MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgint Structured version   Visualization version   GIF version

Theorem subrgint 19011
Description: The intersection of a nonempty collection of subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.)
Assertion
Ref Expression
subrgint ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubRing‘𝑅))

Proof of Theorem subrgint
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgsubg 18995 . . . . 5 (𝑟 ∈ (SubRing‘𝑅) → 𝑟 ∈ (SubGrp‘𝑅))
21ssriv 3756 . . . 4 (SubRing‘𝑅) ⊆ (SubGrp‘𝑅)
3 sstr 3760 . . . 4 ((𝑆 ⊆ (SubRing‘𝑅) ∧ (SubRing‘𝑅) ⊆ (SubGrp‘𝑅)) → 𝑆 ⊆ (SubGrp‘𝑅))
42, 3mpan2 663 . . 3 (𝑆 ⊆ (SubRing‘𝑅) → 𝑆 ⊆ (SubGrp‘𝑅))
5 subgint 17825 . . 3 ((𝑆 ⊆ (SubGrp‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubGrp‘𝑅))
64, 5sylan 561 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubGrp‘𝑅))
7 ssel2 3747 . . . . . 6 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRing‘𝑅))
87adantlr 686 . . . . 5 (((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRing‘𝑅))
9 eqid 2771 . . . . . 6 (1r𝑅) = (1r𝑅)
109subrg1cl 18997 . . . . 5 (𝑟 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ 𝑟)
118, 10syl 17 . . . 4 (((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ 𝑟𝑆) → (1r𝑅) ∈ 𝑟)
1211ralrimiva 3115 . . 3 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → ∀𝑟𝑆 (1r𝑅) ∈ 𝑟)
13 fvex 6342 . . . 4 (1r𝑅) ∈ V
1413elint2 4618 . . 3 ((1r𝑅) ∈ 𝑆 ↔ ∀𝑟𝑆 (1r𝑅) ∈ 𝑟)
1512, 14sylibr 224 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → (1r𝑅) ∈ 𝑆)
168adantlr 686 . . . . . 6 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRing‘𝑅))
17 simprl 746 . . . . . . 7 (((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑥 𝑆)
18 elinti 4620 . . . . . . . 8 (𝑥 𝑆 → (𝑟𝑆𝑥𝑟))
1918imp 393 . . . . . . 7 ((𝑥 𝑆𝑟𝑆) → 𝑥𝑟)
2017, 19sylan 561 . . . . . 6 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑥𝑟)
21 simprr 748 . . . . . . 7 (((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑦 𝑆)
22 elinti 4620 . . . . . . . 8 (𝑦 𝑆 → (𝑟𝑆𝑦𝑟))
2322imp 393 . . . . . . 7 ((𝑦 𝑆𝑟𝑆) → 𝑦𝑟)
2421, 23sylan 561 . . . . . 6 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑦𝑟)
25 eqid 2771 . . . . . . 7 (.r𝑅) = (.r𝑅)
2625subrgmcl 19001 . . . . . 6 ((𝑟 ∈ (SubRing‘𝑅) ∧ 𝑥𝑟𝑦𝑟) → (𝑥(.r𝑅)𝑦) ∈ 𝑟)
2716, 20, 24, 26syl3anc 1476 . . . . 5 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → (𝑥(.r𝑅)𝑦) ∈ 𝑟)
2827ralrimiva 3115 . . . 4 (((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟)
29 ovex 6822 . . . . 5 (𝑥(.r𝑅)𝑦) ∈ V
3029elint2 4618 . . . 4 ((𝑥(.r𝑅)𝑦) ∈ 𝑆 ↔ ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟)
3128, 30sylibr 224 . . 3 (((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → (𝑥(.r𝑅)𝑦) ∈ 𝑆)
3231ralrimivva 3120 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)
33 ssn0 4120 . . 3 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → (SubRing‘𝑅) ≠ ∅)
34 n0 4078 . . . 4 ((SubRing‘𝑅) ≠ ∅ ↔ ∃𝑟 𝑟 ∈ (SubRing‘𝑅))
35 subrgrcl 18994 . . . . 5 (𝑟 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
3635exlimiv 2010 . . . 4 (∃𝑟 𝑟 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
3734, 36sylbi 207 . . 3 ((SubRing‘𝑅) ≠ ∅ → 𝑅 ∈ Ring)
38 eqid 2771 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3938, 9, 25issubrg2 19009 . . 3 (𝑅 ∈ Ring → ( 𝑆 ∈ (SubRing‘𝑅) ↔ ( 𝑆 ∈ (SubGrp‘𝑅) ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)))
4033, 37, 393syl 18 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → ( 𝑆 ∈ (SubRing‘𝑅) ↔ ( 𝑆 ∈ (SubGrp‘𝑅) ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)))
416, 15, 32, 40mpbir3and 1427 1 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubRing‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071  wex 1852  wcel 2145  wne 2943  wral 3061  wss 3723  c0 4063   cint 4611  cfv 6031  (class class class)co 6792  Basecbs 16063  .rcmulr 16149  SubGrpcsubg 17795  1rcur 18708  Ringcrg 18754  SubRingcsubrg 18985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-0g 16309  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-grp 17632  df-minusg 17633  df-subg 17798  df-mgp 18697  df-ur 18709  df-ring 18756  df-subrg 18987
This theorem is referenced by:  subrgin  19012  subrgmre  19013  aspsubrg  19545  rgspncl  38261
  Copyright terms: Public domain W3C validator