MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elinti Structured version   Visualization version   GIF version

Theorem elinti 4888
Description: Membership in class intersection. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
elinti (𝐴 𝐵 → (𝐶𝐵𝐴𝐶))

Proof of Theorem elinti
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elintg 4887 . . 3 (𝐴 𝐵 → (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥))
2 eleq2 2827 . . . 4 (𝑥 = 𝐶 → (𝐴𝑥𝐴𝐶))
32rspccv 3558 . . 3 (∀𝑥𝐵 𝐴𝑥 → (𝐶𝐵𝐴𝐶))
41, 3syl6bi 252 . 2 (𝐴 𝐵 → (𝐴 𝐵 → (𝐶𝐵𝐴𝐶)))
54pm2.43i 52 1 (𝐴 𝐵 → (𝐶𝐵𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wral 3064   cint 4879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-int 4880
This theorem is referenced by:  inttsk  10530  subgint  18779  subrgint  20046  lssintcl  20226  ufinffr  23080  shintcli  29691  intlidl  31602  insiga  32105  intsal  43869
  Copyright terms: Public domain W3C validator