Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  insiga Structured version   Visualization version   GIF version

Theorem insiga 31400
Description: The intersection of a collection of sigma-algebras of same base is a sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016.)
Assertion
Ref Expression
insiga ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → 𝐴 ∈ (sigAlgebra‘𝑂))

Proof of Theorem insiga
Dummy variables 𝑥 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 intex 5243 . . . 4 (𝐴 ≠ ∅ ↔ 𝐴 ∈ V)
21biimpi 218 . . 3 (𝐴 ≠ ∅ → 𝐴 ∈ V)
32adantr 483 . 2 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → 𝐴 ∈ V)
4 intssuni 4901 . . . 4 (𝐴 ≠ ∅ → 𝐴 𝐴)
54adantr 483 . . 3 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → 𝐴 𝐴)
6 simpr 487 . . . . 5 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂))
7 elpwi 4551 . . . . . 6 (𝐴 ∈ 𝒫 (sigAlgebra‘𝑂) → 𝐴 ⊆ (sigAlgebra‘𝑂))
8 sigasspw 31379 . . . . . . . 8 (𝑠 ∈ (sigAlgebra‘𝑂) → 𝑠 ⊆ 𝒫 𝑂)
9 velpw 4547 . . . . . . . 8 (𝑠 ∈ 𝒫 𝒫 𝑂𝑠 ⊆ 𝒫 𝑂)
108, 9sylibr 236 . . . . . . 7 (𝑠 ∈ (sigAlgebra‘𝑂) → 𝑠 ∈ 𝒫 𝒫 𝑂)
1110ssriv 3974 . . . . . 6 (sigAlgebra‘𝑂) ⊆ 𝒫 𝒫 𝑂
127, 11sstrdi 3982 . . . . 5 (𝐴 ∈ 𝒫 (sigAlgebra‘𝑂) → 𝐴 ⊆ 𝒫 𝒫 𝑂)
136, 12syl 17 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → 𝐴 ⊆ 𝒫 𝒫 𝑂)
14 sspwuni 5025 . . . 4 (𝐴 ⊆ 𝒫 𝒫 𝑂 𝐴 ⊆ 𝒫 𝑂)
1513, 14sylib 220 . . 3 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → 𝐴 ⊆ 𝒫 𝑂)
165, 15sstrd 3980 . 2 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → 𝐴 ⊆ 𝒫 𝑂)
17 simpr 487 . . . . . . . . 9 (((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑠𝐴) → 𝑠𝐴)
18 simplr 767 . . . . . . . . 9 (((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑠𝐴) → 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂))
19 elelpwi 4554 . . . . . . . . 9 ((𝑠𝐴𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → 𝑠 ∈ (sigAlgebra‘𝑂))
2017, 18, 19syl2anc 586 . . . . . . . 8 (((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑠𝐴) → 𝑠 ∈ (sigAlgebra‘𝑂))
21 vex 3500 . . . . . . . . 9 𝑠 ∈ V
22 issiga 31375 . . . . . . . . 9 (𝑠 ∈ V → (𝑠 ∈ (sigAlgebra‘𝑂) ↔ (𝑠 ⊆ 𝒫 𝑂 ∧ (𝑂𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)))))
2321, 22ax-mp 5 . . . . . . . 8 (𝑠 ∈ (sigAlgebra‘𝑂) ↔ (𝑠 ⊆ 𝒫 𝑂 ∧ (𝑂𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠))))
2420, 23sylib 220 . . . . . . 7 (((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑠𝐴) → (𝑠 ⊆ 𝒫 𝑂 ∧ (𝑂𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠))))
2524simprd 498 . . . . . 6 (((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑠𝐴) → (𝑂𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)))
2625simp1d 1138 . . . . 5 (((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑠𝐴) → 𝑂𝑠)
2726ralrimiva 3185 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → ∀𝑠𝐴 𝑂𝑠)
28 n0 4313 . . . . . . . . 9 (𝐴 ≠ ∅ ↔ ∃𝑠 𝑠𝐴)
2928biimpi 218 . . . . . . . 8 (𝐴 ≠ ∅ → ∃𝑠 𝑠𝐴)
3029adantr 483 . . . . . . 7 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → ∃𝑠 𝑠𝐴)
3120ex 415 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → (𝑠𝐴𝑠 ∈ (sigAlgebra‘𝑂)))
3231eximdv 1917 . . . . . . 7 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → (∃𝑠 𝑠𝐴 → ∃𝑠 𝑠 ∈ (sigAlgebra‘𝑂)))
3330, 32mpd 15 . . . . . 6 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → ∃𝑠 𝑠 ∈ (sigAlgebra‘𝑂))
34 elfvex 6706 . . . . . . 7 (𝑠 ∈ (sigAlgebra‘𝑂) → 𝑂 ∈ V)
3534exlimiv 1930 . . . . . 6 (∃𝑠 𝑠 ∈ (sigAlgebra‘𝑂) → 𝑂 ∈ V)
3633, 35syl 17 . . . . 5 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → 𝑂 ∈ V)
37 elintg 4887 . . . . 5 (𝑂 ∈ V → (𝑂 𝐴 ↔ ∀𝑠𝐴 𝑂𝑠))
3836, 37syl 17 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → (𝑂 𝐴 ↔ ∀𝑠𝐴 𝑂𝑠))
3927, 38mpbird 259 . . 3 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → 𝑂 𝐴)
40 simpll 765 . . . . . . . 8 ((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 𝐴) ∧ 𝑠𝐴) → (𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)))
41 simpr 487 . . . . . . . 8 ((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 𝐴) ∧ 𝑠𝐴) → 𝑠𝐴)
4240, 41jca 514 . . . . . . 7 ((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 𝐴) ∧ 𝑠𝐴) → ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑠𝐴))
43 elinti 4888 . . . . . . . . 9 (𝑥 𝐴 → (𝑠𝐴𝑥𝑠))
4443imp 409 . . . . . . . 8 ((𝑥 𝐴𝑠𝐴) → 𝑥𝑠)
4544adantll 712 . . . . . . 7 ((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 𝐴) ∧ 𝑠𝐴) → 𝑥𝑠)
4625simp2d 1139 . . . . . . . 8 (((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑠𝐴) → ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠)
4746r19.21bi 3211 . . . . . . 7 ((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑠𝐴) ∧ 𝑥𝑠) → (𝑂𝑥) ∈ 𝑠)
4842, 45, 47syl2anc 586 . . . . . 6 ((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 𝐴) ∧ 𝑠𝐴) → (𝑂𝑥) ∈ 𝑠)
4948ralrimiva 3185 . . . . 5 (((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 𝐴) → ∀𝑠𝐴 (𝑂𝑥) ∈ 𝑠)
50 difexg 5234 . . . . . . . 8 (𝑂 ∈ V → (𝑂𝑥) ∈ V)
5136, 50syl 17 . . . . . . 7 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → (𝑂𝑥) ∈ V)
5251adantr 483 . . . . . 6 (((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 𝐴) → (𝑂𝑥) ∈ V)
53 elintg 4887 . . . . . 6 ((𝑂𝑥) ∈ V → ((𝑂𝑥) ∈ 𝐴 ↔ ∀𝑠𝐴 (𝑂𝑥) ∈ 𝑠))
5452, 53syl 17 . . . . 5 (((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 𝐴) → ((𝑂𝑥) ∈ 𝐴 ↔ ∀𝑠𝐴 (𝑂𝑥) ∈ 𝑠))
5549, 54mpbird 259 . . . 4 (((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 𝐴) → (𝑂𝑥) ∈ 𝐴)
5655ralrimiva 3185 . . 3 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → ∀𝑥 𝐴(𝑂𝑥) ∈ 𝐴)
57 simplll 773 . . . . . . . . . 10 (((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 ≼ ω) ∧ 𝑠𝐴) → (𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)))
58 simpr 487 . . . . . . . . . 10 (((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 ≼ ω) ∧ 𝑠𝐴) → 𝑠𝐴)
5957, 58jca 514 . . . . . . . . 9 (((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 ≼ ω) ∧ 𝑠𝐴) → ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑠𝐴))
60 simpllr 774 . . . . . . . . . 10 (((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 ≼ ω) ∧ 𝑠𝐴) → 𝑥 ∈ 𝒫 𝐴)
61 elpwi 4551 . . . . . . . . . . . 12 (𝑥 ∈ 𝒫 𝐴𝑥 𝐴)
62 intss1 4894 . . . . . . . . . . . 12 (𝑠𝐴 𝐴𝑠)
6361, 62sylan9ss 3983 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝐴𝑠𝐴) → 𝑥𝑠)
64 velpw 4547 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 𝑠𝑥𝑠)
6563, 64sylibr 236 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 𝐴𝑠𝐴) → 𝑥 ∈ 𝒫 𝑠)
6660, 65sylancom 590 . . . . . . . . 9 (((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 ≼ ω) ∧ 𝑠𝐴) → 𝑥 ∈ 𝒫 𝑠)
6759, 66jca 514 . . . . . . . 8 (((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 ≼ ω) ∧ 𝑠𝐴) → (((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑠𝐴) ∧ 𝑥 ∈ 𝒫 𝑠))
68 simplr 767 . . . . . . . 8 (((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 ≼ ω) ∧ 𝑠𝐴) → 𝑥 ≼ ω)
6925simp3d 1140 . . . . . . . . 9 (((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑠𝐴) → ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠))
7069r19.21bi 3211 . . . . . . . 8 ((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑠𝐴) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑥 ≼ ω → 𝑥𝑠))
7167, 68, 70sylc 65 . . . . . . 7 (((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 ≼ ω) ∧ 𝑠𝐴) → 𝑥𝑠)
7271ralrimiva 3185 . . . . . 6 ((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 ≼ ω) → ∀𝑠𝐴 𝑥𝑠)
73 uniexg 7469 . . . . . . . 8 (𝑥 ∈ 𝒫 𝐴 𝑥 ∈ V)
7473ad2antlr 725 . . . . . . 7 ((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 ≼ ω) → 𝑥 ∈ V)
75 elintg 4887 . . . . . . 7 ( 𝑥 ∈ V → ( 𝑥 𝐴 ↔ ∀𝑠𝐴 𝑥𝑠))
7674, 75syl 17 . . . . . 6 ((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 ≼ ω) → ( 𝑥 𝐴 ↔ ∀𝑠𝐴 𝑥𝑠))
7772, 76mpbird 259 . . . . 5 ((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 ≼ ω) → 𝑥 𝐴)
7877ex 415 . . . 4 (((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 ∈ 𝒫 𝐴) → (𝑥 ≼ ω → 𝑥 𝐴))
7978ralrimiva 3185 . . 3 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → ∀𝑥 ∈ 𝒫 𝐴(𝑥 ≼ ω → 𝑥 𝐴))
8039, 56, 793jca 1124 . 2 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → (𝑂 𝐴 ∧ ∀𝑥 𝐴(𝑂𝑥) ∈ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ≼ ω → 𝑥 𝐴)))
81 issiga 31375 . . 3 ( 𝐴 ∈ V → ( 𝐴 ∈ (sigAlgebra‘𝑂) ↔ ( 𝐴 ⊆ 𝒫 𝑂 ∧ (𝑂 𝐴 ∧ ∀𝑥 𝐴(𝑂𝑥) ∈ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ≼ ω → 𝑥 𝐴)))))
8281biimpar 480 . 2 (( 𝐴 ∈ V ∧ ( 𝐴 ⊆ 𝒫 𝑂 ∧ (𝑂 𝐴 ∧ ∀𝑥 𝐴(𝑂𝑥) ∈ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ≼ ω → 𝑥 𝐴)))) → 𝐴 ∈ (sigAlgebra‘𝑂))
833, 16, 80, 82syl12anc 834 1 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → 𝐴 ∈ (sigAlgebra‘𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wex 1779  wcel 2113  wne 3019  wral 3141  Vcvv 3497  cdif 3936  wss 3939  c0 4294  𝒫 cpw 4542   cuni 4841   cint 4879   class class class wbr 5069  cfv 6358  ωcom 7583  cdom 8510  sigAlgebracsiga 31371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-int 4880  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-iota 6317  df-fun 6360  df-fv 6366  df-siga 31372
This theorem is referenced by:  sigagensiga  31404
  Copyright terms: Public domain W3C validator