Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmne0 Structured version   Visualization version   GIF version

Theorem eldmne0 32620
Description: A function of nonempty domain is not empty. (Contributed by Thierry Arnoux, 20-Nov-2023.)
Assertion
Ref Expression
eldmne0 (𝑋 ∈ dom 𝐹𝐹 ≠ ∅)

Proof of Theorem eldmne0
StepHypRef Expression
1 ne0i 4292 . 2 (𝑋 ∈ dom 𝐹 → dom 𝐹 ≠ ∅)
2 dmeq 5850 . . . 4 (𝐹 = ∅ → dom 𝐹 = dom ∅)
3 dm0 5867 . . . 4 dom ∅ = ∅
42, 3eqtrdi 2784 . . 3 (𝐹 = ∅ → dom 𝐹 = ∅)
54necon3i 2962 . 2 (dom 𝐹 ≠ ∅ → 𝐹 ≠ ∅)
61, 5syl 17 1 (𝑋 ∈ dom 𝐹𝐹 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wne 2930  c0 4284  dom cdm 5621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2931  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-dm 5631
This theorem is referenced by:  cycpmrn  33123
  Copyright terms: Public domain W3C validator