MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufinffr Structured version   Visualization version   GIF version

Theorem ufinffr 22531
Description: An infinite subset is contained in a free ultrafilter. (Contributed by Jeff Hankins, 6-Dec-2009.) (Revised by Mario Carneiro, 4-Dec-2013.)
Assertion
Ref Expression
ufinffr ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ∃𝑓 ∈ (UFil‘𝑋)(𝐴𝑓 𝑓 = ∅))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝑋

Proof of Theorem ufinffr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ominf 8724 . . . . 5 ¬ ω ∈ Fin
2 domfi 8733 . . . . . 6 ((𝐴 ∈ Fin ∧ ω ≼ 𝐴) → ω ∈ Fin)
32expcom 416 . . . . 5 (ω ≼ 𝐴 → (𝐴 ∈ Fin → ω ∈ Fin))
41, 3mtoi 201 . . . 4 (ω ≼ 𝐴 → ¬ 𝐴 ∈ Fin)
5 cfinfil 22495 . . . 4 ((𝑋𝐵𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ∈ (Fil‘𝑋))
64, 5syl3an3 1161 . . 3 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ∈ (Fil‘𝑋))
7 filssufil 22514 . . 3 ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ∈ (Fil‘𝑋) → ∃𝑓 ∈ (UFil‘𝑋){𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓)
86, 7syl 17 . 2 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ∃𝑓 ∈ (UFil‘𝑋){𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓)
9 difeq2 4092 . . . . . . . 8 (𝑥 = 𝐴 → (𝐴𝑥) = (𝐴𝐴))
10 difid 4329 . . . . . . . 8 (𝐴𝐴) = ∅
119, 10syl6eq 2872 . . . . . . 7 (𝑥 = 𝐴 → (𝐴𝑥) = ∅)
1211eleq1d 2897 . . . . . 6 (𝑥 = 𝐴 → ((𝐴𝑥) ∈ Fin ↔ ∅ ∈ Fin))
13 elpw2g 5239 . . . . . . . 8 (𝑋𝐵 → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
1413biimpar 480 . . . . . . 7 ((𝑋𝐵𝐴𝑋) → 𝐴 ∈ 𝒫 𝑋)
15143adant3 1128 . . . . . 6 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → 𝐴 ∈ 𝒫 𝑋)
16 0fin 8740 . . . . . . 7 ∅ ∈ Fin
1716a1i 11 . . . . . 6 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ∅ ∈ Fin)
1812, 15, 17elrabd 3681 . . . . 5 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → 𝐴 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin})
19 ssel 3960 . . . . 5 ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓 → (𝐴 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} → 𝐴𝑓))
2018, 19syl5com 31 . . . 4 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓𝐴𝑓))
21 intss 4889 . . . . . 6 ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓 𝑓 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin})
22 neldifsn 4718 . . . . . . . . . 10 ¬ 𝑦 ∈ (𝐴 ∖ {𝑦})
23 elinti 4877 . . . . . . . . . 10 (𝑦 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} → ((𝐴 ∖ {𝑦}) ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} → 𝑦 ∈ (𝐴 ∖ {𝑦})))
2422, 23mtoi 201 . . . . . . . . 9 (𝑦 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} → ¬ (𝐴 ∖ {𝑦}) ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin})
25 difeq2 4092 . . . . . . . . . . 11 (𝑥 = (𝐴 ∖ {𝑦}) → (𝐴𝑥) = (𝐴 ∖ (𝐴 ∖ {𝑦})))
2625eleq1d 2897 . . . . . . . . . 10 (𝑥 = (𝐴 ∖ {𝑦}) → ((𝐴𝑥) ∈ Fin ↔ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin))
27 simp2 1133 . . . . . . . . . . . 12 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → 𝐴𝑋)
2827ssdifssd 4118 . . . . . . . . . . 11 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → (𝐴 ∖ {𝑦}) ⊆ 𝑋)
29 elpw2g 5239 . . . . . . . . . . . 12 (𝑋𝐵 → ((𝐴 ∖ {𝑦}) ∈ 𝒫 𝑋 ↔ (𝐴 ∖ {𝑦}) ⊆ 𝑋))
30293ad2ant1 1129 . . . . . . . . . . 11 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ((𝐴 ∖ {𝑦}) ∈ 𝒫 𝑋 ↔ (𝐴 ∖ {𝑦}) ⊆ 𝑋))
3128, 30mpbird 259 . . . . . . . . . 10 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → (𝐴 ∖ {𝑦}) ∈ 𝒫 𝑋)
32 snfi 8588 . . . . . . . . . . . 12 {𝑦} ∈ Fin
33 eldif 3945 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐴 ∖ (𝐴 ∖ {𝑦})) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐴 ∖ {𝑦})))
34 eldif 3945 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴 ∖ {𝑦}) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ {𝑦}))
3534notbii 322 . . . . . . . . . . . . . . . . 17 𝑥 ∈ (𝐴 ∖ {𝑦}) ↔ ¬ (𝑥𝐴 ∧ ¬ 𝑥 ∈ {𝑦}))
36 iman 404 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝑥 ∈ {𝑦}) ↔ ¬ (𝑥𝐴 ∧ ¬ 𝑥 ∈ {𝑦}))
3735, 36bitr4i 280 . . . . . . . . . . . . . . . 16 𝑥 ∈ (𝐴 ∖ {𝑦}) ↔ (𝑥𝐴𝑥 ∈ {𝑦}))
3837anbi2i 624 . . . . . . . . . . . . . . 15 ((𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐴 ∖ {𝑦})) ↔ (𝑥𝐴 ∧ (𝑥𝐴𝑥 ∈ {𝑦})))
3933, 38bitri 277 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴 ∖ (𝐴 ∖ {𝑦})) ↔ (𝑥𝐴 ∧ (𝑥𝐴𝑥 ∈ {𝑦})))
40 pm3.35 801 . . . . . . . . . . . . . 14 ((𝑥𝐴 ∧ (𝑥𝐴𝑥 ∈ {𝑦})) → 𝑥 ∈ {𝑦})
4139, 40sylbi 219 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴 ∖ (𝐴 ∖ {𝑦})) → 𝑥 ∈ {𝑦})
4241ssriv 3970 . . . . . . . . . . . 12 (𝐴 ∖ (𝐴 ∖ {𝑦})) ⊆ {𝑦}
43 ssfi 8732 . . . . . . . . . . . 12 (({𝑦} ∈ Fin ∧ (𝐴 ∖ (𝐴 ∖ {𝑦})) ⊆ {𝑦}) → (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin)
4432, 42, 43mp2an 690 . . . . . . . . . . 11 (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin
4544a1i 11 . . . . . . . . . 10 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin)
4626, 31, 45elrabd 3681 . . . . . . . . 9 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → (𝐴 ∖ {𝑦}) ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin})
4724, 46nsyl3 140 . . . . . . . 8 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ¬ 𝑦 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin})
4847eq0rdv 4356 . . . . . . 7 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} = ∅)
4948sseq2d 3998 . . . . . 6 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ( 𝑓 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ↔ 𝑓 ⊆ ∅))
5021, 49syl5ib 246 . . . . 5 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓 𝑓 ⊆ ∅))
51 ss0 4351 . . . . 5 ( 𝑓 ⊆ ∅ → 𝑓 = ∅)
5250, 51syl6 35 . . . 4 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓 𝑓 = ∅))
5320, 52jcad 515 . . 3 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓 → (𝐴𝑓 𝑓 = ∅)))
5453reximdv 3273 . 2 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → (∃𝑓 ∈ (UFil‘𝑋){𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓 → ∃𝑓 ∈ (UFil‘𝑋)(𝐴𝑓 𝑓 = ∅)))
558, 54mpd 15 1 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ∃𝑓 ∈ (UFil‘𝑋)(𝐴𝑓 𝑓 = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wrex 3139  {crab 3142  cdif 3932  wss 3935  c0 4290  𝒫 cpw 4538  {csn 4560   cint 4868   class class class wbr 5058  cfv 6349  ωcom 7574  cdom 8501  Fincfn 8503  Filcfil 22447  UFilcufil 22501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-ac2 9879
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-rpss 7443  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-dju 9324  df-card 9362  df-ac 9536  df-fbas 20536  df-fg 20537  df-fil 22448  df-ufil 22503
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator