MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgint Structured version   Visualization version   GIF version

Theorem subrgint 20504
Description: The intersection of a nonempty collection of subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.)
Assertion
Ref Expression
subrgint ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubRing‘𝑅))

Proof of Theorem subrgint
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgsubg 20486 . . . . 5 (𝑟 ∈ (SubRing‘𝑅) → 𝑟 ∈ (SubGrp‘𝑅))
21ssriv 3950 . . . 4 (SubRing‘𝑅) ⊆ (SubGrp‘𝑅)
3 sstr 3955 . . . 4 ((𝑆 ⊆ (SubRing‘𝑅) ∧ (SubRing‘𝑅) ⊆ (SubGrp‘𝑅)) → 𝑆 ⊆ (SubGrp‘𝑅))
42, 3mpan2 691 . . 3 (𝑆 ⊆ (SubRing‘𝑅) → 𝑆 ⊆ (SubGrp‘𝑅))
5 subgint 19082 . . 3 ((𝑆 ⊆ (SubGrp‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubGrp‘𝑅))
64, 5sylan 580 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubGrp‘𝑅))
7 ssel2 3941 . . . . . 6 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRing‘𝑅))
87adantlr 715 . . . . 5 (((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRing‘𝑅))
9 eqid 2729 . . . . . 6 (1r𝑅) = (1r𝑅)
109subrg1cl 20489 . . . . 5 (𝑟 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ 𝑟)
118, 10syl 17 . . . 4 (((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ 𝑟𝑆) → (1r𝑅) ∈ 𝑟)
1211ralrimiva 3125 . . 3 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → ∀𝑟𝑆 (1r𝑅) ∈ 𝑟)
13 fvex 6871 . . . 4 (1r𝑅) ∈ V
1413elint2 4917 . . 3 ((1r𝑅) ∈ 𝑆 ↔ ∀𝑟𝑆 (1r𝑅) ∈ 𝑟)
1512, 14sylibr 234 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → (1r𝑅) ∈ 𝑆)
168adantlr 715 . . . . . 6 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRing‘𝑅))
17 simprl 770 . . . . . . 7 (((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑥 𝑆)
18 elinti 4919 . . . . . . . 8 (𝑥 𝑆 → (𝑟𝑆𝑥𝑟))
1918imp 406 . . . . . . 7 ((𝑥 𝑆𝑟𝑆) → 𝑥𝑟)
2017, 19sylan 580 . . . . . 6 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑥𝑟)
21 simprr 772 . . . . . . 7 (((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑦 𝑆)
22 elinti 4919 . . . . . . . 8 (𝑦 𝑆 → (𝑟𝑆𝑦𝑟))
2322imp 406 . . . . . . 7 ((𝑦 𝑆𝑟𝑆) → 𝑦𝑟)
2421, 23sylan 580 . . . . . 6 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑦𝑟)
25 eqid 2729 . . . . . . 7 (.r𝑅) = (.r𝑅)
2625subrgmcl 20493 . . . . . 6 ((𝑟 ∈ (SubRing‘𝑅) ∧ 𝑥𝑟𝑦𝑟) → (𝑥(.r𝑅)𝑦) ∈ 𝑟)
2716, 20, 24, 26syl3anc 1373 . . . . 5 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → (𝑥(.r𝑅)𝑦) ∈ 𝑟)
2827ralrimiva 3125 . . . 4 (((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟)
29 ovex 7420 . . . . 5 (𝑥(.r𝑅)𝑦) ∈ V
3029elint2 4917 . . . 4 ((𝑥(.r𝑅)𝑦) ∈ 𝑆 ↔ ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟)
3128, 30sylibr 234 . . 3 (((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → (𝑥(.r𝑅)𝑦) ∈ 𝑆)
3231ralrimivva 3180 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)
33 ssn0 4367 . . 3 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → (SubRing‘𝑅) ≠ ∅)
34 n0 4316 . . . 4 ((SubRing‘𝑅) ≠ ∅ ↔ ∃𝑟 𝑟 ∈ (SubRing‘𝑅))
35 subrgrcl 20485 . . . . 5 (𝑟 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
3635exlimiv 1930 . . . 4 (∃𝑟 𝑟 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
3734, 36sylbi 217 . . 3 ((SubRing‘𝑅) ≠ ∅ → 𝑅 ∈ Ring)
38 eqid 2729 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3938, 9, 25issubrg2 20501 . . 3 (𝑅 ∈ Ring → ( 𝑆 ∈ (SubRing‘𝑅) ↔ ( 𝑆 ∈ (SubGrp‘𝑅) ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)))
4033, 37, 393syl 18 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → ( 𝑆 ∈ (SubRing‘𝑅) ↔ ( 𝑆 ∈ (SubGrp‘𝑅) ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)))
416, 15, 32, 40mpbir3and 1343 1 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubRing‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wex 1779  wcel 2109  wne 2925  wral 3044  wss 3914  c0 4296   cint 4910  cfv 6511  (class class class)co 7387  Basecbs 17179  .rcmulr 17221  SubGrpcsubg 19052  1rcur 20090  Ringcrg 20142  SubRingcsubrg 20478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-subg 19055  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-subrng 20455  df-subrg 20479
This theorem is referenced by:  subrgin  20505  subrgmre  20506  rgspncl  20522  subdrgint  20712  sdrgint  20713  primefld1cl  20716  aspsubrg  21785  primefldchr  33251
  Copyright terms: Public domain W3C validator