MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufinffr Structured version   Visualization version   GIF version

Theorem ufinffr 23080
Description: An infinite subset is contained in a free ultrafilter. (Contributed by Jeff Hankins, 6-Dec-2009.) (Revised by Mario Carneiro, 4-Dec-2013.)
Assertion
Ref Expression
ufinffr ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ∃𝑓 ∈ (UFil‘𝑋)(𝐴𝑓 𝑓 = ∅))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝑋

Proof of Theorem ufinffr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ominf 9035 . . . . 5 ¬ ω ∈ Fin
2 domfi 8975 . . . . . 6 ((𝐴 ∈ Fin ∧ ω ≼ 𝐴) → ω ∈ Fin)
32expcom 414 . . . . 5 (ω ≼ 𝐴 → (𝐴 ∈ Fin → ω ∈ Fin))
41, 3mtoi 198 . . . 4 (ω ≼ 𝐴 → ¬ 𝐴 ∈ Fin)
5 cfinfil 23044 . . . 4 ((𝑋𝐵𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ∈ (Fil‘𝑋))
64, 5syl3an3 1164 . . 3 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ∈ (Fil‘𝑋))
7 filssufil 23063 . . 3 ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ∈ (Fil‘𝑋) → ∃𝑓 ∈ (UFil‘𝑋){𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓)
86, 7syl 17 . 2 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ∃𝑓 ∈ (UFil‘𝑋){𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓)
9 difeq2 4051 . . . . . . . 8 (𝑥 = 𝐴 → (𝐴𝑥) = (𝐴𝐴))
10 difid 4304 . . . . . . . 8 (𝐴𝐴) = ∅
119, 10eqtrdi 2794 . . . . . . 7 (𝑥 = 𝐴 → (𝐴𝑥) = ∅)
1211eleq1d 2823 . . . . . 6 (𝑥 = 𝐴 → ((𝐴𝑥) ∈ Fin ↔ ∅ ∈ Fin))
13 elpw2g 5268 . . . . . . . 8 (𝑋𝐵 → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
1413biimpar 478 . . . . . . 7 ((𝑋𝐵𝐴𝑋) → 𝐴 ∈ 𝒫 𝑋)
15143adant3 1131 . . . . . 6 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → 𝐴 ∈ 𝒫 𝑋)
16 0fin 8954 . . . . . . 7 ∅ ∈ Fin
1716a1i 11 . . . . . 6 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ∅ ∈ Fin)
1812, 15, 17elrabd 3626 . . . . 5 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → 𝐴 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin})
19 ssel 3914 . . . . 5 ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓 → (𝐴 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} → 𝐴𝑓))
2018, 19syl5com 31 . . . 4 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓𝐴𝑓))
21 intss 4900 . . . . . 6 ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓 𝑓 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin})
22 neldifsn 4725 . . . . . . . . . 10 ¬ 𝑦 ∈ (𝐴 ∖ {𝑦})
23 elinti 4888 . . . . . . . . . 10 (𝑦 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} → ((𝐴 ∖ {𝑦}) ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} → 𝑦 ∈ (𝐴 ∖ {𝑦})))
2422, 23mtoi 198 . . . . . . . . 9 (𝑦 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} → ¬ (𝐴 ∖ {𝑦}) ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin})
25 difeq2 4051 . . . . . . . . . . 11 (𝑥 = (𝐴 ∖ {𝑦}) → (𝐴𝑥) = (𝐴 ∖ (𝐴 ∖ {𝑦})))
2625eleq1d 2823 . . . . . . . . . 10 (𝑥 = (𝐴 ∖ {𝑦}) → ((𝐴𝑥) ∈ Fin ↔ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin))
27 simp2 1136 . . . . . . . . . . . 12 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → 𝐴𝑋)
2827ssdifssd 4077 . . . . . . . . . . 11 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → (𝐴 ∖ {𝑦}) ⊆ 𝑋)
29 elpw2g 5268 . . . . . . . . . . . 12 (𝑋𝐵 → ((𝐴 ∖ {𝑦}) ∈ 𝒫 𝑋 ↔ (𝐴 ∖ {𝑦}) ⊆ 𝑋))
30293ad2ant1 1132 . . . . . . . . . . 11 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ((𝐴 ∖ {𝑦}) ∈ 𝒫 𝑋 ↔ (𝐴 ∖ {𝑦}) ⊆ 𝑋))
3128, 30mpbird 256 . . . . . . . . . 10 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → (𝐴 ∖ {𝑦}) ∈ 𝒫 𝑋)
32 snfi 8834 . . . . . . . . . . . 12 {𝑦} ∈ Fin
33 eldif 3897 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐴 ∖ (𝐴 ∖ {𝑦})) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐴 ∖ {𝑦})))
34 eldif 3897 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴 ∖ {𝑦}) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ {𝑦}))
3534notbii 320 . . . . . . . . . . . . . . . . 17 𝑥 ∈ (𝐴 ∖ {𝑦}) ↔ ¬ (𝑥𝐴 ∧ ¬ 𝑥 ∈ {𝑦}))
36 iman 402 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝑥 ∈ {𝑦}) ↔ ¬ (𝑥𝐴 ∧ ¬ 𝑥 ∈ {𝑦}))
3735, 36bitr4i 277 . . . . . . . . . . . . . . . 16 𝑥 ∈ (𝐴 ∖ {𝑦}) ↔ (𝑥𝐴𝑥 ∈ {𝑦}))
3837anbi2i 623 . . . . . . . . . . . . . . 15 ((𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐴 ∖ {𝑦})) ↔ (𝑥𝐴 ∧ (𝑥𝐴𝑥 ∈ {𝑦})))
3933, 38bitri 274 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴 ∖ (𝐴 ∖ {𝑦})) ↔ (𝑥𝐴 ∧ (𝑥𝐴𝑥 ∈ {𝑦})))
40 pm3.35 800 . . . . . . . . . . . . . 14 ((𝑥𝐴 ∧ (𝑥𝐴𝑥 ∈ {𝑦})) → 𝑥 ∈ {𝑦})
4139, 40sylbi 216 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴 ∖ (𝐴 ∖ {𝑦})) → 𝑥 ∈ {𝑦})
4241ssriv 3925 . . . . . . . . . . . 12 (𝐴 ∖ (𝐴 ∖ {𝑦})) ⊆ {𝑦}
43 ssfi 8956 . . . . . . . . . . . 12 (({𝑦} ∈ Fin ∧ (𝐴 ∖ (𝐴 ∖ {𝑦})) ⊆ {𝑦}) → (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin)
4432, 42, 43mp2an 689 . . . . . . . . . . 11 (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin
4544a1i 11 . . . . . . . . . 10 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin)
4626, 31, 45elrabd 3626 . . . . . . . . 9 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → (𝐴 ∖ {𝑦}) ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin})
4724, 46nsyl3 138 . . . . . . . 8 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ¬ 𝑦 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin})
4847eq0rdv 4338 . . . . . . 7 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} = ∅)
4948sseq2d 3953 . . . . . 6 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ( 𝑓 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ↔ 𝑓 ⊆ ∅))
5021, 49syl5ib 243 . . . . 5 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓 𝑓 ⊆ ∅))
51 ss0 4332 . . . . 5 ( 𝑓 ⊆ ∅ → 𝑓 = ∅)
5250, 51syl6 35 . . . 4 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓 𝑓 = ∅))
5320, 52jcad 513 . . 3 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓 → (𝐴𝑓 𝑓 = ∅)))
5453reximdv 3202 . 2 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → (∃𝑓 ∈ (UFil‘𝑋){𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓 → ∃𝑓 ∈ (UFil‘𝑋)(𝐴𝑓 𝑓 = ∅)))
558, 54mpd 15 1 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ∃𝑓 ∈ (UFil‘𝑋)(𝐴𝑓 𝑓 = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  {crab 3068  cdif 3884  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561   cint 4879   class class class wbr 5074  cfv 6433  ωcom 7712  cdom 8731  Fincfn 8733  Filcfil 22996  UFilcufil 23050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-ac2 10219
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-rpss 7576  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-dju 9659  df-card 9697  df-ac 9872  df-fbas 20594  df-fg 20595  df-fil 22997  df-ufil 23052
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator