Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1o3d Structured version   Visualization version   GIF version

Theorem f1o3d 32605
Description: Describe an implicit one-to-one onto function. (Contributed by Thierry Arnoux, 23-Apr-2017.)
Hypotheses
Ref Expression
f1o3d.1 (𝜑𝐹 = (𝑥𝐴𝐶))
f1o3d.2 ((𝜑𝑥𝐴) → 𝐶𝐵)
f1o3d.3 ((𝜑𝑦𝐵) → 𝐷𝐴)
f1o3d.4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 = 𝐷𝑦 = 𝐶))
Assertion
Ref Expression
f1o3d (𝜑 → (𝐹:𝐴1-1-onto𝐵𝐹 = (𝑦𝐵𝐷)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem f1o3d
StepHypRef Expression
1 f1o3d.2 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶𝐵)
21ralrimiva 3132 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐶𝐵)
3 eqid 2735 . . . . . 6 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
43fnmpt 6678 . . . . 5 (∀𝑥𝐴 𝐶𝐵 → (𝑥𝐴𝐶) Fn 𝐴)
52, 4syl 17 . . . 4 (𝜑 → (𝑥𝐴𝐶) Fn 𝐴)
6 f1o3d.1 . . . . 5 (𝜑𝐹 = (𝑥𝐴𝐶))
76fneq1d 6631 . . . 4 (𝜑 → (𝐹 Fn 𝐴 ↔ (𝑥𝐴𝐶) Fn 𝐴))
85, 7mpbird 257 . . 3 (𝜑𝐹 Fn 𝐴)
9 f1o3d.3 . . . . . 6 ((𝜑𝑦𝐵) → 𝐷𝐴)
109ralrimiva 3132 . . . . 5 (𝜑 → ∀𝑦𝐵 𝐷𝐴)
11 eqid 2735 . . . . . 6 (𝑦𝐵𝐷) = (𝑦𝐵𝐷)
1211fnmpt 6678 . . . . 5 (∀𝑦𝐵 𝐷𝐴 → (𝑦𝐵𝐷) Fn 𝐵)
1310, 12syl 17 . . . 4 (𝜑 → (𝑦𝐵𝐷) Fn 𝐵)
14 eleq1a 2829 . . . . . . . . . . 11 (𝐶𝐵 → (𝑦 = 𝐶𝑦𝐵))
151, 14syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑦 = 𝐶𝑦𝐵))
1615impr 454 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑦 = 𝐶)) → 𝑦𝐵)
17 f1o3d.4 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 = 𝐷𝑦 = 𝐶))
1817biimpar 477 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑦 = 𝐶) → 𝑥 = 𝐷)
1918exp42 435 . . . . . . . . . . 11 (𝜑 → (𝑥𝐴 → (𝑦𝐵 → (𝑦 = 𝐶𝑥 = 𝐷))))
2019com34 91 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 → (𝑦 = 𝐶 → (𝑦𝐵𝑥 = 𝐷))))
2120imp32 418 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑦 = 𝐶)) → (𝑦𝐵𝑥 = 𝐷))
2216, 21jcai 516 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦 = 𝐶)) → (𝑦𝐵𝑥 = 𝐷))
23 eleq1a 2829 . . . . . . . . . . 11 (𝐷𝐴 → (𝑥 = 𝐷𝑥𝐴))
249, 23syl 17 . . . . . . . . . 10 ((𝜑𝑦𝐵) → (𝑥 = 𝐷𝑥𝐴))
2524impr 454 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑥 = 𝐷)) → 𝑥𝐴)
2617biimpa 476 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑥 = 𝐷) → 𝑦 = 𝐶)
2726exp42 435 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐴 → (𝑦𝐵 → (𝑥 = 𝐷𝑦 = 𝐶))))
2827com23 86 . . . . . . . . . . 11 (𝜑 → (𝑦𝐵 → (𝑥𝐴 → (𝑥 = 𝐷𝑦 = 𝐶))))
2928com34 91 . . . . . . . . . 10 (𝜑 → (𝑦𝐵 → (𝑥 = 𝐷 → (𝑥𝐴𝑦 = 𝐶))))
3029imp32 418 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑥 = 𝐷)) → (𝑥𝐴𝑦 = 𝐶))
3125, 30jcai 516 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑥 = 𝐷)) → (𝑥𝐴𝑦 = 𝐶))
3222, 31impbida 800 . . . . . . 7 (𝜑 → ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷)))
3332opabbidv 5185 . . . . . 6 (𝜑 → {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐶)} = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐵𝑥 = 𝐷)})
34 df-mpt 5202 . . . . . . . . 9 (𝑥𝐴𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}
356, 34eqtrdi 2786 . . . . . . . 8 (𝜑𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)})
3635cnveqd 5855 . . . . . . 7 (𝜑𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)})
37 cnvopab 6126 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)} = {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}
3836, 37eqtrdi 2786 . . . . . 6 (𝜑𝐹 = {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐶)})
39 df-mpt 5202 . . . . . . 7 (𝑦𝐵𝐷) = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐵𝑥 = 𝐷)}
4039a1i 11 . . . . . 6 (𝜑 → (𝑦𝐵𝐷) = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐵𝑥 = 𝐷)})
4133, 38, 403eqtr4d 2780 . . . . 5 (𝜑𝐹 = (𝑦𝐵𝐷))
4241fneq1d 6631 . . . 4 (𝜑 → (𝐹 Fn 𝐵 ↔ (𝑦𝐵𝐷) Fn 𝐵))
4313, 42mpbird 257 . . 3 (𝜑𝐹 Fn 𝐵)
44 dff1o4 6826 . . 3 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))
458, 43, 44sylanbrc 583 . 2 (𝜑𝐹:𝐴1-1-onto𝐵)
4645, 41jca 511 1 (𝜑 → (𝐹:𝐴1-1-onto𝐵𝐹 = (𝑦𝐵𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  {copab 5181  cmpt 5201  ccnv 5653   Fn wfn 6526  1-1-ontowf1o 6530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538
This theorem is referenced by:  fmptco1f1o  32611  ballotlemsf1o  34546
  Copyright terms: Public domain W3C validator