Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1o3d Structured version   Visualization version   GIF version

Theorem f1o3d 32606
Description: Describe an implicit one-to-one onto function. (Contributed by Thierry Arnoux, 23-Apr-2017.)
Hypotheses
Ref Expression
f1o3d.1 (𝜑𝐹 = (𝑥𝐴𝐶))
f1o3d.2 ((𝜑𝑥𝐴) → 𝐶𝐵)
f1o3d.3 ((𝜑𝑦𝐵) → 𝐷𝐴)
f1o3d.4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 = 𝐷𝑦 = 𝐶))
Assertion
Ref Expression
f1o3d (𝜑 → (𝐹:𝐴1-1-onto𝐵𝐹 = (𝑦𝐵𝐷)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem f1o3d
StepHypRef Expression
1 f1o3d.2 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶𝐵)
21ralrimiva 3124 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐶𝐵)
3 eqid 2731 . . . . . 6 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
43fnmpt 6621 . . . . 5 (∀𝑥𝐴 𝐶𝐵 → (𝑥𝐴𝐶) Fn 𝐴)
52, 4syl 17 . . . 4 (𝜑 → (𝑥𝐴𝐶) Fn 𝐴)
6 f1o3d.1 . . . . 5 (𝜑𝐹 = (𝑥𝐴𝐶))
76fneq1d 6574 . . . 4 (𝜑 → (𝐹 Fn 𝐴 ↔ (𝑥𝐴𝐶) Fn 𝐴))
85, 7mpbird 257 . . 3 (𝜑𝐹 Fn 𝐴)
9 f1o3d.3 . . . . . 6 ((𝜑𝑦𝐵) → 𝐷𝐴)
109ralrimiva 3124 . . . . 5 (𝜑 → ∀𝑦𝐵 𝐷𝐴)
11 eqid 2731 . . . . . 6 (𝑦𝐵𝐷) = (𝑦𝐵𝐷)
1211fnmpt 6621 . . . . 5 (∀𝑦𝐵 𝐷𝐴 → (𝑦𝐵𝐷) Fn 𝐵)
1310, 12syl 17 . . . 4 (𝜑 → (𝑦𝐵𝐷) Fn 𝐵)
14 eleq1a 2826 . . . . . . . . . . 11 (𝐶𝐵 → (𝑦 = 𝐶𝑦𝐵))
151, 14syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑦 = 𝐶𝑦𝐵))
1615impr 454 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑦 = 𝐶)) → 𝑦𝐵)
17 f1o3d.4 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 = 𝐷𝑦 = 𝐶))
1817biimpar 477 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑦 = 𝐶) → 𝑥 = 𝐷)
1918exp42 435 . . . . . . . . . . 11 (𝜑 → (𝑥𝐴 → (𝑦𝐵 → (𝑦 = 𝐶𝑥 = 𝐷))))
2019com34 91 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 → (𝑦 = 𝐶 → (𝑦𝐵𝑥 = 𝐷))))
2120imp32 418 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑦 = 𝐶)) → (𝑦𝐵𝑥 = 𝐷))
2216, 21jcai 516 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦 = 𝐶)) → (𝑦𝐵𝑥 = 𝐷))
23 eleq1a 2826 . . . . . . . . . . 11 (𝐷𝐴 → (𝑥 = 𝐷𝑥𝐴))
249, 23syl 17 . . . . . . . . . 10 ((𝜑𝑦𝐵) → (𝑥 = 𝐷𝑥𝐴))
2524impr 454 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑥 = 𝐷)) → 𝑥𝐴)
2617biimpa 476 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑥 = 𝐷) → 𝑦 = 𝐶)
2726exp42 435 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐴 → (𝑦𝐵 → (𝑥 = 𝐷𝑦 = 𝐶))))
2827com23 86 . . . . . . . . . . 11 (𝜑 → (𝑦𝐵 → (𝑥𝐴 → (𝑥 = 𝐷𝑦 = 𝐶))))
2928com34 91 . . . . . . . . . 10 (𝜑 → (𝑦𝐵 → (𝑥 = 𝐷 → (𝑥𝐴𝑦 = 𝐶))))
3029imp32 418 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑥 = 𝐷)) → (𝑥𝐴𝑦 = 𝐶))
3125, 30jcai 516 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑥 = 𝐷)) → (𝑥𝐴𝑦 = 𝐶))
3222, 31impbida 800 . . . . . . 7 (𝜑 → ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷)))
3332opabbidv 5157 . . . . . 6 (𝜑 → {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐶)} = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐵𝑥 = 𝐷)})
34 df-mpt 5173 . . . . . . . . 9 (𝑥𝐴𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}
356, 34eqtrdi 2782 . . . . . . . 8 (𝜑𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)})
3635cnveqd 5815 . . . . . . 7 (𝜑𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)})
37 cnvopab 6084 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)} = {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}
3836, 37eqtrdi 2782 . . . . . 6 (𝜑𝐹 = {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐶)})
39 df-mpt 5173 . . . . . . 7 (𝑦𝐵𝐷) = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐵𝑥 = 𝐷)}
4039a1i 11 . . . . . 6 (𝜑 → (𝑦𝐵𝐷) = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐵𝑥 = 𝐷)})
4133, 38, 403eqtr4d 2776 . . . . 5 (𝜑𝐹 = (𝑦𝐵𝐷))
4241fneq1d 6574 . . . 4 (𝜑 → (𝐹 Fn 𝐵 ↔ (𝑦𝐵𝐷) Fn 𝐵))
4313, 42mpbird 257 . . 3 (𝜑𝐹 Fn 𝐵)
44 dff1o4 6771 . . 3 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))
458, 43, 44sylanbrc 583 . 2 (𝜑𝐹:𝐴1-1-onto𝐵)
4645, 41jca 511 1 (𝜑 → (𝐹:𝐴1-1-onto𝐵𝐹 = (𝑦𝐵𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  {copab 5153  cmpt 5172  ccnv 5615   Fn wfn 6476  1-1-ontowf1o 6480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488
This theorem is referenced by:  fmptco1f1o  32613  ballotlemsf1o  34525
  Copyright terms: Public domain W3C validator