Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldmne0 | Structured version Visualization version GIF version |
Description: A function of nonempty domain is not empty. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
Ref | Expression |
---|---|
eldmne0 | ⊢ (𝑋 ∈ dom 𝐹 → 𝐹 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4281 | . 2 ⊢ (𝑋 ∈ dom 𝐹 → dom 𝐹 ≠ ∅) | |
2 | dmeq 5845 | . . . 4 ⊢ (𝐹 = ∅ → dom 𝐹 = dom ∅) | |
3 | dm0 5862 | . . . 4 ⊢ dom ∅ = ∅ | |
4 | 2, 3 | eqtrdi 2792 | . . 3 ⊢ (𝐹 = ∅ → dom 𝐹 = ∅) |
5 | 4 | necon3i 2973 | . 2 ⊢ (dom 𝐹 ≠ ∅ → 𝐹 ≠ ∅) |
6 | 1, 5 | syl 17 | 1 ⊢ (𝑋 ∈ dom 𝐹 → 𝐹 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∅c0 4269 dom cdm 5620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-br 5093 df-dm 5630 |
This theorem is referenced by: cycpmrn 31697 |
Copyright terms: Public domain | W3C validator |