MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssintcl Structured version   Visualization version   GIF version

Theorem lssintcl 19658
Description: The intersection of a nonempty set of subspaces is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypothesis
Ref Expression
lssintcl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssintcl ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝐴𝑆)

Proof of Theorem lssintcl
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2826 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → (Scalar‘𝑊) = (Scalar‘𝑊))
2 eqidd 2826 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)))
3 eqidd 2826 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → (Base‘𝑊) = (Base‘𝑊))
4 eqidd 2826 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → (+g𝑊) = (+g𝑊))
5 eqidd 2826 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → ( ·𝑠𝑊) = ( ·𝑠𝑊))
6 lssintcl.s . . 3 𝑆 = (LSubSp‘𝑊)
76a1i 11 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝑆 = (LSubSp‘𝑊))
8 intssuni2 4898 . . . 4 ((𝐴𝑆𝐴 ≠ ∅) → 𝐴 𝑆)
983adant1 1124 . . 3 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝐴 𝑆)
10 eqid 2825 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
1110, 6lssss 19630 . . . . . 6 (𝑦𝑆𝑦 ⊆ (Base‘𝑊))
12 velpw 4549 . . . . . 6 (𝑦 ∈ 𝒫 (Base‘𝑊) ↔ 𝑦 ⊆ (Base‘𝑊))
1311, 12sylibr 235 . . . . 5 (𝑦𝑆𝑦 ∈ 𝒫 (Base‘𝑊))
1413ssriv 3974 . . . 4 𝑆 ⊆ 𝒫 (Base‘𝑊)
15 sspwuni 5018 . . . 4 (𝑆 ⊆ 𝒫 (Base‘𝑊) ↔ 𝑆 ⊆ (Base‘𝑊))
1614, 15mpbi 231 . . 3 𝑆 ⊆ (Base‘𝑊)
179, 16syl6ss 3982 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝐴 ⊆ (Base‘𝑊))
18 simpl1 1185 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ 𝑦𝐴) → 𝑊 ∈ LMod)
19 simp2 1131 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝐴𝑆)
2019sselda 3970 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ 𝑦𝐴) → 𝑦𝑆)
21 eqid 2825 . . . . . . 7 (0g𝑊) = (0g𝑊)
2221, 6lss0cl 19640 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑦𝑆) → (0g𝑊) ∈ 𝑦)
2318, 20, 22syl2anc 584 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ 𝑦𝐴) → (0g𝑊) ∈ 𝑦)
2423ralrimiva 3186 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → ∀𝑦𝐴 (0g𝑊) ∈ 𝑦)
25 fvex 6679 . . . . 5 (0g𝑊) ∈ V
2625elint2 4880 . . . 4 ((0g𝑊) ∈ 𝐴 ↔ ∀𝑦𝐴 (0g𝑊) ∈ 𝑦)
2724, 26sylibr 235 . . 3 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → (0g𝑊) ∈ 𝐴)
2827ne0d 4304 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝐴 ≠ ∅)
2920adantlr 711 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑦𝑆)
30 simplr1 1209 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
31 simplr2 1210 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑎 𝐴)
32 simpr 485 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑦𝐴)
33 elinti 4882 . . . . . 6 (𝑎 𝐴 → (𝑦𝐴𝑎𝑦))
3431, 32, 33sylc 65 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑎𝑦)
35 simplr3 1211 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑏 𝐴)
36 elinti 4882 . . . . . 6 (𝑏 𝐴 → (𝑦𝐴𝑏𝑦))
3735, 32, 36sylc 65 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑏𝑦)
38 eqid 2825 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
39 eqid 2825 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
40 eqid 2825 . . . . . 6 (+g𝑊) = (+g𝑊)
41 eqid 2825 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4238, 39, 40, 41, 6lsscl 19636 . . . . 5 ((𝑦𝑆 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑦𝑏𝑦)) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦)
4329, 30, 34, 37, 42syl13anc 1366 . . . 4 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦)
4443ralrimiva 3186 . . 3 (((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) → ∀𝑦𝐴 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦)
45 ovex 7184 . . . 4 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ V
4645elint2 4880 . . 3 (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝐴 ↔ ∀𝑦𝐴 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦)
4744, 46sylibr 235 . 2 (((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝐴)
481, 2, 3, 4, 5, 7, 17, 28, 47islssd 19629 1 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3020  wral 3142  wss 3939  c0 4294  𝒫 cpw 4541   cuni 4836   cint 4873  cfv 6351  (class class class)co 7151  Basecbs 16475  +gcplusg 16557  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705  LModclmod 19556  LSubSpclss 19625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-grp 18038  df-minusg 18039  df-sbg 18040  df-mgp 19162  df-ur 19174  df-ring 19221  df-lmod 19558  df-lss 19626
This theorem is referenced by:  lssincl  19659  lssmre  19660  lspf  19668  asplss  20024  dihglblem5  38303
  Copyright terms: Public domain W3C validator