Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fdmdifeqresdif | Structured version Visualization version GIF version |
Description: The restriction of a conditional mapping to function values of a function having a domain which is a difference with a singleton equals this function. (Contributed by AV, 23-Apr-2019.) |
Ref | Expression |
---|---|
fdmdifeqresdif.f | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥))) |
Ref | Expression |
---|---|
fdmdifeqresdif | ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → 𝐺 = (𝐹 ↾ (𝐷 ∖ {𝑌}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsnneq 4721 | . . . . 5 ⊢ (𝑥 ∈ (𝐷 ∖ {𝑌}) → ¬ 𝑥 = 𝑌) | |
2 | 1 | adantl 481 | . . . 4 ⊢ ((𝐺:(𝐷 ∖ {𝑌})⟶𝑅 ∧ 𝑥 ∈ (𝐷 ∖ {𝑌})) → ¬ 𝑥 = 𝑌) |
3 | 2 | iffalsed 4467 | . . 3 ⊢ ((𝐺:(𝐷 ∖ {𝑌})⟶𝑅 ∧ 𝑥 ∈ (𝐷 ∖ {𝑌})) → if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥)) = (𝐺‘𝑥)) |
4 | 3 | mpteq2dva 5170 | . 2 ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥))) = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ (𝐺‘𝑥))) |
5 | fdmdifeqresdif.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥))) | |
6 | 5 | reseq1i 5876 | . . 3 ⊢ (𝐹 ↾ (𝐷 ∖ {𝑌})) = ((𝑥 ∈ 𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥))) ↾ (𝐷 ∖ {𝑌})) |
7 | difssd 4063 | . . . 4 ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → (𝐷 ∖ {𝑌}) ⊆ 𝐷) | |
8 | 7 | resmptd 5937 | . . 3 ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → ((𝑥 ∈ 𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥))) ↾ (𝐷 ∖ {𝑌})) = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥)))) |
9 | 6, 8 | syl5eq 2791 | . 2 ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → (𝐹 ↾ (𝐷 ∖ {𝑌})) = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥)))) |
10 | ffn 6584 | . . 3 ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → 𝐺 Fn (𝐷 ∖ {𝑌})) | |
11 | dffn5 6810 | . . 3 ⊢ (𝐺 Fn (𝐷 ∖ {𝑌}) ↔ 𝐺 = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ (𝐺‘𝑥))) | |
12 | 10, 11 | sylib 217 | . 2 ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → 𝐺 = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ (𝐺‘𝑥))) |
13 | 4, 9, 12 | 3eqtr4rd 2789 | 1 ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → 𝐺 = (𝐹 ↾ (𝐷 ∖ {𝑌}))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ifcif 4456 {csn 4558 ↦ cmpt 5153 ↾ cres 5582 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-res 5592 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 |
This theorem is referenced by: lincext2 45684 lincext3 45685 |
Copyright terms: Public domain | W3C validator |