![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldmne0 | Structured version Visualization version GIF version |
Description: A function of nonempty domain is not empty. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
Ref | Expression |
---|---|
eldmne0 | ⊢ (𝑋 ∈ dom 𝐹 → 𝐹 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4364 | . 2 ⊢ (𝑋 ∈ dom 𝐹 → dom 𝐹 ≠ ∅) | |
2 | dmeq 5928 | . . . 4 ⊢ (𝐹 = ∅ → dom 𝐹 = dom ∅) | |
3 | dm0 5945 | . . . 4 ⊢ dom ∅ = ∅ | |
4 | 2, 3 | eqtrdi 2796 | . . 3 ⊢ (𝐹 = ∅ → dom 𝐹 = ∅) |
5 | 4 | necon3i 2979 | . 2 ⊢ (dom 𝐹 ≠ ∅ → 𝐹 ≠ ∅) |
6 | 1, 5 | syl 17 | 1 ⊢ (𝑋 ∈ dom 𝐹 → 𝐹 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 dom cdm 5700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-dm 5710 |
This theorem is referenced by: cycpmrn 33136 |
Copyright terms: Public domain | W3C validator |