MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssintcl Structured version   Visualization version   GIF version

Theorem lssintcl 20867
Description: The intersection of a nonempty set of subspaces is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypothesis
Ref Expression
lssintcl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssintcl ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝐴𝑆)

Proof of Theorem lssintcl
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2730 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → (Scalar‘𝑊) = (Scalar‘𝑊))
2 eqidd 2730 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)))
3 eqidd 2730 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → (Base‘𝑊) = (Base‘𝑊))
4 eqidd 2730 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → (+g𝑊) = (+g𝑊))
5 eqidd 2730 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → ( ·𝑠𝑊) = ( ·𝑠𝑊))
6 lssintcl.s . . 3 𝑆 = (LSubSp‘𝑊)
76a1i 11 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝑆 = (LSubSp‘𝑊))
8 intssuni2 4923 . . . 4 ((𝐴𝑆𝐴 ≠ ∅) → 𝐴 𝑆)
983adant1 1130 . . 3 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝐴 𝑆)
10 eqid 2729 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
1110, 6lssss 20839 . . . . . 6 (𝑦𝑆𝑦 ⊆ (Base‘𝑊))
12 velpw 4556 . . . . . 6 (𝑦 ∈ 𝒫 (Base‘𝑊) ↔ 𝑦 ⊆ (Base‘𝑊))
1311, 12sylibr 234 . . . . 5 (𝑦𝑆𝑦 ∈ 𝒫 (Base‘𝑊))
1413ssriv 3939 . . . 4 𝑆 ⊆ 𝒫 (Base‘𝑊)
15 sspwuni 5049 . . . 4 (𝑆 ⊆ 𝒫 (Base‘𝑊) ↔ 𝑆 ⊆ (Base‘𝑊))
1614, 15mpbi 230 . . 3 𝑆 ⊆ (Base‘𝑊)
179, 16sstrdi 3948 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝐴 ⊆ (Base‘𝑊))
18 simpl1 1192 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ 𝑦𝐴) → 𝑊 ∈ LMod)
19 simp2 1137 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝐴𝑆)
2019sselda 3935 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ 𝑦𝐴) → 𝑦𝑆)
21 eqid 2729 . . . . . . 7 (0g𝑊) = (0g𝑊)
2221, 6lss0cl 20850 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑦𝑆) → (0g𝑊) ∈ 𝑦)
2318, 20, 22syl2anc 584 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ 𝑦𝐴) → (0g𝑊) ∈ 𝑦)
2423ralrimiva 3121 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → ∀𝑦𝐴 (0g𝑊) ∈ 𝑦)
25 fvex 6835 . . . . 5 (0g𝑊) ∈ V
2625elint2 4903 . . . 4 ((0g𝑊) ∈ 𝐴 ↔ ∀𝑦𝐴 (0g𝑊) ∈ 𝑦)
2724, 26sylibr 234 . . 3 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → (0g𝑊) ∈ 𝐴)
2827ne0d 4293 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝐴 ≠ ∅)
2920adantlr 715 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑦𝑆)
30 simplr1 1216 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
31 simplr2 1217 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑎 𝐴)
32 simpr 484 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑦𝐴)
33 elinti 4905 . . . . . 6 (𝑎 𝐴 → (𝑦𝐴𝑎𝑦))
3431, 32, 33sylc 65 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑎𝑦)
35 simplr3 1218 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑏 𝐴)
36 elinti 4905 . . . . . 6 (𝑏 𝐴 → (𝑦𝐴𝑏𝑦))
3735, 32, 36sylc 65 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑏𝑦)
38 eqid 2729 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
39 eqid 2729 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
40 eqid 2729 . . . . . 6 (+g𝑊) = (+g𝑊)
41 eqid 2729 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4238, 39, 40, 41, 6lsscl 20845 . . . . 5 ((𝑦𝑆 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑦𝑏𝑦)) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦)
4329, 30, 34, 37, 42syl13anc 1374 . . . 4 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦)
4443ralrimiva 3121 . . 3 (((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) → ∀𝑦𝐴 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦)
45 ovex 7382 . . . 4 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ V
4645elint2 4903 . . 3 (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝐴 ↔ ∀𝑦𝐴 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦)
4744, 46sylibr 234 . 2 (((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝐴)
481, 2, 3, 4, 5, 7, 17, 28, 47islssd 20838 1 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3903  c0 4284  𝒫 cpw 4551   cuni 4858   cint 4896  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343  LModclmod 20763  LSubSpclss 20834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mgp 20026  df-ur 20067  df-ring 20120  df-lmod 20765  df-lss 20835
This theorem is referenced by:  lssincl  20868  lssmre  20869  lspf  20877  asplss  21781  dihglblem5  41277
  Copyright terms: Public domain W3C validator