![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fdmdifeqresdif | Structured version Visualization version GIF version |
Description: The restriction of a conditional mapping to function values of a function having a domain which is a difference with a singleton equals this function. (Contributed by AV, 23-Apr-2019.) |
Ref | Expression |
---|---|
fdmdifeqresdif.f | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥))) |
Ref | Expression |
---|---|
fdmdifeqresdif | ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → 𝐺 = (𝐹 ↾ (𝐷 ∖ {𝑌}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsnneq 4796 | . . . . 5 ⊢ (𝑥 ∈ (𝐷 ∖ {𝑌}) → ¬ 𝑥 = 𝑌) | |
2 | 1 | adantl 481 | . . . 4 ⊢ ((𝐺:(𝐷 ∖ {𝑌})⟶𝑅 ∧ 𝑥 ∈ (𝐷 ∖ {𝑌})) → ¬ 𝑥 = 𝑌) |
3 | 2 | iffalsed 4542 | . . 3 ⊢ ((𝐺:(𝐷 ∖ {𝑌})⟶𝑅 ∧ 𝑥 ∈ (𝐷 ∖ {𝑌})) → if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥)) = (𝐺‘𝑥)) |
4 | 3 | mpteq2dva 5248 | . 2 ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥))) = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ (𝐺‘𝑥))) |
5 | fdmdifeqresdif.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥))) | |
6 | 5 | reseq1i 5996 | . . 3 ⊢ (𝐹 ↾ (𝐷 ∖ {𝑌})) = ((𝑥 ∈ 𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥))) ↾ (𝐷 ∖ {𝑌})) |
7 | difssd 4147 | . . . 4 ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → (𝐷 ∖ {𝑌}) ⊆ 𝐷) | |
8 | 7 | resmptd 6060 | . . 3 ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → ((𝑥 ∈ 𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥))) ↾ (𝐷 ∖ {𝑌})) = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥)))) |
9 | 6, 8 | eqtrid 2787 | . 2 ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → (𝐹 ↾ (𝐷 ∖ {𝑌})) = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥)))) |
10 | ffn 6737 | . . 3 ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → 𝐺 Fn (𝐷 ∖ {𝑌})) | |
11 | dffn5 6967 | . . 3 ⊢ (𝐺 Fn (𝐷 ∖ {𝑌}) ↔ 𝐺 = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ (𝐺‘𝑥))) | |
12 | 10, 11 | sylib 218 | . 2 ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → 𝐺 = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ (𝐺‘𝑥))) |
13 | 4, 9, 12 | 3eqtr4rd 2786 | 1 ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → 𝐺 = (𝐹 ↾ (𝐷 ∖ {𝑌}))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∖ cdif 3960 ifcif 4531 {csn 4631 ↦ cmpt 5231 ↾ cres 5691 Fn wfn 6558 ⟶wf 6559 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-res 5701 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 |
This theorem is referenced by: lincext2 48301 lincext3 48302 |
Copyright terms: Public domain | W3C validator |