MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufinffr Structured version   Visualization version   GIF version

Theorem ufinffr 23937
Description: An infinite subset is contained in a free ultrafilter. (Contributed by Jeff Hankins, 6-Dec-2009.) (Revised by Mario Carneiro, 4-Dec-2013.)
Assertion
Ref Expression
ufinffr ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ∃𝑓 ∈ (UFil‘𝑋)(𝐴𝑓 𝑓 = ∅))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝑋

Proof of Theorem ufinffr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ominf 9294 . . . . 5 ¬ ω ∈ Fin
2 domfi 9229 . . . . . 6 ((𝐴 ∈ Fin ∧ ω ≼ 𝐴) → ω ∈ Fin)
32expcom 413 . . . . 5 (ω ≼ 𝐴 → (𝐴 ∈ Fin → ω ∈ Fin))
41, 3mtoi 199 . . . 4 (ω ≼ 𝐴 → ¬ 𝐴 ∈ Fin)
5 cfinfil 23901 . . . 4 ((𝑋𝐵𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ∈ (Fil‘𝑋))
64, 5syl3an3 1166 . . 3 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ∈ (Fil‘𝑋))
7 filssufil 23920 . . 3 ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ∈ (Fil‘𝑋) → ∃𝑓 ∈ (UFil‘𝑋){𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓)
86, 7syl 17 . 2 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ∃𝑓 ∈ (UFil‘𝑋){𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓)
9 difeq2 4120 . . . . . . . 8 (𝑥 = 𝐴 → (𝐴𝑥) = (𝐴𝐴))
10 difid 4376 . . . . . . . 8 (𝐴𝐴) = ∅
119, 10eqtrdi 2793 . . . . . . 7 (𝑥 = 𝐴 → (𝐴𝑥) = ∅)
1211eleq1d 2826 . . . . . 6 (𝑥 = 𝐴 → ((𝐴𝑥) ∈ Fin ↔ ∅ ∈ Fin))
13 elpw2g 5333 . . . . . . . 8 (𝑋𝐵 → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
1413biimpar 477 . . . . . . 7 ((𝑋𝐵𝐴𝑋) → 𝐴 ∈ 𝒫 𝑋)
15143adant3 1133 . . . . . 6 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → 𝐴 ∈ 𝒫 𝑋)
16 0fi 9082 . . . . . . 7 ∅ ∈ Fin
1716a1i 11 . . . . . 6 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ∅ ∈ Fin)
1812, 15, 17elrabd 3694 . . . . 5 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → 𝐴 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin})
19 ssel 3977 . . . . 5 ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓 → (𝐴 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} → 𝐴𝑓))
2018, 19syl5com 31 . . . 4 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓𝐴𝑓))
21 intss 4969 . . . . . 6 ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓 𝑓 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin})
22 neldifsn 4792 . . . . . . . . . 10 ¬ 𝑦 ∈ (𝐴 ∖ {𝑦})
23 elinti 4955 . . . . . . . . . 10 (𝑦 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} → ((𝐴 ∖ {𝑦}) ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} → 𝑦 ∈ (𝐴 ∖ {𝑦})))
2422, 23mtoi 199 . . . . . . . . 9 (𝑦 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} → ¬ (𝐴 ∖ {𝑦}) ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin})
25 difeq2 4120 . . . . . . . . . . 11 (𝑥 = (𝐴 ∖ {𝑦}) → (𝐴𝑥) = (𝐴 ∖ (𝐴 ∖ {𝑦})))
2625eleq1d 2826 . . . . . . . . . 10 (𝑥 = (𝐴 ∖ {𝑦}) → ((𝐴𝑥) ∈ Fin ↔ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin))
27 simp2 1138 . . . . . . . . . . . 12 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → 𝐴𝑋)
2827ssdifssd 4147 . . . . . . . . . . 11 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → (𝐴 ∖ {𝑦}) ⊆ 𝑋)
29 elpw2g 5333 . . . . . . . . . . . 12 (𝑋𝐵 → ((𝐴 ∖ {𝑦}) ∈ 𝒫 𝑋 ↔ (𝐴 ∖ {𝑦}) ⊆ 𝑋))
30293ad2ant1 1134 . . . . . . . . . . 11 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ((𝐴 ∖ {𝑦}) ∈ 𝒫 𝑋 ↔ (𝐴 ∖ {𝑦}) ⊆ 𝑋))
3128, 30mpbird 257 . . . . . . . . . 10 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → (𝐴 ∖ {𝑦}) ∈ 𝒫 𝑋)
32 snfi 9083 . . . . . . . . . . . 12 {𝑦} ∈ Fin
33 eldif 3961 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐴 ∖ (𝐴 ∖ {𝑦})) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐴 ∖ {𝑦})))
34 eldif 3961 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴 ∖ {𝑦}) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ {𝑦}))
3534notbii 320 . . . . . . . . . . . . . . . . 17 𝑥 ∈ (𝐴 ∖ {𝑦}) ↔ ¬ (𝑥𝐴 ∧ ¬ 𝑥 ∈ {𝑦}))
36 iman 401 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝑥 ∈ {𝑦}) ↔ ¬ (𝑥𝐴 ∧ ¬ 𝑥 ∈ {𝑦}))
3735, 36bitr4i 278 . . . . . . . . . . . . . . . 16 𝑥 ∈ (𝐴 ∖ {𝑦}) ↔ (𝑥𝐴𝑥 ∈ {𝑦}))
3837anbi2i 623 . . . . . . . . . . . . . . 15 ((𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐴 ∖ {𝑦})) ↔ (𝑥𝐴 ∧ (𝑥𝐴𝑥 ∈ {𝑦})))
3933, 38bitri 275 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴 ∖ (𝐴 ∖ {𝑦})) ↔ (𝑥𝐴 ∧ (𝑥𝐴𝑥 ∈ {𝑦})))
40 pm3.35 803 . . . . . . . . . . . . . 14 ((𝑥𝐴 ∧ (𝑥𝐴𝑥 ∈ {𝑦})) → 𝑥 ∈ {𝑦})
4139, 40sylbi 217 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴 ∖ (𝐴 ∖ {𝑦})) → 𝑥 ∈ {𝑦})
4241ssriv 3987 . . . . . . . . . . . 12 (𝐴 ∖ (𝐴 ∖ {𝑦})) ⊆ {𝑦}
43 ssfi 9213 . . . . . . . . . . . 12 (({𝑦} ∈ Fin ∧ (𝐴 ∖ (𝐴 ∖ {𝑦})) ⊆ {𝑦}) → (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin)
4432, 42, 43mp2an 692 . . . . . . . . . . 11 (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin
4544a1i 11 . . . . . . . . . 10 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin)
4626, 31, 45elrabd 3694 . . . . . . . . 9 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → (𝐴 ∖ {𝑦}) ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin})
4724, 46nsyl3 138 . . . . . . . 8 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ¬ 𝑦 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin})
4847eq0rdv 4407 . . . . . . 7 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} = ∅)
4948sseq2d 4016 . . . . . 6 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ( 𝑓 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ↔ 𝑓 ⊆ ∅))
5021, 49imbitrid 244 . . . . 5 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓 𝑓 ⊆ ∅))
51 ss0 4402 . . . . 5 ( 𝑓 ⊆ ∅ → 𝑓 = ∅)
5250, 51syl6 35 . . . 4 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓 𝑓 = ∅))
5320, 52jcad 512 . . 3 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓 → (𝐴𝑓 𝑓 = ∅)))
5453reximdv 3170 . 2 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → (∃𝑓 ∈ (UFil‘𝑋){𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓 → ∃𝑓 ∈ (UFil‘𝑋)(𝐴𝑓 𝑓 = ∅)))
558, 54mpd 15 1 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ∃𝑓 ∈ (UFil‘𝑋)(𝐴𝑓 𝑓 = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wrex 3070  {crab 3436  cdif 3948  wss 3951  c0 4333  𝒫 cpw 4600  {csn 4626   cint 4946   class class class wbr 5143  cfv 6561  ωcom 7887  cdom 8983  Fincfn 8985  Filcfil 23853  UFilcufil 23907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-ac2 10503
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-rpss 7743  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-dju 9941  df-card 9979  df-ac 10156  df-fbas 21361  df-fg 21362  df-fil 23854  df-ufil 23909
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator