | ffvelrnd 6962 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → (𝑦‘𝑤) ∈ (Base‘𝑅)) |
214 | 202, 19 | mgpbas 19726 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘(mulGrp‘𝑅)) |
215 | | eqid 2738 |
. . . . . . . . . 10
⊢
(.r‘𝑅) = (.r‘𝑅) |
216 | 202, 215 | mgpplusg 19724 |
. . . . . . . . 9
⊢
(.r‘𝑅) = (+g‘(mulGrp‘𝑅)) |
217 | 27, 5 | mgpplusg 19724 |
. . . . . . . . 9
⊢ · =
(+g‘𝑇) |
218 | 214, 216,
217 | mhmlin 18437 |
. . . . . . . 8
⊢ ((𝐹 ∈ ((mulGrp‘𝑅) MndHom 𝑇) ∧ (𝑥‘𝑧) ∈ (Base‘𝑅) ∧ (𝑦‘𝑤) ∈ (Base‘𝑅)) → (𝐹‘((𝑥‘𝑧)(.r‘𝑅)(𝑦‘𝑤))) = ((𝐹‘(𝑥‘𝑧)) · (𝐹‘(𝑦‘𝑤)))) |
219 | 205, 209,
213, 218 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → (𝐹‘((𝑥‘𝑧)(.r‘𝑅)(𝑦‘𝑤))) = ((𝐹‘(𝑥‘𝑧)) · (𝐹‘(𝑦‘𝑤)))) |
220 | 57 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) ∧ 𝑣 ∈ 𝐼) → 𝑇 ∈ Mnd) |
221 | | simprl 768 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) → 𝑧 ∈ 𝐷) |
222 | 17 | psrbagf 21121 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝐷 → 𝑧:𝐼⟶ℕ0) |
223 | 221, 222 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) → 𝑧:𝐼⟶ℕ0) |
224 | 223 | ffvelrnda 6961 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) ∧ 𝑣 ∈ 𝐼) → (𝑧‘𝑣) ∈
ℕ0) |
225 | 17 | psrbagf 21121 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ 𝐷 → 𝑤:𝐼⟶ℕ0) |
226 | 225 | ad2antll 726 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) → 𝑤:𝐼⟶ℕ0) |
227 | 226 | ffvelrnda 6961 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) ∧ 𝑣 ∈ 𝐼) → (𝑤‘𝑣) ∈
ℕ0) |
228 | 35 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) → 𝐺:𝐼⟶𝐶) |
229 | 228 | ffvelrnda 6961 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) ∧ 𝑣 ∈ 𝐼) → (𝐺‘𝑣) ∈ 𝐶) |
230 | 48, 28, 217 | mulgnn0dir 18733 |
. . . . . . . . . . . . 13
⊢ ((𝑇 ∈ Mnd ∧ ((𝑧‘𝑣) ∈ ℕ0 ∧ (𝑤‘𝑣) ∈ ℕ0 ∧ (𝐺‘𝑣) ∈ 𝐶)) → (((𝑧‘𝑣) + (𝑤‘𝑣)) ↑ (𝐺‘𝑣)) = (((𝑧‘𝑣) ↑ (𝐺‘𝑣)) · ((𝑤‘𝑣) ↑ (𝐺‘𝑣)))) |
231 | 220, 224,
227, 229, 230 | syl13anc 1371 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) ∧ 𝑣 ∈ 𝐼) → (((𝑧‘𝑣) + (𝑤‘𝑣)) ↑ (𝐺‘𝑣)) = (((𝑧‘𝑣) ↑ (𝐺‘𝑣)) · ((𝑤‘𝑣) ↑ (𝐺‘𝑣)))) |
232 | 231 | mpteq2dva 5174 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) → (𝑣 ∈ 𝐼 ↦ (((𝑧‘𝑣) + (𝑤‘𝑣)) ↑ (𝐺‘𝑣))) = (𝑣 ∈ 𝐼 ↦ (((𝑧‘𝑣) ↑ (𝐺‘𝑣)) · ((𝑤‘𝑣) ↑ (𝐺‘𝑣))))) |
233 | 6 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) → 𝐼 ∈ 𝑊) |
234 | | ovexd 7310 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) ∧ 𝑣 ∈ 𝐼) → ((𝑧‘𝑣) + (𝑤‘𝑣)) ∈ V) |
235 | | fvexd 6789 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) ∧ 𝑣 ∈ 𝐼) → (𝐺‘𝑣) ∈ V) |
236 | 223 | ffnd 6601 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) → 𝑧 Fn 𝐼) |
237 | 226 | ffnd 6601 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) → 𝑤 Fn 𝐼) |
238 | | inidm 4152 |
. . . . . . . . . . . . 13
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
239 | | eqidd 2739 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) ∧ 𝑣 ∈ 𝐼) → (𝑧‘𝑣) = (𝑧‘𝑣)) |
240 | | eqidd 2739 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) ∧ 𝑣 ∈ 𝐼) → (𝑤‘𝑣) = (𝑤‘𝑣)) |
241 | 236, 237,
233, 233, 238, 239, 240 | offval 7542 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) → (𝑧 ∘f + 𝑤) = (𝑣 ∈ 𝐼 ↦ ((𝑧‘𝑣) + (𝑤‘𝑣)))) |
242 | 35 | feqmptd 6837 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺 = (𝑣 ∈ 𝐼 ↦ (𝐺‘𝑣))) |
243 | 242 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) → 𝐺 = (𝑣 ∈ 𝐼 ↦ (𝐺‘𝑣))) |
244 | 233, 234,
235, 241, 243 | offval2 7553 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) → ((𝑧 ∘f + 𝑤) ∘f ↑ 𝐺) = (𝑣 ∈ 𝐼 ↦ (((𝑧‘𝑣) + (𝑤‘𝑣)) ↑ (𝐺‘𝑣)))) |
245 | | ovexd 7310 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) ∧ 𝑣 ∈ 𝐼) → ((𝑧‘𝑣) ↑ (𝐺‘𝑣)) ∈ V) |
246 | | ovexd 7310 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) ∧ 𝑣 ∈ 𝐼) → ((𝑤‘𝑣) ↑ (𝐺‘𝑣)) ∈ V) |
247 | 35 | ffnd 6601 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺 Fn 𝐼) |
248 | 247 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) → 𝐺 Fn 𝐼) |
249 | | eqidd 2739 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) ∧ 𝑣 ∈ 𝐼) → (𝐺‘𝑣) = (𝐺‘𝑣)) |
250 | 236, 248,
233, 233, 238, 239, 249 | offval 7542 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) → (𝑧 ∘f ↑ 𝐺) = (𝑣 ∈ 𝐼 ↦ ((𝑧‘𝑣) ↑ (𝐺‘𝑣)))) |
251 | 237, 248,
233, 233, 238, 240, 249 | offval 7542 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) → (𝑤 ∘f ↑ 𝐺) = (𝑣 ∈ 𝐼 ↦ ((𝑤‘𝑣) ↑ (𝐺‘𝑣)))) |
252 | 233, 245,
246, 250, 251 | offval2 7553 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) → ((𝑧 ∘f ↑ 𝐺) ∘f · (𝑤 ∘f ↑ 𝐺)) = (𝑣 ∈ 𝐼 ↦ (((𝑧‘𝑣) ↑ (𝐺‘𝑣)) · ((𝑤‘𝑣) ↑ (𝐺‘𝑣))))) |
253 | 232, 244,
252 | 3eqtr4d 2788 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) → ((𝑧 ∘f + 𝑤) ∘f ↑ 𝐺) = ((𝑧 ∘f ↑ 𝐺) ∘f · (𝑤 ∘f ↑ 𝐺))) |
254 | 253 | oveq2d 7291 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) → (𝑇 Σg ((𝑧 ∘f + 𝑤) ∘f ↑ 𝐺)) = (𝑇 Σg ((𝑧 ∘f ↑ 𝐺) ∘f · (𝑤 ∘f ↑ 𝐺)))) |
255 | 56 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) → 𝑇 ∈ CMnd) |
256 | 17, 48, 28, 49, 255, 221, 228 | psrbagev1 21285 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) → ((𝑧 ∘f ↑ 𝐺):𝐼⟶𝐶 ∧ (𝑧 ∘f ↑ 𝐺) finSupp (1r‘𝑆))) |
257 | 256 | simpld 495 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) → (𝑧 ∘f ↑ 𝐺):𝐼⟶𝐶) |
258 | | simprr 770 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) → 𝑤 ∈ 𝐷) |
259 | 17, 48, 28, 49, 255, 258, 228 | psrbagev1 21285 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) → ((𝑤 ∘f ↑ 𝐺):𝐼⟶𝐶 ∧ (𝑤 ∘f ↑ 𝐺) finSupp (1r‘𝑆))) |
260 | 259 | simpld 495 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) → (𝑤 ∘f ↑ 𝐺):𝐼⟶𝐶) |
261 | 256 | simprd 496 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) → (𝑧 ∘f ↑ 𝐺) finSupp (1r‘𝑆)) |
262 | 259 | simprd 496 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) → (𝑤 ∘f ↑ 𝐺) finSupp (1r‘𝑆)) |
263 | 48, 49, 217, 255, 233, 257, 260, 261, 262 | gsumadd 19524 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) → (𝑇 Σg ((𝑧 ∘f ↑ 𝐺) ∘f · (𝑤 ∘f ↑ 𝐺))) = ((𝑇 Σg (𝑧 ∘f ↑ 𝐺)) · (𝑇 Σg (𝑤 ∘f ↑ 𝐺)))) |
264 | 254, 263 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) → (𝑇 Σg ((𝑧 ∘f + 𝑤) ∘f ↑ 𝐺)) = ((𝑇 Σg (𝑧 ∘f ↑ 𝐺)) · (𝑇 Σg (𝑤 ∘f ↑ 𝐺)))) |
265 | 264 | adantrl 713 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → (𝑇 Σg ((𝑧 ∘f + 𝑤) ∘f ↑ 𝐺)) = ((𝑇 Σg (𝑧 ∘f ↑ 𝐺)) · (𝑇 Σg (𝑤 ∘f ↑ 𝐺)))) |
266 | 219, 265 | oveq12d 7293 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → ((𝐹‘((𝑥‘𝑧)(.r‘𝑅)(𝑦‘𝑤))) · (𝑇 Σg ((𝑧 ∘f + 𝑤) ∘f ↑ 𝐺))) = (((𝐹‘(𝑥‘𝑧)) · (𝐹‘(𝑦‘𝑤))) · ((𝑇 Σg (𝑧 ∘f ↑ 𝐺)) · (𝑇 Σg (𝑤 ∘f ↑ 𝐺))))) |
267 | 56 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → 𝑇 ∈ CMnd) |
268 | 64 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → 𝐹:(Base‘𝑅)⟶𝐶) |
269 | 268, 209 | ffvelrnd 6962 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → (𝐹‘(𝑥‘𝑧)) ∈ 𝐶) |
270 | 268, 213 | ffvelrnd 6962 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → (𝐹‘(𝑦‘𝑤)) ∈ 𝐶) |
271 | 17, 48, 28, 255, 221, 228 | psrbagev2 21287 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) → (𝑇 Σg (𝑧 ∘f ↑ 𝐺)) ∈ 𝐶) |
272 | 271 | adantrl 713 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → (𝑇 Σg (𝑧 ∘f ↑ 𝐺)) ∈ 𝐶) |
273 | 17, 48, 28, 255, 258, 228 | psrbagev2 21287 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷)) → (𝑇 Σg (𝑤 ∘f ↑ 𝐺)) ∈ 𝐶) |
274 | 273 | adantrl 713 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → (𝑇 Σg (𝑤 ∘f ↑ 𝐺)) ∈ 𝐶) |
275 | 48, 217 | cmn4 19406 |
. . . . . . 7
⊢ ((𝑇 ∈ CMnd ∧ ((𝐹‘(𝑥‘𝑧)) ∈ 𝐶 ∧ (𝐹‘(𝑦‘𝑤)) ∈ 𝐶) ∧ ((𝑇 Σg (𝑧 ∘f ↑ 𝐺)) ∈ 𝐶 ∧ (𝑇 Σg (𝑤 ∘f ↑ 𝐺)) ∈ 𝐶)) → (((𝐹‘(𝑥‘𝑧)) · (𝐹‘(𝑦‘𝑤))) · ((𝑇 Σg (𝑧 ∘f ↑ 𝐺)) · (𝑇 Σg (𝑤 ∘f ↑ 𝐺)))) = (((𝐹‘(𝑥‘𝑧)) · (𝑇 Σg (𝑧 ∘f ↑ 𝐺))) · ((𝐹‘(𝑦‘𝑤)) · (𝑇 Σg (𝑤 ∘f ↑ 𝐺))))) |
276 | 267, 269,
270, 272, 274, 275 | syl122anc 1378 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → (((𝐹‘(𝑥‘𝑧)) · (𝐹‘(𝑦‘𝑤))) · ((𝑇 Σg (𝑧 ∘f ↑ 𝐺)) · (𝑇 Σg (𝑤 ∘f ↑ 𝐺)))) = (((𝐹‘(𝑥‘𝑧)) · (𝑇 Σg (𝑧 ∘f ↑ 𝐺))) · ((𝐹‘(𝑦‘𝑤)) · (𝑇 Σg (𝑤 ∘f ↑ 𝐺))))) |
277 | 266, 276 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → ((𝐹‘((𝑥‘𝑧)(.r‘𝑅)(𝑦‘𝑤))) · (𝑇 Σg ((𝑧 ∘f + 𝑤) ∘f ↑ 𝐺))) = (((𝐹‘(𝑥‘𝑧)) · (𝑇 Σg (𝑧 ∘f ↑ 𝐺))) · ((𝐹‘(𝑦‘𝑤)) · (𝑇 Σg (𝑤 ∘f ↑ 𝐺))))) |
278 | 6 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → 𝐼 ∈ 𝑊) |
279 | 7 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → 𝑅 ∈ CRing) |
280 | 12 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → 𝑆 ∈ CRing) |
281 | 33 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
282 | 35 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → 𝐺:𝐼⟶𝐶) |
283 | 17 | psrbagaddcl 21131 |
. . . . . . 7
⊢ ((𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) → (𝑧 ∘f + 𝑤) ∈ 𝐷) |
284 | 283 | ad2antll 726 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → (𝑧 ∘f + 𝑤) ∈ 𝐷) |
285 | 8 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → 𝑅 ∈ Ring) |
286 | 19, 215 | ringcl 19800 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑥‘𝑧) ∈ (Base‘𝑅) ∧ (𝑦‘𝑤) ∈ (Base‘𝑅)) → ((𝑥‘𝑧)(.r‘𝑅)(𝑦‘𝑤)) ∈ (Base‘𝑅)) |
287 | 285, 209,
213, 286 | syl3anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → ((𝑥‘𝑧)(.r‘𝑅)(𝑦‘𝑤)) ∈ (Base‘𝑅)) |
288 | 9, 1, 26, 19, 17, 27, 28, 5, 29, 30, 278, 279, 280, 281, 282, 18, 284, 287 | evlslem3 21290 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → (𝐸‘(𝑣 ∈ 𝐷 ↦ if(𝑣 = (𝑧 ∘f + 𝑤), ((𝑥‘𝑧)(.r‘𝑅)(𝑦‘𝑤)), (0g‘𝑅)))) = ((𝐹‘((𝑥‘𝑧)(.r‘𝑅)(𝑦‘𝑤))) · (𝑇 Σg ((𝑧 ∘f + 𝑤) ∘f ↑ 𝐺)))) |
289 | 9, 1, 26, 19, 17, 27, 28, 5, 29, 30, 278, 279, 280, 281, 282, 18, 208, 209 | evlslem3 21290 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → (𝐸‘(𝑣 ∈ 𝐷 ↦ if(𝑣 = 𝑧, (𝑥‘𝑧), (0g‘𝑅)))) = ((𝐹‘(𝑥‘𝑧)) · (𝑇 Σg (𝑧 ∘f ↑ 𝐺)))) |
290 | 9, 1, 26, 19, 17, 27, 28, 5, 29, 30, 278, 279, 280, 281, 282, 18, 212, 213 | evlslem3 21290 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → (𝐸‘(𝑣 ∈ 𝐷 ↦ if(𝑣 = 𝑤, (𝑦‘𝑤), (0g‘𝑅)))) = ((𝐹‘(𝑦‘𝑤)) · (𝑇 Σg (𝑤 ∘f ↑ 𝐺)))) |
291 | 289, 290 | oveq12d 7293 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → ((𝐸‘(𝑣 ∈ 𝐷 ↦ if(𝑣 = 𝑧, (𝑥‘𝑧), (0g‘𝑅)))) · (𝐸‘(𝑣 ∈ 𝐷 ↦ if(𝑣 = 𝑤, (𝑦‘𝑤), (0g‘𝑅))))) = (((𝐹‘(𝑥‘𝑧)) · (𝑇 Σg (𝑧 ∘f ↑ 𝐺))) · ((𝐹‘(𝑦‘𝑤)) · (𝑇 Σg (𝑤 ∘f ↑ 𝐺))))) |
292 | 277, 288,
291 | 3eqtr4d 2788 |
. . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷))) → (𝐸‘(𝑣 ∈ 𝐷 ↦ if(𝑣 = (𝑧 ∘f + 𝑤), ((𝑥‘𝑧)(.r‘𝑅)(𝑦‘𝑤)), (0g‘𝑅)))) = ((𝐸‘(𝑣 ∈ 𝐷 ↦ if(𝑣 = 𝑧, (𝑥‘𝑧), (0g‘𝑅)))) · (𝐸‘(𝑣 ∈ 𝐷 ↦ if(𝑣 = 𝑤, (𝑦‘𝑤), (0g‘𝑅)))))) |
293 | 9, 1, 5, 18, 17, 6, 7, 12, 201, 292 | evlslem2 21289 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘(𝑥(.r‘𝑃)𝑦)) = ((𝐸‘𝑥) · (𝐸‘𝑦))) |
294 | 1, 2, 3, 4, 5, 11,
13, 88, 293, 26, 89, 90, 110, 200 | isrhmd 19973 |
. 2
⊢ (𝜑 → 𝐸 ∈ (𝑃 RingHom 𝑆)) |
295 | | ovex 7308 |
. . . . . 6
⊢ (𝑆 Σg
(𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑝‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))))) ∈ V |
296 | 295, 30 | fnmpti 6576 |
. . . . 5
⊢ 𝐸 Fn 𝐵 |
297 | 296 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐸 Fn 𝐵) |
298 | 19, 1 | rhmf 19970 |
. . . . . 6
⊢ (𝐴 ∈ (𝑅 RingHom 𝑃) → 𝐴:(Base‘𝑅)⟶𝐵) |
299 | 82, 298 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐴:(Base‘𝑅)⟶𝐵) |
300 | 299 | ffnd 6601 |
. . . 4
⊢ (𝜑 → 𝐴 Fn (Base‘𝑅)) |
301 | 299 | frnd 6608 |
. . . 4
⊢ (𝜑 → ran 𝐴 ⊆ 𝐵) |
302 | | fnco 6549 |
. . . 4
⊢ ((𝐸 Fn 𝐵 ∧ 𝐴 Fn (Base‘𝑅) ∧ ran 𝐴 ⊆ 𝐵) → (𝐸 ∘ 𝐴) Fn (Base‘𝑅)) |
303 | 297, 300,
301, 302 | syl3anc 1370 |
. . 3
⊢ (𝜑 → (𝐸 ∘ 𝐴) Fn (Base‘𝑅)) |
304 | 64 | ffnd 6601 |
. . 3
⊢ (𝜑 → 𝐹 Fn (Base‘𝑅)) |
305 | | fvco2 6865 |
. . . . 5
⊢ ((𝐴 Fn (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐸 ∘ 𝐴)‘𝑥) = (𝐸‘(𝐴‘𝑥))) |
306 | 300, 305 | sylan 580 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐸 ∘ 𝐴)‘𝑥) = (𝐸‘(𝐴‘𝑥))) |
307 | 306, 69 | eqtrd 2778 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐸 ∘ 𝐴)‘𝑥) = (𝐹‘𝑥)) |
308 | 303, 304,
307 | eqfnfvd 6912 |
. 2
⊢ (𝜑 → (𝐸 ∘ 𝐴) = 𝐹) |
309 | 9, 29, 1, 6, 8 | mvrf2 21268 |
. . . . 5
⊢ (𝜑 → 𝑉:𝐼⟶𝐵) |
310 | 309 | ffnd 6601 |
. . . 4
⊢ (𝜑 → 𝑉 Fn 𝐼) |
311 | 309 | frnd 6608 |
. . . 4
⊢ (𝜑 → ran 𝑉 ⊆ 𝐵) |
312 | | fnco 6549 |
. . . 4
⊢ ((𝐸 Fn 𝐵 ∧ 𝑉 Fn 𝐼 ∧ ran 𝑉 ⊆ 𝐵) → (𝐸 ∘ 𝑉) Fn 𝐼) |
313 | 297, 310,
311, 312 | syl3anc 1370 |
. . 3
⊢ (𝜑 → (𝐸 ∘ 𝑉) Fn 𝐼) |
314 | | fvco2 6865 |
. . . . 5
⊢ ((𝑉 Fn 𝐼 ∧ 𝑥 ∈ 𝐼) → ((𝐸 ∘ 𝑉)‘𝑥) = (𝐸‘(𝑉‘𝑥))) |
315 | 310, 314 | sylan 580 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐸 ∘ 𝑉)‘𝑥) = (𝐸‘(𝑉‘𝑥))) |
316 | 6 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
317 | 7 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ CRing) |
318 | | simpr 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) |
319 | 29, 17, 18, 71, 316, 317, 318 | mvrval 21190 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑉‘𝑥) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅)))) |
320 | 319 | fveq2d 6778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐸‘(𝑉‘𝑥)) = (𝐸‘(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅))))) |
321 | 12 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ∈ CRing) |
322 | 33 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
323 | 35 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐺:𝐼⟶𝐶) |
324 | 17 | psrbagsn 21271 |
. . . . . . . 8
⊢ (𝐼 ∈ 𝑊 → (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∈ 𝐷) |
325 | 6, 324 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∈ 𝐷) |
326 | 325 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∈ 𝐷) |
327 | 73 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (1r‘𝑅) ∈ (Base‘𝑅)) |
328 | 9, 1, 26, 19, 17, 27, 28, 5, 29, 30, 316, 317, 321, 322, 323, 18, 326, 327 | evlslem3 21290 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐸‘(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅)))) = ((𝐹‘(1r‘𝑅)) · (𝑇 Σg ((𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f ↑ 𝐺)))) |
329 | 87 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘(1r‘𝑅)) = (1r‘𝑆)) |
330 | | 1nn0 12249 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℕ0 |
331 | | 0nn0 12248 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℕ0 |
332 | 330, 331 | ifcli 4506 |
. . . . . . . . . . . . 13
⊢ if(𝑧 = 𝑥, 1, 0) ∈
ℕ0 |
333 | 332 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐼) → if(𝑧 = 𝑥, 1, 0) ∈
ℕ0) |
334 | 35 | ffvelrnda 6961 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐼) → (𝐺‘𝑧) ∈ 𝐶) |
335 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0))) |
336 | 35 | feqmptd 6837 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺 = (𝑧 ∈ 𝐼 ↦ (𝐺‘𝑧))) |
337 | 6, 333, 334, 335, 336 | offval2 7553 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f ↑ 𝐺) = (𝑧 ∈ 𝐼 ↦ (if(𝑧 = 𝑥, 1, 0) ↑ (𝐺‘𝑧)))) |
338 | | oveq1 7282 |
. . . . . . . . . . . . . 14
⊢ (1 =
if(𝑧 = 𝑥, 1, 0) → (1 ↑ (𝐺‘𝑧)) = (if(𝑧 = 𝑥, 1, 0) ↑ (𝐺‘𝑧))) |
339 | 338 | eqeq1d 2740 |
. . . . . . . . . . . . 13
⊢ (1 =
if(𝑧 = 𝑥, 1, 0) → ((1 ↑ (𝐺‘𝑧)) = if(𝑧 = 𝑥, (𝐺‘𝑧), (1r‘𝑆)) ↔ (if(𝑧 = 𝑥, 1, 0) ↑ (𝐺‘𝑧)) = if(𝑧 = 𝑥, (𝐺‘𝑧), (1r‘𝑆)))) |
340 | | oveq1 7282 |
. . . . . . . . . . . . . 14
⊢ (0 =
if(𝑧 = 𝑥, 1, 0) → (0 ↑ (𝐺‘𝑧)) = (if(𝑧 = 𝑥, 1, 0) ↑ (𝐺‘𝑧))) |
341 | 340 | eqeq1d 2740 |
. . . . . . . . . . . . 13
⊢ (0 =
if(𝑧 = 𝑥, 1, 0) → ((0 ↑ (𝐺‘𝑧)) = if(𝑧 = 𝑥, (𝐺‘𝑧), (1r‘𝑆)) ↔ (if(𝑧 = 𝑥, 1, 0) ↑ (𝐺‘𝑧)) = if(𝑧 = 𝑥, (𝐺‘𝑧), (1r‘𝑆)))) |
342 | 334 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐼) ∧ 𝑧 = 𝑥) → (𝐺‘𝑧) ∈ 𝐶) |
343 | 48, 28 | mulg1 18711 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺‘𝑧) ∈ 𝐶 → (1 ↑ (𝐺‘𝑧)) = (𝐺‘𝑧)) |
344 | 342, 343 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐼) ∧ 𝑧 = 𝑥) → (1 ↑ (𝐺‘𝑧)) = (𝐺‘𝑧)) |
345 | | iftrue 4465 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑥 → if(𝑧 = 𝑥, (𝐺‘𝑧), (1r‘𝑆)) = (𝐺‘𝑧)) |
346 | 345 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐼) ∧ 𝑧 = 𝑥) → if(𝑧 = 𝑥, (𝐺‘𝑧), (1r‘𝑆)) = (𝐺‘𝑧)) |
347 | 344, 346 | eqtr4d 2781 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐼) ∧ 𝑧 = 𝑥) → (1 ↑ (𝐺‘𝑧)) = if(𝑧 = 𝑥, (𝐺‘𝑧), (1r‘𝑆))) |
348 | 48, 49, 28 | mulg0 18707 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺‘𝑧) ∈ 𝐶 → (0 ↑ (𝐺‘𝑧)) = (1r‘𝑆)) |
349 | 334, 348 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐼) → (0 ↑ (𝐺‘𝑧)) = (1r‘𝑆)) |
350 | 349 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐼) ∧ ¬ 𝑧 = 𝑥) → (0 ↑ (𝐺‘𝑧)) = (1r‘𝑆)) |
351 | | iffalse 4468 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑧 = 𝑥 → if(𝑧 = 𝑥, (𝐺‘𝑧), (1r‘𝑆)) = (1r‘𝑆)) |
352 | 351 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐼) ∧ ¬ 𝑧 = 𝑥) → if(𝑧 = 𝑥, (𝐺‘𝑧), (1r‘𝑆)) = (1r‘𝑆)) |
353 | 350, 352 | eqtr4d 2781 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐼) ∧ ¬ 𝑧 = 𝑥) → (0 ↑ (𝐺‘𝑧)) = if(𝑧 = 𝑥, (𝐺‘𝑧), (1r‘𝑆))) |
354 | 339, 341,
347, 353 | ifbothda 4497 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐼) → (if(𝑧 = 𝑥, 1, 0) ↑ (𝐺‘𝑧)) = if(𝑧 = 𝑥, (𝐺‘𝑧), (1r‘𝑆))) |
355 | 354 | mpteq2dva 5174 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑧 ∈ 𝐼 ↦ (if(𝑧 = 𝑥, 1, 0) ↑ (𝐺‘𝑧))) = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, (𝐺‘𝑧), (1r‘𝑆)))) |
356 | 337, 355 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f ↑ 𝐺) = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, (𝐺‘𝑧), (1r‘𝑆)))) |
357 | 356 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f ↑ 𝐺) = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, (𝐺‘𝑧), (1r‘𝑆)))) |
358 | 357 | oveq2d 7291 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑇 Σg ((𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f ↑ 𝐺)) = (𝑇 Σg (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, (𝐺‘𝑧), (1r‘𝑆))))) |
359 | 57 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑇 ∈ Mnd) |
360 | 334 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑧 ∈ 𝐼) → (𝐺‘𝑧) ∈ 𝐶) |
361 | 26, 3 | ringidcl 19807 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈ Ring →
(1r‘𝑆)
∈ 𝐶) |
362 | 13, 361 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1r‘𝑆) ∈ 𝐶) |
363 | 362 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑧 ∈ 𝐼) → (1r‘𝑆) ∈ 𝐶) |
364 | 360, 363 | ifcld 4505 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑧 ∈ 𝐼) → if(𝑧 = 𝑥, (𝐺‘𝑧), (1r‘𝑆)) ∈ 𝐶) |
365 | 364 | fmpttd 6989 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, (𝐺‘𝑧), (1r‘𝑆))):𝐼⟶𝐶) |
366 | | eldifsnneq 4724 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (𝐼 ∖ {𝑥}) → ¬ 𝑧 = 𝑥) |
367 | 366, 351 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (𝐼 ∖ {𝑥}) → if(𝑧 = 𝑥, (𝐺‘𝑧), (1r‘𝑆)) = (1r‘𝑆)) |
368 | 367 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑧 ∈ (𝐼 ∖ {𝑥})) → if(𝑧 = 𝑥, (𝐺‘𝑧), (1r‘𝑆)) = (1r‘𝑆)) |
369 | 368, 316 | suppss2 8016 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, (𝐺‘𝑧), (1r‘𝑆))) supp (1r‘𝑆)) ⊆ {𝑥}) |
370 | 48, 49, 359, 316, 318, 365, 369 | gsumpt 19563 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑇 Σg (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, (𝐺‘𝑧), (1r‘𝑆)))) = ((𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, (𝐺‘𝑧), (1r‘𝑆)))‘𝑥)) |
371 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → (𝐺‘𝑧) = (𝐺‘𝑥)) |
372 | 345, 371 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → if(𝑧 = 𝑥, (𝐺‘𝑧), (1r‘𝑆)) = (𝐺‘𝑥)) |
373 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, (𝐺‘𝑧), (1r‘𝑆))) = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, (𝐺‘𝑧), (1r‘𝑆))) |
374 | | fvex 6787 |
. . . . . . . . . 10
⊢ (𝐺‘𝑥) ∈ V |
375 | 372, 373,
374 | fvmpt 6875 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐼 → ((𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, (𝐺‘𝑧), (1r‘𝑆)))‘𝑥) = (𝐺‘𝑥)) |
376 | 375 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, (𝐺‘𝑧), (1r‘𝑆)))‘𝑥) = (𝐺‘𝑥)) |
377 | 358, 370,
376 | 3eqtrd 2782 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑇 Σg ((𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f ↑ 𝐺)) = (𝐺‘𝑥)) |
378 | 329, 377 | oveq12d 7293 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐹‘(1r‘𝑅)) · (𝑇 Σg ((𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f ↑ 𝐺))) =
((1r‘𝑆)
·
(𝐺‘𝑥))) |
379 | 26, 5, 3 | ringlidm 19810 |
. . . . . . 7
⊢ ((𝑆 ∈ Ring ∧ (𝐺‘𝑥) ∈ 𝐶) → ((1r‘𝑆) · (𝐺‘𝑥)) = (𝐺‘𝑥)) |
380 | 13, 47, 379 | syl2an2r 682 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((1r‘𝑆) · (𝐺‘𝑥)) = (𝐺‘𝑥)) |
381 | 378, 380 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐹‘(1r‘𝑅)) · (𝑇 Σg ((𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘f ↑ 𝐺))) = (𝐺‘𝑥)) |
382 | 320, 328,
381 | 3eqtrd 2782 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐸‘(𝑉‘𝑥)) = (𝐺‘𝑥)) |
383 | 315, 382 | eqtrd 2778 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐸 ∘ 𝑉)‘𝑥) = (𝐺‘𝑥)) |
384 | 313, 247,
383 | eqfnfvd 6912 |
. 2
⊢ (𝜑 → (𝐸 ∘ 𝑉) = 𝐺) |
385 | 294, 308,
384 | 3jca 1127 |
1
⊢ (𝜑 → (𝐸 ∈ (𝑃 RingHom 𝑆) ∧ (𝐸 ∘ 𝐴) = 𝐹 ∧ (𝐸 ∘ 𝑉) = 𝐺)) |