| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elinti | Structured version Visualization version GIF version | ||
| Description: Membership in class intersection. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| elinti | ⊢ (𝐴 ∈ ∩ 𝐵 → (𝐶 ∈ 𝐵 → 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elintg 4935 | . . 3 ⊢ (𝐴 ∈ ∩ 𝐵 → (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥)) | |
| 2 | eleq2 2824 | . . . 4 ⊢ (𝑥 = 𝐶 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐶)) | |
| 3 | 2 | rspccv 3603 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 → (𝐶 ∈ 𝐵 → 𝐴 ∈ 𝐶)) |
| 4 | 1, 3 | biimtrdi 253 | . 2 ⊢ (𝐴 ∈ ∩ 𝐵 → (𝐴 ∈ ∩ 𝐵 → (𝐶 ∈ 𝐵 → 𝐴 ∈ 𝐶))) |
| 5 | 4 | pm2.43i 52 | 1 ⊢ (𝐴 ∈ ∩ 𝐵 → (𝐶 ∈ 𝐵 → 𝐴 ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3052 ∩ cint 4927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-int 4928 |
| This theorem is referenced by: inttsk 10793 subgint 19138 subrngint 20525 subrgint 20560 lssintcl 20926 ufinffr 23872 shintcli 31315 intlidl 33440 insiga 34173 intsal 46326 |
| Copyright terms: Public domain | W3C validator |