![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elinti | Structured version Visualization version GIF version |
Description: Membership in class intersection. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
elinti | ⊢ (𝐴 ∈ ∩ 𝐵 → (𝐶 ∈ 𝐵 → 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elintg 4978 | . . 3 ⊢ (𝐴 ∈ ∩ 𝐵 → (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥)) | |
2 | eleq2 2833 | . . . 4 ⊢ (𝑥 = 𝐶 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐶)) | |
3 | 2 | rspccv 3632 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 → (𝐶 ∈ 𝐵 → 𝐴 ∈ 𝐶)) |
4 | 1, 3 | biimtrdi 253 | . 2 ⊢ (𝐴 ∈ ∩ 𝐵 → (𝐴 ∈ ∩ 𝐵 → (𝐶 ∈ 𝐵 → 𝐴 ∈ 𝐶))) |
5 | 4 | pm2.43i 52 | 1 ⊢ (𝐴 ∈ ∩ 𝐵 → (𝐶 ∈ 𝐵 → 𝐴 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3067 ∩ cint 4970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-int 4971 |
This theorem is referenced by: inttsk 10843 subgint 19190 subrngint 20586 subrgint 20623 lssintcl 20985 ufinffr 23958 shintcli 31361 intlidl 33413 insiga 34101 intsal 46251 |
Copyright terms: Public domain | W3C validator |