MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssintcl Structured version   Visualization version   GIF version

Theorem lssintcl 20979
Description: The intersection of a nonempty set of subspaces is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypothesis
Ref Expression
lssintcl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssintcl ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝐴𝑆)

Proof of Theorem lssintcl
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2735 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → (Scalar‘𝑊) = (Scalar‘𝑊))
2 eqidd 2735 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)))
3 eqidd 2735 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → (Base‘𝑊) = (Base‘𝑊))
4 eqidd 2735 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → (+g𝑊) = (+g𝑊))
5 eqidd 2735 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → ( ·𝑠𝑊) = ( ·𝑠𝑊))
6 lssintcl.s . . 3 𝑆 = (LSubSp‘𝑊)
76a1i 11 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝑆 = (LSubSp‘𝑊))
8 intssuni2 4977 . . . 4 ((𝐴𝑆𝐴 ≠ ∅) → 𝐴 𝑆)
983adant1 1129 . . 3 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝐴 𝑆)
10 eqid 2734 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
1110, 6lssss 20951 . . . . . 6 (𝑦𝑆𝑦 ⊆ (Base‘𝑊))
12 velpw 4609 . . . . . 6 (𝑦 ∈ 𝒫 (Base‘𝑊) ↔ 𝑦 ⊆ (Base‘𝑊))
1311, 12sylibr 234 . . . . 5 (𝑦𝑆𝑦 ∈ 𝒫 (Base‘𝑊))
1413ssriv 3998 . . . 4 𝑆 ⊆ 𝒫 (Base‘𝑊)
15 sspwuni 5104 . . . 4 (𝑆 ⊆ 𝒫 (Base‘𝑊) ↔ 𝑆 ⊆ (Base‘𝑊))
1614, 15mpbi 230 . . 3 𝑆 ⊆ (Base‘𝑊)
179, 16sstrdi 4007 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝐴 ⊆ (Base‘𝑊))
18 simpl1 1190 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ 𝑦𝐴) → 𝑊 ∈ LMod)
19 simp2 1136 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝐴𝑆)
2019sselda 3994 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ 𝑦𝐴) → 𝑦𝑆)
21 eqid 2734 . . . . . . 7 (0g𝑊) = (0g𝑊)
2221, 6lss0cl 20962 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑦𝑆) → (0g𝑊) ∈ 𝑦)
2318, 20, 22syl2anc 584 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ 𝑦𝐴) → (0g𝑊) ∈ 𝑦)
2423ralrimiva 3143 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → ∀𝑦𝐴 (0g𝑊) ∈ 𝑦)
25 fvex 6919 . . . . 5 (0g𝑊) ∈ V
2625elint2 4957 . . . 4 ((0g𝑊) ∈ 𝐴 ↔ ∀𝑦𝐴 (0g𝑊) ∈ 𝑦)
2724, 26sylibr 234 . . 3 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → (0g𝑊) ∈ 𝐴)
2827ne0d 4347 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝐴 ≠ ∅)
2920adantlr 715 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑦𝑆)
30 simplr1 1214 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
31 simplr2 1215 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑎 𝐴)
32 simpr 484 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑦𝐴)
33 elinti 4959 . . . . . 6 (𝑎 𝐴 → (𝑦𝐴𝑎𝑦))
3431, 32, 33sylc 65 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑎𝑦)
35 simplr3 1216 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑏 𝐴)
36 elinti 4959 . . . . . 6 (𝑏 𝐴 → (𝑦𝐴𝑏𝑦))
3735, 32, 36sylc 65 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑏𝑦)
38 eqid 2734 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
39 eqid 2734 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
40 eqid 2734 . . . . . 6 (+g𝑊) = (+g𝑊)
41 eqid 2734 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4238, 39, 40, 41, 6lsscl 20957 . . . . 5 ((𝑦𝑆 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑦𝑏𝑦)) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦)
4329, 30, 34, 37, 42syl13anc 1371 . . . 4 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦)
4443ralrimiva 3143 . . 3 (((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) → ∀𝑦𝐴 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦)
45 ovex 7463 . . . 4 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ V
4645elint2 4957 . . 3 (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝐴 ↔ ∀𝑦𝐴 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦)
4744, 46sylibr 234 . 2 (((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝐴)
481, 2, 3, 4, 5, 7, 17, 28, 47islssd 20950 1 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  wss 3962  c0 4338  𝒫 cpw 4604   cuni 4911   cint 4950  cfv 6562  (class class class)co 7430  Basecbs 17244  +gcplusg 17297  Scalarcsca 17300   ·𝑠 cvsca 17301  0gc0g 17485  LModclmod 20874  LSubSpclss 20946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-plusg 17310  df-0g 17487  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-minusg 18967  df-sbg 18968  df-mgp 20152  df-ur 20199  df-ring 20252  df-lmod 20876  df-lss 20947
This theorem is referenced by:  lssincl  20980  lssmre  20981  lspf  20989  asplss  21911  dihglblem5  41280
  Copyright terms: Public domain W3C validator