![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fdmdifeqresdif | Structured version Visualization version GIF version |
Description: The restriction of a conditional mapping to function values of a function having a domain which is a difference with a singleton equals this function. (Contributed by AV, 23-Apr-2019.) |
Ref | Expression |
---|---|
fdmdifeqresdif.f | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥))) |
Ref | Expression |
---|---|
fdmdifeqresdif | ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → 𝐺 = (𝐹 ↾ (𝐷 ∖ {𝑌}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsnneq 4794 | . . . . 5 ⊢ (𝑥 ∈ (𝐷 ∖ {𝑌}) → ¬ 𝑥 = 𝑌) | |
2 | 1 | adantl 482 | . . . 4 ⊢ ((𝐺:(𝐷 ∖ {𝑌})⟶𝑅 ∧ 𝑥 ∈ (𝐷 ∖ {𝑌})) → ¬ 𝑥 = 𝑌) |
3 | 2 | iffalsed 4539 | . . 3 ⊢ ((𝐺:(𝐷 ∖ {𝑌})⟶𝑅 ∧ 𝑥 ∈ (𝐷 ∖ {𝑌})) → if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥)) = (𝐺‘𝑥)) |
4 | 3 | mpteq2dva 5248 | . 2 ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥))) = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ (𝐺‘𝑥))) |
5 | fdmdifeqresdif.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥))) | |
6 | 5 | reseq1i 5977 | . . 3 ⊢ (𝐹 ↾ (𝐷 ∖ {𝑌})) = ((𝑥 ∈ 𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥))) ↾ (𝐷 ∖ {𝑌})) |
7 | difssd 4132 | . . . 4 ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → (𝐷 ∖ {𝑌}) ⊆ 𝐷) | |
8 | 7 | resmptd 6040 | . . 3 ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → ((𝑥 ∈ 𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥))) ↾ (𝐷 ∖ {𝑌})) = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥)))) |
9 | 6, 8 | eqtrid 2784 | . 2 ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → (𝐹 ↾ (𝐷 ∖ {𝑌})) = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥)))) |
10 | ffn 6717 | . . 3 ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → 𝐺 Fn (𝐷 ∖ {𝑌})) | |
11 | dffn5 6950 | . . 3 ⊢ (𝐺 Fn (𝐷 ∖ {𝑌}) ↔ 𝐺 = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ (𝐺‘𝑥))) | |
12 | 10, 11 | sylib 217 | . 2 ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → 𝐺 = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ (𝐺‘𝑥))) |
13 | 4, 9, 12 | 3eqtr4rd 2783 | 1 ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → 𝐺 = (𝐹 ↾ (𝐷 ∖ {𝑌}))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∖ cdif 3945 ifcif 4528 {csn 4628 ↦ cmpt 5231 ↾ cres 5678 Fn wfn 6538 ⟶wf 6539 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-res 5688 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 |
This theorem is referenced by: lincext2 47126 lincext3 47127 |
Copyright terms: Public domain | W3C validator |