MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssintcl Structured version   Visualization version   GIF version

Theorem lssintcl 20985
Description: The intersection of a nonempty set of subspaces is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypothesis
Ref Expression
lssintcl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssintcl ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝐴𝑆)

Proof of Theorem lssintcl
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2741 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → (Scalar‘𝑊) = (Scalar‘𝑊))
2 eqidd 2741 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)))
3 eqidd 2741 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → (Base‘𝑊) = (Base‘𝑊))
4 eqidd 2741 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → (+g𝑊) = (+g𝑊))
5 eqidd 2741 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → ( ·𝑠𝑊) = ( ·𝑠𝑊))
6 lssintcl.s . . 3 𝑆 = (LSubSp‘𝑊)
76a1i 11 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝑆 = (LSubSp‘𝑊))
8 intssuni2 4997 . . . 4 ((𝐴𝑆𝐴 ≠ ∅) → 𝐴 𝑆)
983adant1 1130 . . 3 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝐴 𝑆)
10 eqid 2740 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
1110, 6lssss 20957 . . . . . 6 (𝑦𝑆𝑦 ⊆ (Base‘𝑊))
12 velpw 4627 . . . . . 6 (𝑦 ∈ 𝒫 (Base‘𝑊) ↔ 𝑦 ⊆ (Base‘𝑊))
1311, 12sylibr 234 . . . . 5 (𝑦𝑆𝑦 ∈ 𝒫 (Base‘𝑊))
1413ssriv 4012 . . . 4 𝑆 ⊆ 𝒫 (Base‘𝑊)
15 sspwuni 5123 . . . 4 (𝑆 ⊆ 𝒫 (Base‘𝑊) ↔ 𝑆 ⊆ (Base‘𝑊))
1614, 15mpbi 230 . . 3 𝑆 ⊆ (Base‘𝑊)
179, 16sstrdi 4021 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝐴 ⊆ (Base‘𝑊))
18 simpl1 1191 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ 𝑦𝐴) → 𝑊 ∈ LMod)
19 simp2 1137 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝐴𝑆)
2019sselda 4008 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ 𝑦𝐴) → 𝑦𝑆)
21 eqid 2740 . . . . . . 7 (0g𝑊) = (0g𝑊)
2221, 6lss0cl 20968 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑦𝑆) → (0g𝑊) ∈ 𝑦)
2318, 20, 22syl2anc 583 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ 𝑦𝐴) → (0g𝑊) ∈ 𝑦)
2423ralrimiva 3152 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → ∀𝑦𝐴 (0g𝑊) ∈ 𝑦)
25 fvex 6933 . . . . 5 (0g𝑊) ∈ V
2625elint2 4977 . . . 4 ((0g𝑊) ∈ 𝐴 ↔ ∀𝑦𝐴 (0g𝑊) ∈ 𝑦)
2724, 26sylibr 234 . . 3 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → (0g𝑊) ∈ 𝐴)
2827ne0d 4365 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝐴 ≠ ∅)
2920adantlr 714 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑦𝑆)
30 simplr1 1215 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
31 simplr2 1216 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑎 𝐴)
32 simpr 484 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑦𝐴)
33 elinti 4979 . . . . . 6 (𝑎 𝐴 → (𝑦𝐴𝑎𝑦))
3431, 32, 33sylc 65 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑎𝑦)
35 simplr3 1217 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑏 𝐴)
36 elinti 4979 . . . . . 6 (𝑏 𝐴 → (𝑦𝐴𝑏𝑦))
3735, 32, 36sylc 65 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑏𝑦)
38 eqid 2740 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
39 eqid 2740 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
40 eqid 2740 . . . . . 6 (+g𝑊) = (+g𝑊)
41 eqid 2740 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4238, 39, 40, 41, 6lsscl 20963 . . . . 5 ((𝑦𝑆 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑦𝑏𝑦)) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦)
4329, 30, 34, 37, 42syl13anc 1372 . . . 4 ((((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦)
4443ralrimiva 3152 . . 3 (((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) → ∀𝑦𝐴 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦)
45 ovex 7481 . . . 4 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ V
4645elint2 4977 . . 3 (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝐴 ↔ ∀𝑦𝐴 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦)
4744, 46sylibr 234 . 2 (((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝐴)
481, 2, 3, 4, 5, 7, 17, 28, 47islssd 20956 1 ((𝑊 ∈ LMod ∧ 𝐴𝑆𝐴 ≠ ∅) → 𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wss 3976  c0 4352  𝒫 cpw 4622   cuni 4931   cint 4970  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499  LModclmod 20880  LSubSpclss 20952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mgp 20162  df-ur 20209  df-ring 20262  df-lmod 20882  df-lss 20953
This theorem is referenced by:  lssincl  20986  lssmre  20987  lspf  20995  asplss  21917  dihglblem5  41255
  Copyright terms: Public domain W3C validator