Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdmdifeqresdif Structured version   Visualization version   GIF version

Theorem fdmdifeqresdif 48330
Description: The restriction of a conditional mapping to function values of a function having a domain which is a difference with a singleton equals this function. (Contributed by AV, 23-Apr-2019.)
Hypothesis
Ref Expression
fdmdifeqresdif.f 𝐹 = (𝑥𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺𝑥)))
Assertion
Ref Expression
fdmdifeqresdif (𝐺:(𝐷 ∖ {𝑌})⟶𝑅𝐺 = (𝐹 ↾ (𝐷 ∖ {𝑌})))
Distinct variable groups:   𝑥,𝐷   𝑥,𝐺   𝑥,𝑅   𝑥,𝑌
Allowed substitution hints:   𝐹(𝑥)   𝑋(𝑥)

Proof of Theorem fdmdifeqresdif
StepHypRef Expression
1 eldifsnneq 4755 . . . . 5 (𝑥 ∈ (𝐷 ∖ {𝑌}) → ¬ 𝑥 = 𝑌)
21adantl 481 . . . 4 ((𝐺:(𝐷 ∖ {𝑌})⟶𝑅𝑥 ∈ (𝐷 ∖ {𝑌})) → ¬ 𝑥 = 𝑌)
32iffalsed 4499 . . 3 ((𝐺:(𝐷 ∖ {𝑌})⟶𝑅𝑥 ∈ (𝐷 ∖ {𝑌})) → if(𝑥 = 𝑌, 𝑋, (𝐺𝑥)) = (𝐺𝑥))
43mpteq2dva 5200 . 2 (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ if(𝑥 = 𝑌, 𝑋, (𝐺𝑥))) = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ (𝐺𝑥)))
5 fdmdifeqresdif.f . . . 4 𝐹 = (𝑥𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺𝑥)))
65reseq1i 5946 . . 3 (𝐹 ↾ (𝐷 ∖ {𝑌})) = ((𝑥𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺𝑥))) ↾ (𝐷 ∖ {𝑌}))
7 difssd 4100 . . . 4 (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → (𝐷 ∖ {𝑌}) ⊆ 𝐷)
87resmptd 6011 . . 3 (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → ((𝑥𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺𝑥))) ↾ (𝐷 ∖ {𝑌})) = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ if(𝑥 = 𝑌, 𝑋, (𝐺𝑥))))
96, 8eqtrid 2776 . 2 (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → (𝐹 ↾ (𝐷 ∖ {𝑌})) = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ if(𝑥 = 𝑌, 𝑋, (𝐺𝑥))))
10 ffn 6688 . . 3 (𝐺:(𝐷 ∖ {𝑌})⟶𝑅𝐺 Fn (𝐷 ∖ {𝑌}))
11 dffn5 6919 . . 3 (𝐺 Fn (𝐷 ∖ {𝑌}) ↔ 𝐺 = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ (𝐺𝑥)))
1210, 11sylib 218 . 2 (𝐺:(𝐷 ∖ {𝑌})⟶𝑅𝐺 = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ (𝐺𝑥)))
134, 9, 123eqtr4rd 2775 1 (𝐺:(𝐷 ∖ {𝑌})⟶𝑅𝐺 = (𝐹 ↾ (𝐷 ∖ {𝑌})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3911  ifcif 4488  {csn 4589  cmpt 5188  cres 5640   Fn wfn 6506  wf 6507  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-res 5650  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519
This theorem is referenced by:  lincext2  48444  lincext3  48445
  Copyright terms: Public domain W3C validator