| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elzdif0 | Structured version Visualization version GIF version | ||
| Description: Lemma for qqhval2 33972. (Contributed by Thierry Arnoux, 29-Oct-2017.) |
| Ref | Expression |
|---|---|
| elzdif0 | ⊢ (𝑀 ∈ (ℤ ∖ {0}) → (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsnneq 4755 | . 2 ⊢ (𝑀 ∈ (ℤ ∖ {0}) → ¬ 𝑀 = 0) | |
| 2 | eldifi 4094 | . . . . 5 ⊢ (𝑀 ∈ (ℤ ∖ {0}) → 𝑀 ∈ ℤ) | |
| 3 | elz 12531 | . . . . 5 ⊢ (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 = 0 ∨ 𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ))) | |
| 4 | 2, 3 | sylib 218 | . . . 4 ⊢ (𝑀 ∈ (ℤ ∖ {0}) → (𝑀 ∈ ℝ ∧ (𝑀 = 0 ∨ 𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ))) |
| 5 | 4 | simprd 495 | . . 3 ⊢ (𝑀 ∈ (ℤ ∖ {0}) → (𝑀 = 0 ∨ 𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ)) |
| 6 | 3orass 1089 | . . 3 ⊢ ((𝑀 = 0 ∨ 𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ) ↔ (𝑀 = 0 ∨ (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ))) | |
| 7 | 5, 6 | sylib 218 | . 2 ⊢ (𝑀 ∈ (ℤ ∖ {0}) → (𝑀 = 0 ∨ (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ))) |
| 8 | orel1 888 | . 2 ⊢ (¬ 𝑀 = 0 → ((𝑀 = 0 ∨ (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ)) → (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ))) | |
| 9 | 1, 7, 8 | sylc 65 | 1 ⊢ (𝑀 ∈ (ℤ ∖ {0}) → (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ∖ cdif 3911 {csn 4589 ℝcr 11067 0cc0 11068 -cneg 11406 ℕcn 12186 ℤcz 12529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-neg 11408 df-z 12530 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |