![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elzdif0 | Structured version Visualization version GIF version |
Description: Lemma for qqhval2 33928. (Contributed by Thierry Arnoux, 29-Oct-2017.) |
Ref | Expression |
---|---|
elzdif0 | ⊢ (𝑀 ∈ (ℤ ∖ {0}) → (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsnneq 4816 | . 2 ⊢ (𝑀 ∈ (ℤ ∖ {0}) → ¬ 𝑀 = 0) | |
2 | eldifi 4154 | . . . . 5 ⊢ (𝑀 ∈ (ℤ ∖ {0}) → 𝑀 ∈ ℤ) | |
3 | elz 12641 | . . . . 5 ⊢ (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 = 0 ∨ 𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ))) | |
4 | 2, 3 | sylib 218 | . . . 4 ⊢ (𝑀 ∈ (ℤ ∖ {0}) → (𝑀 ∈ ℝ ∧ (𝑀 = 0 ∨ 𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ))) |
5 | 4 | simprd 495 | . . 3 ⊢ (𝑀 ∈ (ℤ ∖ {0}) → (𝑀 = 0 ∨ 𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ)) |
6 | 3orass 1090 | . . 3 ⊢ ((𝑀 = 0 ∨ 𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ) ↔ (𝑀 = 0 ∨ (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ))) | |
7 | 5, 6 | sylib 218 | . 2 ⊢ (𝑀 ∈ (ℤ ∖ {0}) → (𝑀 = 0 ∨ (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ))) |
8 | orel1 887 | . 2 ⊢ (¬ 𝑀 = 0 → ((𝑀 = 0 ∨ (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ)) → (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ))) | |
9 | 1, 7, 8 | sylc 65 | 1 ⊢ (𝑀 ∈ (ℤ ∖ {0}) → (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 846 ∨ w3o 1086 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 {csn 4648 ℝcr 11183 0cc0 11184 -cneg 11521 ℕcn 12293 ℤcz 12639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-neg 11523 df-z 12640 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |