Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdmdifeqresdif Structured version   Visualization version   GIF version

Theorem fdmdifeqresdif 47007
Description: The restriction of a conditional mapping to function values of a function having a domain which is a difference with a singleton equals this function. (Contributed by AV, 23-Apr-2019.)
Hypothesis
Ref Expression
fdmdifeqresdif.f 𝐹 = (𝑥𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺𝑥)))
Assertion
Ref Expression
fdmdifeqresdif (𝐺:(𝐷 ∖ {𝑌})⟶𝑅𝐺 = (𝐹 ↾ (𝐷 ∖ {𝑌})))
Distinct variable groups:   𝑥,𝐷   𝑥,𝐺   𝑥,𝑅   𝑥,𝑌
Allowed substitution hints:   𝐹(𝑥)   𝑋(𝑥)

Proof of Theorem fdmdifeqresdif
StepHypRef Expression
1 eldifsnneq 4794 . . . . 5 (𝑥 ∈ (𝐷 ∖ {𝑌}) → ¬ 𝑥 = 𝑌)
21adantl 482 . . . 4 ((𝐺:(𝐷 ∖ {𝑌})⟶𝑅𝑥 ∈ (𝐷 ∖ {𝑌})) → ¬ 𝑥 = 𝑌)
32iffalsed 4539 . . 3 ((𝐺:(𝐷 ∖ {𝑌})⟶𝑅𝑥 ∈ (𝐷 ∖ {𝑌})) → if(𝑥 = 𝑌, 𝑋, (𝐺𝑥)) = (𝐺𝑥))
43mpteq2dva 5248 . 2 (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ if(𝑥 = 𝑌, 𝑋, (𝐺𝑥))) = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ (𝐺𝑥)))
5 fdmdifeqresdif.f . . . 4 𝐹 = (𝑥𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺𝑥)))
65reseq1i 5977 . . 3 (𝐹 ↾ (𝐷 ∖ {𝑌})) = ((𝑥𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺𝑥))) ↾ (𝐷 ∖ {𝑌}))
7 difssd 4132 . . . 4 (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → (𝐷 ∖ {𝑌}) ⊆ 𝐷)
87resmptd 6040 . . 3 (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → ((𝑥𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺𝑥))) ↾ (𝐷 ∖ {𝑌})) = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ if(𝑥 = 𝑌, 𝑋, (𝐺𝑥))))
96, 8eqtrid 2784 . 2 (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → (𝐹 ↾ (𝐷 ∖ {𝑌})) = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ if(𝑥 = 𝑌, 𝑋, (𝐺𝑥))))
10 ffn 6717 . . 3 (𝐺:(𝐷 ∖ {𝑌})⟶𝑅𝐺 Fn (𝐷 ∖ {𝑌}))
11 dffn5 6950 . . 3 (𝐺 Fn (𝐷 ∖ {𝑌}) ↔ 𝐺 = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ (𝐺𝑥)))
1210, 11sylib 217 . 2 (𝐺:(𝐷 ∖ {𝑌})⟶𝑅𝐺 = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ (𝐺𝑥)))
134, 9, 123eqtr4rd 2783 1 (𝐺:(𝐷 ∖ {𝑌})⟶𝑅𝐺 = (𝐹 ↾ (𝐷 ∖ {𝑌})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  cdif 3945  ifcif 4528  {csn 4628  cmpt 5231  cres 5678   Fn wfn 6538  wf 6539  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-res 5688  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551
This theorem is referenced by:  lincext2  47126  lincext3  47127
  Copyright terms: Public domain W3C validator