MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgint Structured version   Visualization version   GIF version

Theorem subrgint 20511
Description: The intersection of a nonempty collection of subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.)
Assertion
Ref Expression
subrgint ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubRing‘𝑅))

Proof of Theorem subrgint
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgsubg 20493 . . . . 5 (𝑟 ∈ (SubRing‘𝑅) → 𝑟 ∈ (SubGrp‘𝑅))
21ssriv 3953 . . . 4 (SubRing‘𝑅) ⊆ (SubGrp‘𝑅)
3 sstr 3958 . . . 4 ((𝑆 ⊆ (SubRing‘𝑅) ∧ (SubRing‘𝑅) ⊆ (SubGrp‘𝑅)) → 𝑆 ⊆ (SubGrp‘𝑅))
42, 3mpan2 691 . . 3 (𝑆 ⊆ (SubRing‘𝑅) → 𝑆 ⊆ (SubGrp‘𝑅))
5 subgint 19089 . . 3 ((𝑆 ⊆ (SubGrp‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubGrp‘𝑅))
64, 5sylan 580 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubGrp‘𝑅))
7 ssel2 3944 . . . . . 6 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRing‘𝑅))
87adantlr 715 . . . . 5 (((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRing‘𝑅))
9 eqid 2730 . . . . . 6 (1r𝑅) = (1r𝑅)
109subrg1cl 20496 . . . . 5 (𝑟 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ 𝑟)
118, 10syl 17 . . . 4 (((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ 𝑟𝑆) → (1r𝑅) ∈ 𝑟)
1211ralrimiva 3126 . . 3 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → ∀𝑟𝑆 (1r𝑅) ∈ 𝑟)
13 fvex 6874 . . . 4 (1r𝑅) ∈ V
1413elint2 4920 . . 3 ((1r𝑅) ∈ 𝑆 ↔ ∀𝑟𝑆 (1r𝑅) ∈ 𝑟)
1512, 14sylibr 234 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → (1r𝑅) ∈ 𝑆)
168adantlr 715 . . . . . 6 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRing‘𝑅))
17 simprl 770 . . . . . . 7 (((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑥 𝑆)
18 elinti 4922 . . . . . . . 8 (𝑥 𝑆 → (𝑟𝑆𝑥𝑟))
1918imp 406 . . . . . . 7 ((𝑥 𝑆𝑟𝑆) → 𝑥𝑟)
2017, 19sylan 580 . . . . . 6 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑥𝑟)
21 simprr 772 . . . . . . 7 (((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑦 𝑆)
22 elinti 4922 . . . . . . . 8 (𝑦 𝑆 → (𝑟𝑆𝑦𝑟))
2322imp 406 . . . . . . 7 ((𝑦 𝑆𝑟𝑆) → 𝑦𝑟)
2421, 23sylan 580 . . . . . 6 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑦𝑟)
25 eqid 2730 . . . . . . 7 (.r𝑅) = (.r𝑅)
2625subrgmcl 20500 . . . . . 6 ((𝑟 ∈ (SubRing‘𝑅) ∧ 𝑥𝑟𝑦𝑟) → (𝑥(.r𝑅)𝑦) ∈ 𝑟)
2716, 20, 24, 26syl3anc 1373 . . . . 5 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → (𝑥(.r𝑅)𝑦) ∈ 𝑟)
2827ralrimiva 3126 . . . 4 (((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟)
29 ovex 7423 . . . . 5 (𝑥(.r𝑅)𝑦) ∈ V
3029elint2 4920 . . . 4 ((𝑥(.r𝑅)𝑦) ∈ 𝑆 ↔ ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟)
3128, 30sylibr 234 . . 3 (((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → (𝑥(.r𝑅)𝑦) ∈ 𝑆)
3231ralrimivva 3181 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)
33 ssn0 4370 . . 3 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → (SubRing‘𝑅) ≠ ∅)
34 n0 4319 . . . 4 ((SubRing‘𝑅) ≠ ∅ ↔ ∃𝑟 𝑟 ∈ (SubRing‘𝑅))
35 subrgrcl 20492 . . . . 5 (𝑟 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
3635exlimiv 1930 . . . 4 (∃𝑟 𝑟 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
3734, 36sylbi 217 . . 3 ((SubRing‘𝑅) ≠ ∅ → 𝑅 ∈ Ring)
38 eqid 2730 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3938, 9, 25issubrg2 20508 . . 3 (𝑅 ∈ Ring → ( 𝑆 ∈ (SubRing‘𝑅) ↔ ( 𝑆 ∈ (SubGrp‘𝑅) ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)))
4033, 37, 393syl 18 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → ( 𝑆 ∈ (SubRing‘𝑅) ↔ ( 𝑆 ∈ (SubGrp‘𝑅) ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)))
416, 15, 32, 40mpbir3and 1343 1 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubRing‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wex 1779  wcel 2109  wne 2926  wral 3045  wss 3917  c0 4299   cint 4913  cfv 6514  (class class class)co 7390  Basecbs 17186  .rcmulr 17228  SubGrpcsubg 19059  1rcur 20097  Ringcrg 20149  SubRingcsubrg 20485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-subg 19062  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-subrng 20462  df-subrg 20486
This theorem is referenced by:  subrgin  20512  subrgmre  20513  rgspncl  20529  subdrgint  20719  sdrgint  20720  primefld1cl  20723  aspsubrg  21792  primefldchr  33258
  Copyright terms: Public domain W3C validator