MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgint Structured version   Visualization version   GIF version

Theorem subgint 19077
Description: The intersection of a nonempty collection of subgroups is a subgroup. (Contributed by Mario Carneiro, 7-Dec-2014.)
Assertion
Ref Expression
subgint ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubGrp‘𝐺))

Proof of Theorem subgint
Dummy variables 𝑥 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 intssuni 4967 . . . 4 (𝑆 ≠ ∅ → 𝑆 𝑆)
21adantl 481 . . 3 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → 𝑆 𝑆)
3 ssel2 3972 . . . . . . 7 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑔𝑆) → 𝑔 ∈ (SubGrp‘𝐺))
43adantlr 712 . . . . . 6 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑔𝑆) → 𝑔 ∈ (SubGrp‘𝐺))
5 eqid 2726 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
65subgss 19054 . . . . . 6 (𝑔 ∈ (SubGrp‘𝐺) → 𝑔 ⊆ (Base‘𝐺))
74, 6syl 17 . . . . 5 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑔𝑆) → 𝑔 ⊆ (Base‘𝐺))
87ralrimiva 3140 . . . 4 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → ∀𝑔𝑆 𝑔 ⊆ (Base‘𝐺))
9 unissb 4936 . . . 4 ( 𝑆 ⊆ (Base‘𝐺) ↔ ∀𝑔𝑆 𝑔 ⊆ (Base‘𝐺))
108, 9sylibr 233 . . 3 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ (Base‘𝐺))
112, 10sstrd 3987 . 2 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ (Base‘𝐺))
12 eqid 2726 . . . . . . 7 (0g𝐺) = (0g𝐺)
1312subg0cl 19061 . . . . . 6 (𝑔 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑔)
144, 13syl 17 . . . . 5 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑔𝑆) → (0g𝐺) ∈ 𝑔)
1514ralrimiva 3140 . . . 4 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → ∀𝑔𝑆 (0g𝐺) ∈ 𝑔)
16 fvex 6898 . . . . 5 (0g𝐺) ∈ V
1716elint2 4950 . . . 4 ((0g𝐺) ∈ 𝑆 ↔ ∀𝑔𝑆 (0g𝐺) ∈ 𝑔)
1815, 17sylibr 233 . . 3 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → (0g𝐺) ∈ 𝑆)
1918ne0d 4330 . 2 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → 𝑆 ≠ ∅)
204adantlr 712 . . . . . . . . 9 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑔𝑆) → 𝑔 ∈ (SubGrp‘𝐺))
21 simprl 768 . . . . . . . . . 10 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑥 𝑆)
22 elinti 4952 . . . . . . . . . . 11 (𝑥 𝑆 → (𝑔𝑆𝑥𝑔))
2322imp 406 . . . . . . . . . 10 ((𝑥 𝑆𝑔𝑆) → 𝑥𝑔)
2421, 23sylan 579 . . . . . . . . 9 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑔𝑆) → 𝑥𝑔)
25 simprr 770 . . . . . . . . . 10 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑦 𝑆)
26 elinti 4952 . . . . . . . . . . 11 (𝑦 𝑆 → (𝑔𝑆𝑦𝑔))
2726imp 406 . . . . . . . . . 10 ((𝑦 𝑆𝑔𝑆) → 𝑦𝑔)
2825, 27sylan 579 . . . . . . . . 9 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑔𝑆) → 𝑦𝑔)
29 eqid 2726 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
3029subgcl 19063 . . . . . . . . 9 ((𝑔 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑔𝑦𝑔) → (𝑥(+g𝐺)𝑦) ∈ 𝑔)
3120, 24, 28, 30syl3anc 1368 . . . . . . . 8 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑔𝑆) → (𝑥(+g𝐺)𝑦) ∈ 𝑔)
3231ralrimiva 3140 . . . . . . 7 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → ∀𝑔𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑔)
33 ovex 7438 . . . . . . . 8 (𝑥(+g𝐺)𝑦) ∈ V
3433elint2 4950 . . . . . . 7 ((𝑥(+g𝐺)𝑦) ∈ 𝑆 ↔ ∀𝑔𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑔)
3532, 34sylibr 233 . . . . . 6 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
3635anassrs 467 . . . . 5 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 𝑆) ∧ 𝑦 𝑆) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
3736ralrimiva 3140 . . . 4 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 𝑆) → ∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆)
384adantlr 712 . . . . . . 7 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 𝑆) ∧ 𝑔𝑆) → 𝑔 ∈ (SubGrp‘𝐺))
3923adantll 711 . . . . . . 7 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 𝑆) ∧ 𝑔𝑆) → 𝑥𝑔)
40 eqid 2726 . . . . . . . 8 (invg𝐺) = (invg𝐺)
4140subginvcl 19062 . . . . . . 7 ((𝑔 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑔) → ((invg𝐺)‘𝑥) ∈ 𝑔)
4238, 39, 41syl2anc 583 . . . . . 6 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 𝑆) ∧ 𝑔𝑆) → ((invg𝐺)‘𝑥) ∈ 𝑔)
4342ralrimiva 3140 . . . . 5 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 𝑆) → ∀𝑔𝑆 ((invg𝐺)‘𝑥) ∈ 𝑔)
44 fvex 6898 . . . . . 6 ((invg𝐺)‘𝑥) ∈ V
4544elint2 4950 . . . . 5 (((invg𝐺)‘𝑥) ∈ 𝑆 ↔ ∀𝑔𝑆 ((invg𝐺)‘𝑥) ∈ 𝑔)
4643, 45sylibr 233 . . . 4 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 𝑆) → ((invg𝐺)‘𝑥) ∈ 𝑆)
4737, 46jca 511 . . 3 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 𝑆) → (∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ((invg𝐺)‘𝑥) ∈ 𝑆))
4847ralrimiva 3140 . 2 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → ∀𝑥 𝑆(∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ((invg𝐺)‘𝑥) ∈ 𝑆))
49 ssn0 4395 . . 3 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → (SubGrp‘𝐺) ≠ ∅)
50 n0 4341 . . . 4 ((SubGrp‘𝐺) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (SubGrp‘𝐺))
51 subgrcl 19058 . . . . 5 (𝑔 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
5251exlimiv 1925 . . . 4 (∃𝑔 𝑔 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
5350, 52sylbi 216 . . 3 ((SubGrp‘𝐺) ≠ ∅ → 𝐺 ∈ Grp)
545, 29, 40issubg2 19068 . . 3 (𝐺 ∈ Grp → ( 𝑆 ∈ (SubGrp‘𝐺) ↔ ( 𝑆 ⊆ (Base‘𝐺) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥 𝑆(∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ((invg𝐺)‘𝑥) ∈ 𝑆))))
5549, 53, 543syl 18 . 2 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → ( 𝑆 ∈ (SubGrp‘𝐺) ↔ ( 𝑆 ⊆ (Base‘𝐺) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥 𝑆(∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ((invg𝐺)‘𝑥) ∈ 𝑆))))
5611, 19, 48, 55mpbir3and 1339 1 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084  wex 1773  wcel 2098  wne 2934  wral 3055  wss 3943  c0 4317   cuni 4902   cint 4943  cfv 6537  (class class class)co 7405  Basecbs 17153  +gcplusg 17206  0gc0g 17394  Grpcgrp 18863  invgcminusg 18864  SubGrpcsubg 19047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-ress 17183  df-plusg 17219  df-0g 17396  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18866  df-minusg 18867  df-subg 19050
This theorem is referenced by:  subrngint  20460  subrgint  20497  subdrgint  20654  primefld0cl  20657
  Copyright terms: Public domain W3C validator