MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufinffr Structured version   Visualization version   GIF version

Theorem ufinffr 23849
Description: An infinite subset is contained in a free ultrafilter. (Contributed by Jeff Hankins, 6-Dec-2009.) (Revised by Mario Carneiro, 4-Dec-2013.)
Assertion
Ref Expression
ufinffr ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ∃𝑓 ∈ (UFil‘𝑋)(𝐴𝑓 𝑓 = ∅))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝑋

Proof of Theorem ufinffr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ominf 9181 . . . . 5 ¬ ω ∈ Fin
2 domfi 9130 . . . . . 6 ((𝐴 ∈ Fin ∧ ω ≼ 𝐴) → ω ∈ Fin)
32expcom 413 . . . . 5 (ω ≼ 𝐴 → (𝐴 ∈ Fin → ω ∈ Fin))
41, 3mtoi 199 . . . 4 (ω ≼ 𝐴 → ¬ 𝐴 ∈ Fin)
5 cfinfil 23813 . . . 4 ((𝑋𝐵𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ∈ (Fil‘𝑋))
64, 5syl3an3 1165 . . 3 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ∈ (Fil‘𝑋))
7 filssufil 23832 . . 3 ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ∈ (Fil‘𝑋) → ∃𝑓 ∈ (UFil‘𝑋){𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓)
86, 7syl 17 . 2 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ∃𝑓 ∈ (UFil‘𝑋){𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓)
9 difeq2 4079 . . . . . . . 8 (𝑥 = 𝐴 → (𝐴𝑥) = (𝐴𝐴))
10 difid 4335 . . . . . . . 8 (𝐴𝐴) = ∅
119, 10eqtrdi 2780 . . . . . . 7 (𝑥 = 𝐴 → (𝐴𝑥) = ∅)
1211eleq1d 2813 . . . . . 6 (𝑥 = 𝐴 → ((𝐴𝑥) ∈ Fin ↔ ∅ ∈ Fin))
13 elpw2g 5283 . . . . . . . 8 (𝑋𝐵 → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
1413biimpar 477 . . . . . . 7 ((𝑋𝐵𝐴𝑋) → 𝐴 ∈ 𝒫 𝑋)
15143adant3 1132 . . . . . 6 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → 𝐴 ∈ 𝒫 𝑋)
16 0fi 8990 . . . . . . 7 ∅ ∈ Fin
1716a1i 11 . . . . . 6 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ∅ ∈ Fin)
1812, 15, 17elrabd 3658 . . . . 5 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → 𝐴 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin})
19 ssel 3937 . . . . 5 ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓 → (𝐴 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} → 𝐴𝑓))
2018, 19syl5com 31 . . . 4 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓𝐴𝑓))
21 intss 4929 . . . . . 6 ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓 𝑓 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin})
22 neldifsn 4752 . . . . . . . . . 10 ¬ 𝑦 ∈ (𝐴 ∖ {𝑦})
23 elinti 4915 . . . . . . . . . 10 (𝑦 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} → ((𝐴 ∖ {𝑦}) ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} → 𝑦 ∈ (𝐴 ∖ {𝑦})))
2422, 23mtoi 199 . . . . . . . . 9 (𝑦 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} → ¬ (𝐴 ∖ {𝑦}) ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin})
25 difeq2 4079 . . . . . . . . . . 11 (𝑥 = (𝐴 ∖ {𝑦}) → (𝐴𝑥) = (𝐴 ∖ (𝐴 ∖ {𝑦})))
2625eleq1d 2813 . . . . . . . . . 10 (𝑥 = (𝐴 ∖ {𝑦}) → ((𝐴𝑥) ∈ Fin ↔ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin))
27 simp2 1137 . . . . . . . . . . . 12 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → 𝐴𝑋)
2827ssdifssd 4106 . . . . . . . . . . 11 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → (𝐴 ∖ {𝑦}) ⊆ 𝑋)
29 elpw2g 5283 . . . . . . . . . . . 12 (𝑋𝐵 → ((𝐴 ∖ {𝑦}) ∈ 𝒫 𝑋 ↔ (𝐴 ∖ {𝑦}) ⊆ 𝑋))
30293ad2ant1 1133 . . . . . . . . . . 11 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ((𝐴 ∖ {𝑦}) ∈ 𝒫 𝑋 ↔ (𝐴 ∖ {𝑦}) ⊆ 𝑋))
3128, 30mpbird 257 . . . . . . . . . 10 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → (𝐴 ∖ {𝑦}) ∈ 𝒫 𝑋)
32 snfi 8991 . . . . . . . . . . . 12 {𝑦} ∈ Fin
33 eldif 3921 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐴 ∖ (𝐴 ∖ {𝑦})) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐴 ∖ {𝑦})))
34 eldif 3921 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴 ∖ {𝑦}) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ {𝑦}))
3534notbii 320 . . . . . . . . . . . . . . . . 17 𝑥 ∈ (𝐴 ∖ {𝑦}) ↔ ¬ (𝑥𝐴 ∧ ¬ 𝑥 ∈ {𝑦}))
36 iman 401 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝑥 ∈ {𝑦}) ↔ ¬ (𝑥𝐴 ∧ ¬ 𝑥 ∈ {𝑦}))
3735, 36bitr4i 278 . . . . . . . . . . . . . . . 16 𝑥 ∈ (𝐴 ∖ {𝑦}) ↔ (𝑥𝐴𝑥 ∈ {𝑦}))
3837anbi2i 623 . . . . . . . . . . . . . . 15 ((𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐴 ∖ {𝑦})) ↔ (𝑥𝐴 ∧ (𝑥𝐴𝑥 ∈ {𝑦})))
3933, 38bitri 275 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴 ∖ (𝐴 ∖ {𝑦})) ↔ (𝑥𝐴 ∧ (𝑥𝐴𝑥 ∈ {𝑦})))
40 pm3.35 802 . . . . . . . . . . . . . 14 ((𝑥𝐴 ∧ (𝑥𝐴𝑥 ∈ {𝑦})) → 𝑥 ∈ {𝑦})
4139, 40sylbi 217 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴 ∖ (𝐴 ∖ {𝑦})) → 𝑥 ∈ {𝑦})
4241ssriv 3947 . . . . . . . . . . . 12 (𝐴 ∖ (𝐴 ∖ {𝑦})) ⊆ {𝑦}
43 ssfi 9114 . . . . . . . . . . . 12 (({𝑦} ∈ Fin ∧ (𝐴 ∖ (𝐴 ∖ {𝑦})) ⊆ {𝑦}) → (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin)
4432, 42, 43mp2an 692 . . . . . . . . . . 11 (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin
4544a1i 11 . . . . . . . . . 10 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin)
4626, 31, 45elrabd 3658 . . . . . . . . 9 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → (𝐴 ∖ {𝑦}) ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin})
4724, 46nsyl3 138 . . . . . . . 8 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ¬ 𝑦 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin})
4847eq0rdv 4366 . . . . . . 7 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} = ∅)
4948sseq2d 3976 . . . . . 6 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ( 𝑓 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ↔ 𝑓 ⊆ ∅))
5021, 49imbitrid 244 . . . . 5 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓 𝑓 ⊆ ∅))
51 ss0 4361 . . . . 5 ( 𝑓 ⊆ ∅ → 𝑓 = ∅)
5250, 51syl6 35 . . . 4 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓 𝑓 = ∅))
5320, 52jcad 512 . . 3 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓 → (𝐴𝑓 𝑓 = ∅)))
5453reximdv 3148 . 2 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → (∃𝑓 ∈ (UFil‘𝑋){𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ⊆ 𝑓 → ∃𝑓 ∈ (UFil‘𝑋)(𝐴𝑓 𝑓 = ∅)))
558, 54mpd 15 1 ((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ∃𝑓 ∈ (UFil‘𝑋)(𝐴𝑓 𝑓 = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  {crab 3402  cdif 3908  wss 3911  c0 4292  𝒫 cpw 4559  {csn 4585   cint 4906   class class class wbr 5102  cfv 6499  ωcom 7822  cdom 8893  Fincfn 8895  Filcfil 23765  UFilcufil 23819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-ac2 10392
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-rpss 7679  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-dju 9830  df-card 9868  df-ac 10045  df-fbas 21293  df-fg 21294  df-fil 23766  df-ufil 23821
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator