Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmne0 Structured version   Visualization version   GIF version

Theorem eldmne0 31839
Description: A function of nonempty domain is not empty. (Contributed by Thierry Arnoux, 20-Nov-2023.)
Assertion
Ref Expression
eldmne0 (𝑋 ∈ dom 𝐹𝐹 ≠ ∅)

Proof of Theorem eldmne0
StepHypRef Expression
1 ne0i 4333 . 2 (𝑋 ∈ dom 𝐹 → dom 𝐹 ≠ ∅)
2 dmeq 5901 . . . 4 (𝐹 = ∅ → dom 𝐹 = dom ∅)
3 dm0 5918 . . . 4 dom ∅ = ∅
42, 3eqtrdi 2788 . . 3 (𝐹 = ∅ → dom 𝐹 = ∅)
54necon3i 2973 . 2 (dom 𝐹 ≠ ∅ → 𝐹 ≠ ∅)
61, 5syl 17 1 (𝑋 ∈ dom 𝐹𝐹 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wne 2940  c0 4321  dom cdm 5675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-dm 5685
This theorem is referenced by:  cycpmrn  32289
  Copyright terms: Public domain W3C validator