MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgint Structured version   Visualization version   GIF version

Theorem subgint 18943
Description: The intersection of a nonempty collection of subgroups is a subgroup. (Contributed by Mario Carneiro, 7-Dec-2014.)
Assertion
Ref Expression
subgint ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubGrp‘𝐺))

Proof of Theorem subgint
Dummy variables 𝑥 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 intssuni 4929 . . . 4 (𝑆 ≠ ∅ → 𝑆 𝑆)
21adantl 482 . . 3 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → 𝑆 𝑆)
3 ssel2 3937 . . . . . . 7 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑔𝑆) → 𝑔 ∈ (SubGrp‘𝐺))
43adantlr 713 . . . . . 6 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑔𝑆) → 𝑔 ∈ (SubGrp‘𝐺))
5 eqid 2736 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
65subgss 18920 . . . . . 6 (𝑔 ∈ (SubGrp‘𝐺) → 𝑔 ⊆ (Base‘𝐺))
74, 6syl 17 . . . . 5 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑔𝑆) → 𝑔 ⊆ (Base‘𝐺))
87ralrimiva 3141 . . . 4 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → ∀𝑔𝑆 𝑔 ⊆ (Base‘𝐺))
9 unissb 4898 . . . 4 ( 𝑆 ⊆ (Base‘𝐺) ↔ ∀𝑔𝑆 𝑔 ⊆ (Base‘𝐺))
108, 9sylibr 233 . . 3 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ (Base‘𝐺))
112, 10sstrd 3952 . 2 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ (Base‘𝐺))
12 eqid 2736 . . . . . . 7 (0g𝐺) = (0g𝐺)
1312subg0cl 18927 . . . . . 6 (𝑔 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑔)
144, 13syl 17 . . . . 5 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑔𝑆) → (0g𝐺) ∈ 𝑔)
1514ralrimiva 3141 . . . 4 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → ∀𝑔𝑆 (0g𝐺) ∈ 𝑔)
16 fvex 6852 . . . . 5 (0g𝐺) ∈ V
1716elint2 4912 . . . 4 ((0g𝐺) ∈ 𝑆 ↔ ∀𝑔𝑆 (0g𝐺) ∈ 𝑔)
1815, 17sylibr 233 . . 3 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → (0g𝐺) ∈ 𝑆)
1918ne0d 4293 . 2 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → 𝑆 ≠ ∅)
204adantlr 713 . . . . . . . . 9 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑔𝑆) → 𝑔 ∈ (SubGrp‘𝐺))
21 simprl 769 . . . . . . . . . 10 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑥 𝑆)
22 elinti 4914 . . . . . . . . . . 11 (𝑥 𝑆 → (𝑔𝑆𝑥𝑔))
2322imp 407 . . . . . . . . . 10 ((𝑥 𝑆𝑔𝑆) → 𝑥𝑔)
2421, 23sylan 580 . . . . . . . . 9 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑔𝑆) → 𝑥𝑔)
25 simprr 771 . . . . . . . . . 10 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑦 𝑆)
26 elinti 4914 . . . . . . . . . . 11 (𝑦 𝑆 → (𝑔𝑆𝑦𝑔))
2726imp 407 . . . . . . . . . 10 ((𝑦 𝑆𝑔𝑆) → 𝑦𝑔)
2825, 27sylan 580 . . . . . . . . 9 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑔𝑆) → 𝑦𝑔)
29 eqid 2736 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
3029subgcl 18929 . . . . . . . . 9 ((𝑔 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑔𝑦𝑔) → (𝑥(+g𝐺)𝑦) ∈ 𝑔)
3120, 24, 28, 30syl3anc 1371 . . . . . . . 8 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑔𝑆) → (𝑥(+g𝐺)𝑦) ∈ 𝑔)
3231ralrimiva 3141 . . . . . . 7 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → ∀𝑔𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑔)
33 ovex 7386 . . . . . . . 8 (𝑥(+g𝐺)𝑦) ∈ V
3433elint2 4912 . . . . . . 7 ((𝑥(+g𝐺)𝑦) ∈ 𝑆 ↔ ∀𝑔𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑔)
3532, 34sylibr 233 . . . . . 6 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
3635anassrs 468 . . . . 5 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 𝑆) ∧ 𝑦 𝑆) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
3736ralrimiva 3141 . . . 4 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 𝑆) → ∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆)
384adantlr 713 . . . . . . 7 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 𝑆) ∧ 𝑔𝑆) → 𝑔 ∈ (SubGrp‘𝐺))
3923adantll 712 . . . . . . 7 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 𝑆) ∧ 𝑔𝑆) → 𝑥𝑔)
40 eqid 2736 . . . . . . . 8 (invg𝐺) = (invg𝐺)
4140subginvcl 18928 . . . . . . 7 ((𝑔 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑔) → ((invg𝐺)‘𝑥) ∈ 𝑔)
4238, 39, 41syl2anc 584 . . . . . 6 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 𝑆) ∧ 𝑔𝑆) → ((invg𝐺)‘𝑥) ∈ 𝑔)
4342ralrimiva 3141 . . . . 5 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 𝑆) → ∀𝑔𝑆 ((invg𝐺)‘𝑥) ∈ 𝑔)
44 fvex 6852 . . . . . 6 ((invg𝐺)‘𝑥) ∈ V
4544elint2 4912 . . . . 5 (((invg𝐺)‘𝑥) ∈ 𝑆 ↔ ∀𝑔𝑆 ((invg𝐺)‘𝑥) ∈ 𝑔)
4643, 45sylibr 233 . . . 4 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 𝑆) → ((invg𝐺)‘𝑥) ∈ 𝑆)
4737, 46jca 512 . . 3 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 𝑆) → (∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ((invg𝐺)‘𝑥) ∈ 𝑆))
4847ralrimiva 3141 . 2 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → ∀𝑥 𝑆(∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ((invg𝐺)‘𝑥) ∈ 𝑆))
49 ssn0 4358 . . 3 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → (SubGrp‘𝐺) ≠ ∅)
50 n0 4304 . . . 4 ((SubGrp‘𝐺) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (SubGrp‘𝐺))
51 subgrcl 18924 . . . . 5 (𝑔 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
5251exlimiv 1933 . . . 4 (∃𝑔 𝑔 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
5350, 52sylbi 216 . . 3 ((SubGrp‘𝐺) ≠ ∅ → 𝐺 ∈ Grp)
545, 29, 40issubg2 18934 . . 3 (𝐺 ∈ Grp → ( 𝑆 ∈ (SubGrp‘𝐺) ↔ ( 𝑆 ⊆ (Base‘𝐺) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥 𝑆(∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ((invg𝐺)‘𝑥) ∈ 𝑆))))
5549, 53, 543syl 18 . 2 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → ( 𝑆 ∈ (SubGrp‘𝐺) ↔ ( 𝑆 ⊆ (Base‘𝐺) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥 𝑆(∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ((invg𝐺)‘𝑥) ∈ 𝑆))))
5611, 19, 48, 55mpbir3and 1342 1 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087  wex 1781  wcel 2106  wne 2941  wral 3062  wss 3908  c0 4280   cuni 4863   cint 4905  cfv 6493  (class class class)co 7353  Basecbs 17075  +gcplusg 17125  0gc0g 17313  Grpcgrp 18740  invgcminusg 18741  SubGrpcsubg 18913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7668  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-riota 7309  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7799  df-2nd 7918  df-frecs 8208  df-wrecs 8239  df-recs 8313  df-rdg 8352  df-er 8644  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11187  df-mnf 11188  df-xr 11189  df-ltxr 11190  df-le 11191  df-sub 11383  df-neg 11384  df-nn 12150  df-2 12212  df-sets 17028  df-slot 17046  df-ndx 17058  df-base 17076  df-ress 17105  df-plusg 17138  df-0g 17315  df-mgm 18489  df-sgrp 18538  df-mnd 18549  df-grp 18743  df-minusg 18744  df-subg 18916
This theorem is referenced by:  subrgint  20229  subdrgint  20255  primefld0cl  20258
  Copyright terms: Public domain W3C validator