Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elinti Structured version   Visualization version   GIF version

Theorem elinti 4850
 Description: Membership in class intersection. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
elinti (𝐴 𝐵 → (𝐶𝐵𝐴𝐶))

Proof of Theorem elinti
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elintg 4849 . . 3 (𝐴 𝐵 → (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥))
2 eleq2 2840 . . . 4 (𝑥 = 𝐶 → (𝐴𝑥𝐴𝐶))
32rspccv 3540 . . 3 (∀𝑥𝐵 𝐴𝑥 → (𝐶𝐵𝐴𝐶))
41, 3syl6bi 256 . 2 (𝐴 𝐵 → (𝐴 𝐵 → (𝐶𝐵𝐴𝐶)))
54pm2.43i 52 1 (𝐴 𝐵 → (𝐶𝐵𝐴𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 2111  ∀wral 3070  ∩ cint 4841 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2729 This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-ral 3075  df-int 4842 This theorem is referenced by:  inttsk  10247  subgint  18383  subrgint  19638  lssintcl  19817  ufinffr  22642  shintcli  29224  intlidl  31135  insiga  31636  intsal  43371
 Copyright terms: Public domain W3C validator