Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elzdif0 Structured version   Visualization version   GIF version

Theorem elzdif0 33614
Description: Lemma for qqhval2 33616. (Contributed by Thierry Arnoux, 29-Oct-2017.)
Assertion
Ref Expression
elzdif0 (𝑀 ∈ (ℤ ∖ {0}) → (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ))

Proof of Theorem elzdif0
StepHypRef Expression
1 eldifsnneq 4799 . 2 (𝑀 ∈ (ℤ ∖ {0}) → ¬ 𝑀 = 0)
2 eldifi 4127 . . . . 5 (𝑀 ∈ (ℤ ∖ {0}) → 𝑀 ∈ ℤ)
3 elz 12598 . . . . 5 (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 = 0 ∨ 𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ)))
42, 3sylib 217 . . . 4 (𝑀 ∈ (ℤ ∖ {0}) → (𝑀 ∈ ℝ ∧ (𝑀 = 0 ∨ 𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ)))
54simprd 494 . . 3 (𝑀 ∈ (ℤ ∖ {0}) → (𝑀 = 0 ∨ 𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ))
6 3orass 1087 . . 3 ((𝑀 = 0 ∨ 𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ) ↔ (𝑀 = 0 ∨ (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ)))
75, 6sylib 217 . 2 (𝑀 ∈ (ℤ ∖ {0}) → (𝑀 = 0 ∨ (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ)))
8 orel1 886 . 2 𝑀 = 0 → ((𝑀 = 0 ∨ (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ)) → (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ)))
91, 7, 8sylc 65 1 (𝑀 ∈ (ℤ ∖ {0}) → (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wo 845  w3o 1083   = wceq 1533  wcel 2098  cdif 3946  {csn 4632  cr 11145  0cc0 11146  -cneg 11483  cn 12250  cz 12596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-iota 6505  df-fv 6561  df-ov 7429  df-neg 11485  df-z 12597
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator