MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inttsk Structured version   Visualization version   GIF version

Theorem inttsk 10769
Description: The intersection of a collection of Tarski classes is a Tarski class. (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
inttsk ((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Tarski)

Proof of Theorem inttsk
Dummy variables 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . . . . 8 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → 𝐴 ⊆ Tarski)
21sselda 3983 . . . . . . 7 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ 𝑡𝐴) → 𝑡 ∈ Tarski)
3 elinti 4960 . . . . . . . . 9 (𝑧 𝐴 → (𝑡𝐴𝑧𝑡))
43imp 408 . . . . . . . 8 ((𝑧 𝐴𝑡𝐴) → 𝑧𝑡)
54adantll 713 . . . . . . 7 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ 𝑡𝐴) → 𝑧𝑡)
6 tskpwss 10747 . . . . . . 7 ((𝑡 ∈ Tarski ∧ 𝑧𝑡) → 𝒫 𝑧𝑡)
72, 5, 6syl2anc 585 . . . . . 6 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ 𝑡𝐴) → 𝒫 𝑧𝑡)
87ralrimiva 3147 . . . . 5 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → ∀𝑡𝐴 𝒫 𝑧𝑡)
9 ssint 4969 . . . . 5 (𝒫 𝑧 𝐴 ↔ ∀𝑡𝐴 𝒫 𝑧𝑡)
108, 9sylibr 233 . . . 4 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → 𝒫 𝑧 𝐴)
11 tskpw 10748 . . . . . . 7 ((𝑡 ∈ Tarski ∧ 𝑧𝑡) → 𝒫 𝑧𝑡)
122, 5, 11syl2anc 585 . . . . . 6 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ 𝑡𝐴) → 𝒫 𝑧𝑡)
1312ralrimiva 3147 . . . . 5 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → ∀𝑡𝐴 𝒫 𝑧𝑡)
14 vpwex 5376 . . . . . 6 𝒫 𝑧 ∈ V
1514elint2 4958 . . . . 5 (𝒫 𝑧 𝐴 ↔ ∀𝑡𝐴 𝒫 𝑧𝑡)
1613, 15sylibr 233 . . . 4 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → 𝒫 𝑧 𝐴)
1710, 16jca 513 . . 3 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → (𝒫 𝑧 𝐴 ∧ 𝒫 𝑧 𝐴))
1817ralrimiva 3147 . 2 ((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) → ∀𝑧 𝐴(𝒫 𝑧 𝐴 ∧ 𝒫 𝑧 𝐴))
19 elpwi 4610 . . . 4 (𝑧 ∈ 𝒫 𝐴𝑧 𝐴)
20 rexnal 3101 . . . . . . . 8 (∃𝑡𝐴 ¬ 𝑧𝑡 ↔ ¬ ∀𝑡𝐴 𝑧𝑡)
21 simpr 486 . . . . . . . . . . . . 13 ((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
22 intex 5338 . . . . . . . . . . . . 13 (𝐴 ≠ ∅ ↔ 𝐴 ∈ V)
2321, 22sylib 217 . . . . . . . . . . . 12 ((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) → 𝐴 ∈ V)
2423ad2antrr 725 . . . . . . . . . . 11 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝐴 ∈ V)
25 simplr 768 . . . . . . . . . . 11 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝑧 𝐴)
26 ssdomg 8996 . . . . . . . . . . 11 ( 𝐴 ∈ V → (𝑧 𝐴𝑧 𝐴))
2724, 25, 26sylc 65 . . . . . . . . . 10 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝑧 𝐴)
28 vex 3479 . . . . . . . . . . . 12 𝑡 ∈ V
29 intss1 4968 . . . . . . . . . . . . 13 (𝑡𝐴 𝐴𝑡)
3029ad2antrl 727 . . . . . . . . . . . 12 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝐴𝑡)
31 ssdomg 8996 . . . . . . . . . . . 12 (𝑡 ∈ V → ( 𝐴𝑡 𝐴𝑡))
3228, 30, 31mpsyl 68 . . . . . . . . . . 11 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝐴𝑡)
33 simprr 772 . . . . . . . . . . . . 13 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → ¬ 𝑧𝑡)
34 simplll 774 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝐴 ⊆ Tarski)
35 simprl 770 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝑡𝐴)
3634, 35sseldd 3984 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝑡 ∈ Tarski)
3725, 30sstrd 3993 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝑧𝑡)
38 tsken 10749 . . . . . . . . . . . . . . 15 ((𝑡 ∈ Tarski ∧ 𝑧𝑡) → (𝑧𝑡𝑧𝑡))
3936, 37, 38syl2anc 585 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → (𝑧𝑡𝑧𝑡))
4039ord 863 . . . . . . . . . . . . 13 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → (¬ 𝑧𝑡𝑧𝑡))
4133, 40mt3d 148 . . . . . . . . . . . 12 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝑧𝑡)
4241ensymd 9001 . . . . . . . . . . 11 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝑡𝑧)
43 domentr 9009 . . . . . . . . . . 11 (( 𝐴𝑡𝑡𝑧) → 𝐴𝑧)
4432, 42, 43syl2anc 585 . . . . . . . . . 10 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝐴𝑧)
45 sbth 9093 . . . . . . . . . 10 ((𝑧 𝐴 𝐴𝑧) → 𝑧 𝐴)
4627, 44, 45syl2anc 585 . . . . . . . . 9 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝑧 𝐴)
4746rexlimdvaa 3157 . . . . . . . 8 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → (∃𝑡𝐴 ¬ 𝑧𝑡𝑧 𝐴))
4820, 47biimtrrid 242 . . . . . . 7 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → (¬ ∀𝑡𝐴 𝑧𝑡𝑧 𝐴))
4948con1d 145 . . . . . 6 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → (¬ 𝑧 𝐴 → ∀𝑡𝐴 𝑧𝑡))
50 vex 3479 . . . . . . 7 𝑧 ∈ V
5150elint2 4958 . . . . . 6 (𝑧 𝐴 ↔ ∀𝑡𝐴 𝑧𝑡)
5249, 51imbitrrdi 251 . . . . 5 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → (¬ 𝑧 𝐴𝑧 𝐴))
5352orrd 862 . . . 4 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → (𝑧 𝐴𝑧 𝐴))
5419, 53sylan2 594 . . 3 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 ∈ 𝒫 𝐴) → (𝑧 𝐴𝑧 𝐴))
5554ralrimiva 3147 . 2 ((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) → ∀𝑧 ∈ 𝒫 𝐴(𝑧 𝐴𝑧 𝐴))
56 eltsk2g 10746 . . 3 ( 𝐴 ∈ V → ( 𝐴 ∈ Tarski ↔ (∀𝑧 𝐴(𝒫 𝑧 𝐴 ∧ 𝒫 𝑧 𝐴) ∧ ∀𝑧 ∈ 𝒫 𝐴(𝑧 𝐴𝑧 𝐴))))
5723, 56syl 17 . 2 ((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) → ( 𝐴 ∈ Tarski ↔ (∀𝑧 𝐴(𝒫 𝑧 𝐴 ∧ 𝒫 𝑧 𝐴) ∧ ∀𝑧 ∈ 𝒫 𝐴(𝑧 𝐴𝑧 𝐴))))
5818, 55, 57mpbir2and 712 1 ((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Tarski)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846  wcel 2107  wne 2941  wral 3062  wrex 3071  Vcvv 3475  wss 3949  c0 4323  𝒫 cpw 4603   cint 4951   class class class wbr 5149  cen 8936  cdom 8937  Tarskictsk 10743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-er 8703  df-en 8940  df-dom 8941  df-tsk 10744
This theorem is referenced by:  tskmcl  10836
  Copyright terms: Public domain W3C validator