| Step | Hyp | Ref
| Expression |
| 1 | | intssuni 4946 |
. . . 4
⊢ (𝑆 ≠ ∅ → ∩ 𝑆
⊆ ∪ 𝑆) |
| 2 | 1 | adantl 481 |
. . 3
⊢ ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → ∩ 𝑆
⊆ ∪ 𝑆) |
| 3 | | ssel2 3953 |
. . . . . . 7
⊢ ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑔 ∈ 𝑆) → 𝑔 ∈ (SubGrp‘𝐺)) |
| 4 | 3 | adantlr 715 |
. . . . . 6
⊢ (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑔 ∈ 𝑆) → 𝑔 ∈ (SubGrp‘𝐺)) |
| 5 | | eqid 2735 |
. . . . . . 7
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 6 | 5 | subgss 19110 |
. . . . . 6
⊢ (𝑔 ∈ (SubGrp‘𝐺) → 𝑔 ⊆ (Base‘𝐺)) |
| 7 | 4, 6 | syl 17 |
. . . . 5
⊢ (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑔 ∈ 𝑆) → 𝑔 ⊆ (Base‘𝐺)) |
| 8 | 7 | ralrimiva 3132 |
. . . 4
⊢ ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → ∀𝑔 ∈ 𝑆 𝑔 ⊆ (Base‘𝐺)) |
| 9 | | unissb 4915 |
. . . 4
⊢ (∪ 𝑆
⊆ (Base‘𝐺)
↔ ∀𝑔 ∈
𝑆 𝑔 ⊆ (Base‘𝐺)) |
| 10 | 8, 9 | sylibr 234 |
. . 3
⊢ ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → ∪ 𝑆
⊆ (Base‘𝐺)) |
| 11 | 2, 10 | sstrd 3969 |
. 2
⊢ ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → ∩ 𝑆
⊆ (Base‘𝐺)) |
| 12 | | eqid 2735 |
. . . . . . 7
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 13 | 12 | subg0cl 19117 |
. . . . . 6
⊢ (𝑔 ∈ (SubGrp‘𝐺) →
(0g‘𝐺)
∈ 𝑔) |
| 14 | 4, 13 | syl 17 |
. . . . 5
⊢ (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑔 ∈ 𝑆) → (0g‘𝐺) ∈ 𝑔) |
| 15 | 14 | ralrimiva 3132 |
. . . 4
⊢ ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → ∀𝑔 ∈ 𝑆 (0g‘𝐺) ∈ 𝑔) |
| 16 | | fvex 6889 |
. . . . 5
⊢
(0g‘𝐺) ∈ V |
| 17 | 16 | elint2 4929 |
. . . 4
⊢
((0g‘𝐺) ∈ ∩ 𝑆 ↔ ∀𝑔 ∈ 𝑆 (0g‘𝐺) ∈ 𝑔) |
| 18 | 15, 17 | sylibr 234 |
. . 3
⊢ ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) →
(0g‘𝐺)
∈ ∩ 𝑆) |
| 19 | 18 | ne0d 4317 |
. 2
⊢ ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → ∩ 𝑆
≠ ∅) |
| 20 | 4 | adantlr 715 |
. . . . . . . . 9
⊢ ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) ∧ 𝑔 ∈ 𝑆) → 𝑔 ∈ (SubGrp‘𝐺)) |
| 21 | | simprl 770 |
. . . . . . . . . 10
⊢ (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) → 𝑥 ∈ ∩ 𝑆) |
| 22 | | elinti 4931 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ∩ 𝑆
→ (𝑔 ∈ 𝑆 → 𝑥 ∈ 𝑔)) |
| 23 | 22 | imp 406 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ∩ 𝑆
∧ 𝑔 ∈ 𝑆) → 𝑥 ∈ 𝑔) |
| 24 | 21, 23 | sylan 580 |
. . . . . . . . 9
⊢ ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) ∧ 𝑔 ∈ 𝑆) → 𝑥 ∈ 𝑔) |
| 25 | | simprr 772 |
. . . . . . . . . 10
⊢ (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) → 𝑦 ∈ ∩ 𝑆) |
| 26 | | elinti 4931 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ∩ 𝑆
→ (𝑔 ∈ 𝑆 → 𝑦 ∈ 𝑔)) |
| 27 | 26 | imp 406 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ∩ 𝑆
∧ 𝑔 ∈ 𝑆) → 𝑦 ∈ 𝑔) |
| 28 | 25, 27 | sylan 580 |
. . . . . . . . 9
⊢ ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) ∧ 𝑔 ∈ 𝑆) → 𝑦 ∈ 𝑔) |
| 29 | | eqid 2735 |
. . . . . . . . . 10
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 30 | 29 | subgcl 19119 |
. . . . . . . . 9
⊢ ((𝑔 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑔 ∧ 𝑦 ∈ 𝑔) → (𝑥(+g‘𝐺)𝑦) ∈ 𝑔) |
| 31 | 20, 24, 28, 30 | syl3anc 1373 |
. . . . . . . 8
⊢ ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) ∧ 𝑔 ∈ 𝑆) → (𝑥(+g‘𝐺)𝑦) ∈ 𝑔) |
| 32 | 31 | ralrimiva 3132 |
. . . . . . 7
⊢ (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) → ∀𝑔 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) ∈ 𝑔) |
| 33 | | ovex 7438 |
. . . . . . . 8
⊢ (𝑥(+g‘𝐺)𝑦) ∈ V |
| 34 | 33 | elint2 4929 |
. . . . . . 7
⊢ ((𝑥(+g‘𝐺)𝑦) ∈ ∩ 𝑆 ↔ ∀𝑔 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) ∈ 𝑔) |
| 35 | 32, 34 | sylibr 234 |
. . . . . 6
⊢ (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) → (𝑥(+g‘𝐺)𝑦) ∈ ∩ 𝑆) |
| 36 | 35 | anassrs 467 |
. . . . 5
⊢ ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 ∈ ∩ 𝑆) ∧ 𝑦 ∈ ∩ 𝑆) → (𝑥(+g‘𝐺)𝑦) ∈ ∩ 𝑆) |
| 37 | 36 | ralrimiva 3132 |
. . . 4
⊢ (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 ∈ ∩ 𝑆) → ∀𝑦 ∈ ∩ 𝑆(𝑥(+g‘𝐺)𝑦) ∈ ∩ 𝑆) |
| 38 | 4 | adantlr 715 |
. . . . . . 7
⊢ ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 ∈ ∩ 𝑆) ∧ 𝑔 ∈ 𝑆) → 𝑔 ∈ (SubGrp‘𝐺)) |
| 39 | 23 | adantll 714 |
. . . . . . 7
⊢ ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 ∈ ∩ 𝑆) ∧ 𝑔 ∈ 𝑆) → 𝑥 ∈ 𝑔) |
| 40 | | eqid 2735 |
. . . . . . . 8
⊢
(invg‘𝐺) = (invg‘𝐺) |
| 41 | 40 | subginvcl 19118 |
. . . . . . 7
⊢ ((𝑔 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑔) → ((invg‘𝐺)‘𝑥) ∈ 𝑔) |
| 42 | 38, 39, 41 | syl2anc 584 |
. . . . . 6
⊢ ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 ∈ ∩ 𝑆) ∧ 𝑔 ∈ 𝑆) → ((invg‘𝐺)‘𝑥) ∈ 𝑔) |
| 43 | 42 | ralrimiva 3132 |
. . . . 5
⊢ (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 ∈ ∩ 𝑆) → ∀𝑔 ∈ 𝑆 ((invg‘𝐺)‘𝑥) ∈ 𝑔) |
| 44 | | fvex 6889 |
. . . . . 6
⊢
((invg‘𝐺)‘𝑥) ∈ V |
| 45 | 44 | elint2 4929 |
. . . . 5
⊢
(((invg‘𝐺)‘𝑥) ∈ ∩ 𝑆 ↔ ∀𝑔 ∈ 𝑆 ((invg‘𝐺)‘𝑥) ∈ 𝑔) |
| 46 | 43, 45 | sylibr 234 |
. . . 4
⊢ (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 ∈ ∩ 𝑆) →
((invg‘𝐺)‘𝑥) ∈ ∩ 𝑆) |
| 47 | 37, 46 | jca 511 |
. . 3
⊢ (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 ∈ ∩ 𝑆) → (∀𝑦 ∈ ∩ 𝑆(𝑥(+g‘𝐺)𝑦) ∈ ∩ 𝑆 ∧
((invg‘𝐺)‘𝑥) ∈ ∩ 𝑆)) |
| 48 | 47 | ralrimiva 3132 |
. 2
⊢ ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → ∀𝑥 ∈ ∩ 𝑆(∀𝑦 ∈ ∩ 𝑆(𝑥(+g‘𝐺)𝑦) ∈ ∩ 𝑆 ∧
((invg‘𝐺)‘𝑥) ∈ ∩ 𝑆)) |
| 49 | | ssn0 4379 |
. . 3
⊢ ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → (SubGrp‘𝐺) ≠ ∅) |
| 50 | | n0 4328 |
. . . 4
⊢
((SubGrp‘𝐺)
≠ ∅ ↔ ∃𝑔 𝑔 ∈ (SubGrp‘𝐺)) |
| 51 | | subgrcl 19114 |
. . . . 5
⊢ (𝑔 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| 52 | 51 | exlimiv 1930 |
. . . 4
⊢
(∃𝑔 𝑔 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| 53 | 50, 52 | sylbi 217 |
. . 3
⊢
((SubGrp‘𝐺)
≠ ∅ → 𝐺
∈ Grp) |
| 54 | 5, 29, 40 | issubg2 19124 |
. . 3
⊢ (𝐺 ∈ Grp → (∩ 𝑆
∈ (SubGrp‘𝐺)
↔ (∩ 𝑆 ⊆ (Base‘𝐺) ∧ ∩ 𝑆 ≠ ∅ ∧
∀𝑥 ∈ ∩ 𝑆(∀𝑦 ∈ ∩ 𝑆(𝑥(+g‘𝐺)𝑦) ∈ ∩ 𝑆 ∧
((invg‘𝐺)‘𝑥) ∈ ∩ 𝑆)))) |
| 55 | 49, 53, 54 | 3syl 18 |
. 2
⊢ ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → (∩ 𝑆
∈ (SubGrp‘𝐺)
↔ (∩ 𝑆 ⊆ (Base‘𝐺) ∧ ∩ 𝑆 ≠ ∅ ∧
∀𝑥 ∈ ∩ 𝑆(∀𝑦 ∈ ∩ 𝑆(𝑥(+g‘𝐺)𝑦) ∈ ∩ 𝑆 ∧
((invg‘𝐺)‘𝑥) ∈ ∩ 𝑆)))) |
| 56 | 11, 19, 48, 55 | mpbir3and 1343 |
1
⊢ ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → ∩ 𝑆
∈ (SubGrp‘𝐺)) |