Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdmdifeqresdif Structured version   Visualization version   GIF version

Theorem fdmdifeqresdif 45717
Description: The restriction of a conditional mapping to function values of a function having a domain which is a difference with a singleton equals this function. (Contributed by AV, 23-Apr-2019.)
Hypothesis
Ref Expression
fdmdifeqresdif.f 𝐹 = (𝑥𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺𝑥)))
Assertion
Ref Expression
fdmdifeqresdif (𝐺:(𝐷 ∖ {𝑌})⟶𝑅𝐺 = (𝐹 ↾ (𝐷 ∖ {𝑌})))
Distinct variable groups:   𝑥,𝐷   𝑥,𝐺   𝑥,𝑅   𝑥,𝑌
Allowed substitution hints:   𝐹(𝑥)   𝑋(𝑥)

Proof of Theorem fdmdifeqresdif
StepHypRef Expression
1 eldifsnneq 4727 . . . . 5 (𝑥 ∈ (𝐷 ∖ {𝑌}) → ¬ 𝑥 = 𝑌)
21adantl 481 . . . 4 ((𝐺:(𝐷 ∖ {𝑌})⟶𝑅𝑥 ∈ (𝐷 ∖ {𝑌})) → ¬ 𝑥 = 𝑌)
32iffalsed 4473 . . 3 ((𝐺:(𝐷 ∖ {𝑌})⟶𝑅𝑥 ∈ (𝐷 ∖ {𝑌})) → if(𝑥 = 𝑌, 𝑋, (𝐺𝑥)) = (𝐺𝑥))
43mpteq2dva 5177 . 2 (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ if(𝑥 = 𝑌, 𝑋, (𝐺𝑥))) = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ (𝐺𝑥)))
5 fdmdifeqresdif.f . . . 4 𝐹 = (𝑥𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺𝑥)))
65reseq1i 5890 . . 3 (𝐹 ↾ (𝐷 ∖ {𝑌})) = ((𝑥𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺𝑥))) ↾ (𝐷 ∖ {𝑌}))
7 difssd 4070 . . . 4 (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → (𝐷 ∖ {𝑌}) ⊆ 𝐷)
87resmptd 5951 . . 3 (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → ((𝑥𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺𝑥))) ↾ (𝐷 ∖ {𝑌})) = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ if(𝑥 = 𝑌, 𝑋, (𝐺𝑥))))
96, 8eqtrid 2785 . 2 (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → (𝐹 ↾ (𝐷 ∖ {𝑌})) = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ if(𝑥 = 𝑌, 𝑋, (𝐺𝑥))))
10 ffn 6618 . . 3 (𝐺:(𝐷 ∖ {𝑌})⟶𝑅𝐺 Fn (𝐷 ∖ {𝑌}))
11 dffn5 6848 . . 3 (𝐺 Fn (𝐷 ∖ {𝑌}) ↔ 𝐺 = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ (𝐺𝑥)))
1210, 11sylib 217 . 2 (𝐺:(𝐷 ∖ {𝑌})⟶𝑅𝐺 = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ (𝐺𝑥)))
134, 9, 123eqtr4rd 2784 1 (𝐺:(𝐷 ∖ {𝑌})⟶𝑅𝐺 = (𝐹 ↾ (𝐷 ∖ {𝑌})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2101  cdif 3886  ifcif 4462  {csn 4564  cmpt 5160  cres 5593   Fn wfn 6442  wf 6443  cfv 6447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3224  df-v 3436  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-br 5078  df-opab 5140  df-mpt 5161  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-res 5603  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-fv 6455
This theorem is referenced by:  lincext2  45836  lincext3  45837
  Copyright terms: Public domain W3C validator