Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmne0 Structured version   Visualization version   GIF version

Theorem eldmne0 30864
Description: A function of nonempty domain is not empty. (Contributed by Thierry Arnoux, 20-Nov-2023.)
Assertion
Ref Expression
eldmne0 (𝑋 ∈ dom 𝐹𝐹 ≠ ∅)

Proof of Theorem eldmne0
StepHypRef Expression
1 ne0i 4265 . 2 (𝑋 ∈ dom 𝐹 → dom 𝐹 ≠ ∅)
2 dmeq 5801 . . . 4 (𝐹 = ∅ → dom 𝐹 = dom ∅)
3 dm0 5818 . . . 4 dom ∅ = ∅
42, 3eqtrdi 2795 . . 3 (𝐹 = ∅ → dom 𝐹 = ∅)
54necon3i 2975 . 2 (dom 𝐹 ≠ ∅ → 𝐹 ≠ ∅)
61, 5syl 17 1 (𝑋 ∈ dom 𝐹𝐹 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wne 2942  c0 4253  dom cdm 5580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-dm 5590
This theorem is referenced by:  cycpmrn  31312
  Copyright terms: Public domain W3C validator