Step | Hyp | Ref
| Expression |
1 | | eqidd 2739 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅) → (Scalar‘𝑊) = (Scalar‘𝑊)) |
2 | | eqidd 2739 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅) →
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))) |
3 | | eqidd 2739 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅) → (Base‘𝑊) = (Base‘𝑊)) |
4 | | eqidd 2739 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅) →
(+g‘𝑊) =
(+g‘𝑊)) |
5 | | eqidd 2739 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅) → (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊)) |
6 | | lssintcl.s |
. . 3
⊢ 𝑆 = (LSubSp‘𝑊) |
7 | 6 | a1i 11 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅) → 𝑆 = (LSubSp‘𝑊)) |
8 | | intssuni2 4901 |
. . . 4
⊢ ((𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅) → ∩ 𝐴
⊆ ∪ 𝑆) |
9 | 8 | 3adant1 1128 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅) → ∩ 𝐴
⊆ ∪ 𝑆) |
10 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝑊) =
(Base‘𝑊) |
11 | 10, 6 | lssss 20113 |
. . . . . 6
⊢ (𝑦 ∈ 𝑆 → 𝑦 ⊆ (Base‘𝑊)) |
12 | | velpw 4535 |
. . . . . 6
⊢ (𝑦 ∈ 𝒫
(Base‘𝑊) ↔ 𝑦 ⊆ (Base‘𝑊)) |
13 | 11, 12 | sylibr 233 |
. . . . 5
⊢ (𝑦 ∈ 𝑆 → 𝑦 ∈ 𝒫 (Base‘𝑊)) |
14 | 13 | ssriv 3921 |
. . . 4
⊢ 𝑆 ⊆ 𝒫
(Base‘𝑊) |
15 | | sspwuni 5025 |
. . . 4
⊢ (𝑆 ⊆ 𝒫
(Base‘𝑊) ↔ ∪ 𝑆
⊆ (Base‘𝑊)) |
16 | 14, 15 | mpbi 229 |
. . 3
⊢ ∪ 𝑆
⊆ (Base‘𝑊) |
17 | 9, 16 | sstrdi 3929 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅) → ∩ 𝐴
⊆ (Base‘𝑊)) |
18 | | simpl1 1189 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅) ∧ 𝑦 ∈ 𝐴) → 𝑊 ∈ LMod) |
19 | | simp2 1135 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ 𝑆) |
20 | 19 | sselda 3917 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝑆) |
21 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘𝑊) = (0g‘𝑊) |
22 | 21, 6 | lss0cl 20123 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑦 ∈ 𝑆) → (0g‘𝑊) ∈ 𝑦) |
23 | 18, 20, 22 | syl2anc 583 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅) ∧ 𝑦 ∈ 𝐴) → (0g‘𝑊) ∈ 𝑦) |
24 | 23 | ralrimiva 3107 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅) → ∀𝑦 ∈ 𝐴 (0g‘𝑊) ∈ 𝑦) |
25 | | fvex 6769 |
. . . . 5
⊢
(0g‘𝑊) ∈ V |
26 | 25 | elint2 4883 |
. . . 4
⊢
((0g‘𝑊) ∈ ∩ 𝐴 ↔ ∀𝑦 ∈ 𝐴 (0g‘𝑊) ∈ 𝑦) |
27 | 24, 26 | sylibr 233 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅) →
(0g‘𝑊)
∈ ∩ 𝐴) |
28 | 27 | ne0d 4266 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅) → ∩ 𝐴
≠ ∅) |
29 | 20 | adantlr 711 |
. . . . 5
⊢ ((((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ ∩ 𝐴 ∧ 𝑏 ∈ ∩ 𝐴)) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝑆) |
30 | | simplr1 1213 |
. . . . 5
⊢ ((((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ ∩ 𝐴 ∧ 𝑏 ∈ ∩ 𝐴)) ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ (Base‘(Scalar‘𝑊))) |
31 | | simplr2 1214 |
. . . . . 6
⊢ ((((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ ∩ 𝐴 ∧ 𝑏 ∈ ∩ 𝐴)) ∧ 𝑦 ∈ 𝐴) → 𝑎 ∈ ∩ 𝐴) |
32 | | simpr 484 |
. . . . . 6
⊢ ((((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ ∩ 𝐴 ∧ 𝑏 ∈ ∩ 𝐴)) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) |
33 | | elinti 4885 |
. . . . . 6
⊢ (𝑎 ∈ ∩ 𝐴
→ (𝑦 ∈ 𝐴 → 𝑎 ∈ 𝑦)) |
34 | 31, 32, 33 | sylc 65 |
. . . . 5
⊢ ((((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ ∩ 𝐴 ∧ 𝑏 ∈ ∩ 𝐴)) ∧ 𝑦 ∈ 𝐴) → 𝑎 ∈ 𝑦) |
35 | | simplr3 1215 |
. . . . . 6
⊢ ((((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ ∩ 𝐴 ∧ 𝑏 ∈ ∩ 𝐴)) ∧ 𝑦 ∈ 𝐴) → 𝑏 ∈ ∩ 𝐴) |
36 | | elinti 4885 |
. . . . . 6
⊢ (𝑏 ∈ ∩ 𝐴
→ (𝑦 ∈ 𝐴 → 𝑏 ∈ 𝑦)) |
37 | 35, 32, 36 | sylc 65 |
. . . . 5
⊢ ((((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ ∩ 𝐴 ∧ 𝑏 ∈ ∩ 𝐴)) ∧ 𝑦 ∈ 𝐴) → 𝑏 ∈ 𝑦) |
38 | | eqid 2738 |
. . . . . 6
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
39 | | eqid 2738 |
. . . . . 6
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
40 | | eqid 2738 |
. . . . . 6
⊢
(+g‘𝑊) = (+g‘𝑊) |
41 | | eqid 2738 |
. . . . . 6
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
42 | 38, 39, 40, 41, 6 | lsscl 20119 |
. . . . 5
⊢ ((𝑦 ∈ 𝑆 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑦 ∧ 𝑏 ∈ 𝑦)) → ((𝑥( ·𝑠
‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑦) |
43 | 29, 30, 34, 37, 42 | syl13anc 1370 |
. . . 4
⊢ ((((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ ∩ 𝐴 ∧ 𝑏 ∈ ∩ 𝐴)) ∧ 𝑦 ∈ 𝐴) → ((𝑥( ·𝑠
‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑦) |
44 | 43 | ralrimiva 3107 |
. . 3
⊢ (((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ ∩ 𝐴 ∧ 𝑏 ∈ ∩ 𝐴)) → ∀𝑦 ∈ 𝐴 ((𝑥( ·𝑠
‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑦) |
45 | | ovex 7288 |
. . . 4
⊢ ((𝑥(
·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ V |
46 | 45 | elint2 4883 |
. . 3
⊢ (((𝑥(
·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ ∩ 𝐴 ↔ ∀𝑦 ∈ 𝐴 ((𝑥( ·𝑠
‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑦) |
47 | 44, 46 | sylibr 233 |
. 2
⊢ (((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ ∩ 𝐴 ∧ 𝑏 ∈ ∩ 𝐴)) → ((𝑥( ·𝑠
‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ ∩ 𝐴) |
48 | 1, 2, 3, 4, 5, 7, 17, 28, 47 | islssd 20112 |
1
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅) → ∩ 𝐴
∈ 𝑆) |