![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmeq | Structured version Visualization version GIF version |
Description: Equality theorem for domain. (Contributed by NM, 11-Aug-1994.) |
Ref | Expression |
---|---|
dmeq | ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmss 5614 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) | |
2 | dmss 5614 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → dom 𝐵 ⊆ dom 𝐴) | |
3 | 1, 2 | anim12i 603 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (dom 𝐴 ⊆ dom 𝐵 ∧ dom 𝐵 ⊆ dom 𝐴)) |
4 | eqss 3869 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 3869 | . 2 ⊢ (dom 𝐴 = dom 𝐵 ↔ (dom 𝐴 ⊆ dom 𝐵 ∧ dom 𝐵 ⊆ dom 𝐴)) | |
6 | 3, 4, 5 | 3imtr4i 284 | 1 ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ⊆ wss 3825 dom cdm 5400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-ext 2745 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-rab 3091 df-v 3411 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-br 4924 df-dm 5410 |
This theorem is referenced by: dmeqi 5616 dmeqd 5617 xpid11 5638 resresdm 5923 fneq1 6271 eqfnfv2 6622 funopdmsn 6729 nvof1o 6856 offval 7228 ofrfval 7229 offval3 7488 suppval 7628 smoeq 7784 tz7.44lem1 7838 tz7.44-2 7840 tz7.44-3 7841 ereq1 8088 fundmeng 8373 fseqenlem2 9237 dfac3 9333 dfac9 9348 dfac12lem1 9355 dfac12r 9358 ackbij2lem2 9452 ackbij2lem3 9453 r1om 9456 cfsmolem 9482 cfsmo 9483 dcomex 9659 axdc2lem 9660 axdc3lem2 9663 axdc3lem4 9665 ac7g 9686 ttukey2g 9728 fundmge2nop0 13651 s4dom 14133 relexp0g 14232 relexpsucnnr 14235 dfrtrcl2 14272 ello1 14723 elo1 14734 bpolylem 15252 bpolyval 15253 isoval 16883 istsr 17675 islindf 20648 decpmatval0 21066 pmatcollpw3lem 21085 ordtval 21491 dfac14 21920 fmval 22245 fmf 22247 blfvalps 22686 tmsval 22784 cfilfval 23560 caufval 23571 isibl 24059 elcpn 24224 iscgrg 25990 uhgr0e 26549 incistruhgr 26557 ausgrusgri 26646 egrsubgr 26752 vtxdgfval 26942 vtxdg0e 26949 1egrvtxdg1 26984 eupth0 27733 ex-dm 27986 f1ocnt 30261 locfinreflem 30705 pstmval 30736 cntnevol 31089 omsval 31153 sitgval 31192 elprob 31270 cndprobval 31294 rrvmbfm 31303 bnj1385 31713 bnj1400 31716 bnj1014 31840 bnj1015 31841 bnj1326 31904 bnj1321 31905 bnj1491 31935 mrsubfval 32215 rdgprc0 32499 dfrdg2 32501 bdayval 32616 bdayfo 32643 noprefixmo 32663 nosupdm 32665 nosupfv 32667 nosupres 32668 nosupbnd1lem1 32669 nosupbnd1lem3 32671 nosupbnd1lem5 32673 nosupbnd2 32677 noetalem3 32680 brdomaing 32857 fwddifval 33084 fwddifnval 33085 filnetlem4 33190 cureq 34257 ismtyval 34468 isass 34514 isexid 34515 ismgmOLD 34518 elrefrels2 35150 elrefrels3 35151 refreleq 35153 elcnvrefrels2 35163 elcnvrefrels3 35164 elrefsymrels2 35198 eleqvrels2 35220 eleqvrels3 35221 dmqseq 35268 aomclem6 39000 aomclem8 39002 dfac21 39007 rclexi 39283 rtrclex 39285 rtrclexi 39289 cnvrcl0 39293 dfrtrcl5 39297 dfrcl2 39327 gneispace2 39790 ssnnf1octb 40826 sge0val 42025 ismea 42110 caragenval 42152 isome 42153 issmflem 42381 isomgreqve 43298 fnxpdmdm 43343 offval0 43872 elbigo 43919 |
Copyright terms: Public domain | W3C validator |