Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdmdifeqresdif Structured version   Visualization version   GIF version

Theorem fdmdifeqresdif 45565
Description: The restriction of a conditional mapping to function values of a function having a domain which is a difference with a singleton equals this function. (Contributed by AV, 23-Apr-2019.)
Hypothesis
Ref Expression
fdmdifeqresdif.f 𝐹 = (𝑥𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺𝑥)))
Assertion
Ref Expression
fdmdifeqresdif (𝐺:(𝐷 ∖ {𝑌})⟶𝑅𝐺 = (𝐹 ↾ (𝐷 ∖ {𝑌})))
Distinct variable groups:   𝑥,𝐷   𝑥,𝐺   𝑥,𝑅   𝑥,𝑌
Allowed substitution hints:   𝐹(𝑥)   𝑋(𝑥)

Proof of Theorem fdmdifeqresdif
StepHypRef Expression
1 eldifsnneq 4721 . . . . 5 (𝑥 ∈ (𝐷 ∖ {𝑌}) → ¬ 𝑥 = 𝑌)
21adantl 481 . . . 4 ((𝐺:(𝐷 ∖ {𝑌})⟶𝑅𝑥 ∈ (𝐷 ∖ {𝑌})) → ¬ 𝑥 = 𝑌)
32iffalsed 4467 . . 3 ((𝐺:(𝐷 ∖ {𝑌})⟶𝑅𝑥 ∈ (𝐷 ∖ {𝑌})) → if(𝑥 = 𝑌, 𝑋, (𝐺𝑥)) = (𝐺𝑥))
43mpteq2dva 5170 . 2 (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ if(𝑥 = 𝑌, 𝑋, (𝐺𝑥))) = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ (𝐺𝑥)))
5 fdmdifeqresdif.f . . . 4 𝐹 = (𝑥𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺𝑥)))
65reseq1i 5876 . . 3 (𝐹 ↾ (𝐷 ∖ {𝑌})) = ((𝑥𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺𝑥))) ↾ (𝐷 ∖ {𝑌}))
7 difssd 4063 . . . 4 (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → (𝐷 ∖ {𝑌}) ⊆ 𝐷)
87resmptd 5937 . . 3 (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → ((𝑥𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺𝑥))) ↾ (𝐷 ∖ {𝑌})) = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ if(𝑥 = 𝑌, 𝑋, (𝐺𝑥))))
96, 8syl5eq 2791 . 2 (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → (𝐹 ↾ (𝐷 ∖ {𝑌})) = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ if(𝑥 = 𝑌, 𝑋, (𝐺𝑥))))
10 ffn 6584 . . 3 (𝐺:(𝐷 ∖ {𝑌})⟶𝑅𝐺 Fn (𝐷 ∖ {𝑌}))
11 dffn5 6810 . . 3 (𝐺 Fn (𝐷 ∖ {𝑌}) ↔ 𝐺 = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ (𝐺𝑥)))
1210, 11sylib 217 . 2 (𝐺:(𝐷 ∖ {𝑌})⟶𝑅𝐺 = (𝑥 ∈ (𝐷 ∖ {𝑌}) ↦ (𝐺𝑥)))
134, 9, 123eqtr4rd 2789 1 (𝐺:(𝐷 ∖ {𝑌})⟶𝑅𝐺 = (𝐹 ↾ (𝐷 ∖ {𝑌})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  cdif 3880  ifcif 4456  {csn 4558  cmpt 5153  cres 5582   Fn wfn 6413  wf 6414  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426
This theorem is referenced by:  lincext2  45684  lincext3  45685
  Copyright terms: Public domain W3C validator