Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fdmdifeqresdif | Structured version Visualization version GIF version |
Description: The restriction of a conditional mapping to function values of a function having a domain which is a difference with a singleton equals this function. (Contributed by AV, 23-Apr-2019.) |
Ref | Expression |
---|---|
fdmdifeqresdif.f | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥))) |
Ref | Expression |
---|---|
fdmdifeqresdif | ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → 𝐺 = (𝐹 ↾ (𝐷 ∖ {𝑌}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsnneq 4727 | . . . . 5 ⊢ (𝑥 ∈ (𝐷 ∖ {𝑌}) → ¬ 𝑥 = 𝑌) | |
2 | 1 | adantl 481 | . . . 4 ⊢ ((𝐺:(𝐷 ∖ {𝑌})⟶𝑅 ∧ 𝑥 ∈ (𝐷 ∖ {𝑌})) → ¬ 𝑥 = 𝑌) |
3 | 2 | iffalsed 4473 | . . 3 ⊢ ((𝐺:(𝐷 ∖ {𝑌})⟶𝑅 ∧ 𝑥 ∈ (𝐷 ∖ {𝑌})) → if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥)) = (𝐺‘𝑥)) |
4 | 3 | mpteq2dva 5177 | . 2 ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥))) = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ (𝐺‘𝑥))) |
5 | fdmdifeqresdif.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥))) | |
6 | 5 | reseq1i 5890 | . . 3 ⊢ (𝐹 ↾ (𝐷 ∖ {𝑌})) = ((𝑥 ∈ 𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥))) ↾ (𝐷 ∖ {𝑌})) |
7 | difssd 4070 | . . . 4 ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → (𝐷 ∖ {𝑌}) ⊆ 𝐷) | |
8 | 7 | resmptd 5951 | . . 3 ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → ((𝑥 ∈ 𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥))) ↾ (𝐷 ∖ {𝑌})) = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥)))) |
9 | 6, 8 | eqtrid 2785 | . 2 ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → (𝐹 ↾ (𝐷 ∖ {𝑌})) = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥)))) |
10 | ffn 6618 | . . 3 ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → 𝐺 Fn (𝐷 ∖ {𝑌})) | |
11 | dffn5 6848 | . . 3 ⊢ (𝐺 Fn (𝐷 ∖ {𝑌}) ↔ 𝐺 = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ (𝐺‘𝑥))) | |
12 | 10, 11 | sylib 217 | . 2 ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → 𝐺 = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ (𝐺‘𝑥))) |
13 | 4, 9, 12 | 3eqtr4rd 2784 | 1 ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → 𝐺 = (𝐹 ↾ (𝐷 ∖ {𝑌}))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2101 ∖ cdif 3886 ifcif 4462 {csn 4564 ↦ cmpt 5160 ↾ cres 5593 Fn wfn 6442 ⟶wf 6443 ‘cfv 6447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-res 5603 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-fv 6455 |
This theorem is referenced by: lincext2 45836 lincext3 45837 |
Copyright terms: Public domain | W3C validator |