Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elinti | Structured version Visualization version GIF version |
Description: Membership in class intersection. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
elinti | ⊢ (𝐴 ∈ ∩ 𝐵 → (𝐶 ∈ 𝐵 → 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elintg 4887 | . . 3 ⊢ (𝐴 ∈ ∩ 𝐵 → (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥)) | |
2 | eleq2 2827 | . . . 4 ⊢ (𝑥 = 𝐶 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐶)) | |
3 | 2 | rspccv 3558 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 → (𝐶 ∈ 𝐵 → 𝐴 ∈ 𝐶)) |
4 | 1, 3 | syl6bi 252 | . 2 ⊢ (𝐴 ∈ ∩ 𝐵 → (𝐴 ∈ ∩ 𝐵 → (𝐶 ∈ 𝐵 → 𝐴 ∈ 𝐶))) |
5 | 4 | pm2.43i 52 | 1 ⊢ (𝐴 ∈ ∩ 𝐵 → (𝐶 ∈ 𝐵 → 𝐴 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∀wral 3064 ∩ cint 4879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-int 4880 |
This theorem is referenced by: inttsk 10530 subgint 18779 subrgint 20046 lssintcl 20226 ufinffr 23080 shintcli 29691 intlidl 31602 insiga 32105 intsal 43869 |
Copyright terms: Public domain | W3C validator |