![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldmne0 | Structured version Visualization version GIF version |
Description: A function of nonempty domain is not empty. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
Ref | Expression |
---|---|
eldmne0 | ⊢ (𝑋 ∈ dom 𝐹 → 𝐹 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4333 | . 2 ⊢ (𝑋 ∈ dom 𝐹 → dom 𝐹 ≠ ∅) | |
2 | dmeq 5901 | . . . 4 ⊢ (𝐹 = ∅ → dom 𝐹 = dom ∅) | |
3 | dm0 5918 | . . . 4 ⊢ dom ∅ = ∅ | |
4 | 2, 3 | eqtrdi 2788 | . . 3 ⊢ (𝐹 = ∅ → dom 𝐹 = ∅) |
5 | 4 | necon3i 2973 | . 2 ⊢ (dom 𝐹 ≠ ∅ → 𝐹 ≠ ∅) |
6 | 1, 5 | syl 17 | 1 ⊢ (𝑋 ∈ dom 𝐹 → 𝐹 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∅c0 4321 dom cdm 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-dm 5685 |
This theorem is referenced by: cycpmrn 32289 |
Copyright terms: Public domain | W3C validator |