MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssintcl Structured version   Visualization version   GIF version

Theorem lssintcl 20860
Description: The intersection of a nonempty set of subspaces is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypothesis
Ref Expression
lssintcl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssintcl ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝐴𝑆)

Proof of Theorem lssintcl
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2726 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → (Scalar‘𝑊) = (Scalar‘𝑊))
2 eqidd 2726 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)))
3 eqidd 2726 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → (Base‘𝑊) = (Base‘𝑊))
4 eqidd 2726 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → (+g𝑊) = (+g𝑊))
5 eqidd 2726 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → ( ·𝑠𝑊) = ( ·𝑠𝑊))
6 lssintcl.s . . 3 𝑆 = (LSubSp‘𝑊)
76a1i 11 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝑆 = (LSubSp‘𝑊))
8 intssuni2 4977 . . . 4 ((𝐴𝑆𝐴 ≠ ∅) → 𝐴 𝑆)
983adant1 1127 . . 3 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝐴 𝑆)
10 eqid 2725 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
1110, 6lssss 20832 . . . . . 6 (𝑦𝑆𝑦 ⊆ (Base‘𝑊))
12 velpw 4609 . . . . . 6 (𝑦 ∈ 𝒫 (Base‘𝑊) ↔ 𝑦 ⊆ (Base‘𝑊))
1311, 12sylibr 233 . . . . 5 (𝑦𝑆𝑦 ∈ 𝒫 (Base‘𝑊))
1413ssriv 3980 . . . 4 𝑆 ⊆ 𝒫 (Base‘𝑊)
15 sspwuni 5104 . . . 4 (𝑆 ⊆ 𝒫 (Base‘𝑊) ↔ 𝑆 ⊆ (Base‘𝑊))
1614, 15mpbi 229 . . 3 𝑆 ⊆ (Base‘𝑊)
179, 16sstrdi 3989 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝐴 ⊆ (Base‘𝑊))
18 simpl1 1188 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ 𝑦𝐴) → 𝑊 ∈ LMod)
19 simp2 1134 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝐴𝑆)
2019sselda 3976 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ 𝑦𝐴) → 𝑦𝑆)
21 eqid 2725 . . . . . . 7 (0g𝑊) = (0g𝑊)
2221, 6lss0cl 20843 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑦𝑆) → (0g𝑊) ∈ 𝑦)
2318, 20, 22syl2anc 582 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ 𝑦𝐴) → (0g𝑊) ∈ 𝑦)
2423ralrimiva 3135 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → ∀𝑦𝐴 (0g𝑊) ∈ 𝑦)
25 fvex 6909 . . . . 5 (0g𝑊) ∈ V
2625elint2 4957 . . . 4 ((0g𝑊) ∈ 𝐴 ↔ ∀𝑦𝐴 (0g𝑊) ∈ 𝑦)
2724, 26sylibr 233 . . 3 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → (0g𝑊) ∈ 𝐴)
2827ne0d 4335 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝐴 ≠ ∅)
2920adantlr 713 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑦𝑆)
30 simplr1 1212 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
31 simplr2 1213 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑎 𝐴)
32 simpr 483 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑦𝐴)
33 elinti 4959 . . . . . 6 (𝑎 𝐴 → (𝑦𝐴𝑎𝑦))
3431, 32, 33sylc 65 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑎𝑦)
35 simplr3 1214 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑏 𝐴)
36 elinti 4959 . . . . . 6 (𝑏 𝐴 → (𝑦𝐴𝑏𝑦))
3735, 32, 36sylc 65 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑏𝑦)
38 eqid 2725 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
39 eqid 2725 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
40 eqid 2725 . . . . . 6 (+g𝑊) = (+g𝑊)
41 eqid 2725 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4238, 39, 40, 41, 6lsscl 20838 . . . . 5 ((𝑦𝑆 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑦𝑏𝑦)) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦)
4329, 30, 34, 37, 42syl13anc 1369 . . . 4 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦)
4443ralrimiva 3135 . . 3 (((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) → ∀𝑦𝐴 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦)
45 ovex 7452 . . . 4 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ V
4645elint2 4957 . . 3 (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝐴 ↔ ∀𝑦𝐴 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦)
4744, 46sylibr 233 . 2 (((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝐴)
481, 2, 3, 4, 5, 7, 17, 28, 47islssd 20831 1 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929  wral 3050  wss 3944  c0 4322  𝒫 cpw 4604   cuni 4909   cint 4950  cfv 6549  (class class class)co 7419  Basecbs 17183  +gcplusg 17236  Scalarcsca 17239   ·𝑠 cvsca 17240  0gc0g 17424  LModclmod 20755  LSubSpclss 20827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-plusg 17249  df-0g 17426  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-grp 18901  df-minusg 18902  df-sbg 18903  df-mgp 20087  df-ur 20134  df-ring 20187  df-lmod 20757  df-lss 20828
This theorem is referenced by:  lssincl  20861  lssmre  20862  lspf  20870  asplss  21824  dihglblem5  40901
  Copyright terms: Public domain W3C validator