MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgint Structured version   Visualization version   GIF version

Theorem subgint 19024
Description: The intersection of a nonempty collection of subgroups is a subgroup. (Contributed by Mario Carneiro, 7-Dec-2014.)
Assertion
Ref Expression
subgint ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubGrp‘𝐺))

Proof of Theorem subgint
Dummy variables 𝑥 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 intssuni 4973 . . . 4 (𝑆 ≠ ∅ → 𝑆 𝑆)
21adantl 482 . . 3 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → 𝑆 𝑆)
3 ssel2 3976 . . . . . . 7 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑔𝑆) → 𝑔 ∈ (SubGrp‘𝐺))
43adantlr 713 . . . . . 6 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑔𝑆) → 𝑔 ∈ (SubGrp‘𝐺))
5 eqid 2732 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
65subgss 19001 . . . . . 6 (𝑔 ∈ (SubGrp‘𝐺) → 𝑔 ⊆ (Base‘𝐺))
74, 6syl 17 . . . . 5 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑔𝑆) → 𝑔 ⊆ (Base‘𝐺))
87ralrimiva 3146 . . . 4 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → ∀𝑔𝑆 𝑔 ⊆ (Base‘𝐺))
9 unissb 4942 . . . 4 ( 𝑆 ⊆ (Base‘𝐺) ↔ ∀𝑔𝑆 𝑔 ⊆ (Base‘𝐺))
108, 9sylibr 233 . . 3 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ (Base‘𝐺))
112, 10sstrd 3991 . 2 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ (Base‘𝐺))
12 eqid 2732 . . . . . . 7 (0g𝐺) = (0g𝐺)
1312subg0cl 19008 . . . . . 6 (𝑔 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑔)
144, 13syl 17 . . . . 5 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑔𝑆) → (0g𝐺) ∈ 𝑔)
1514ralrimiva 3146 . . . 4 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → ∀𝑔𝑆 (0g𝐺) ∈ 𝑔)
16 fvex 6901 . . . . 5 (0g𝐺) ∈ V
1716elint2 4956 . . . 4 ((0g𝐺) ∈ 𝑆 ↔ ∀𝑔𝑆 (0g𝐺) ∈ 𝑔)
1815, 17sylibr 233 . . 3 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → (0g𝐺) ∈ 𝑆)
1918ne0d 4334 . 2 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → 𝑆 ≠ ∅)
204adantlr 713 . . . . . . . . 9 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑔𝑆) → 𝑔 ∈ (SubGrp‘𝐺))
21 simprl 769 . . . . . . . . . 10 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑥 𝑆)
22 elinti 4958 . . . . . . . . . . 11 (𝑥 𝑆 → (𝑔𝑆𝑥𝑔))
2322imp 407 . . . . . . . . . 10 ((𝑥 𝑆𝑔𝑆) → 𝑥𝑔)
2421, 23sylan 580 . . . . . . . . 9 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑔𝑆) → 𝑥𝑔)
25 simprr 771 . . . . . . . . . 10 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑦 𝑆)
26 elinti 4958 . . . . . . . . . . 11 (𝑦 𝑆 → (𝑔𝑆𝑦𝑔))
2726imp 407 . . . . . . . . . 10 ((𝑦 𝑆𝑔𝑆) → 𝑦𝑔)
2825, 27sylan 580 . . . . . . . . 9 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑔𝑆) → 𝑦𝑔)
29 eqid 2732 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
3029subgcl 19010 . . . . . . . . 9 ((𝑔 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑔𝑦𝑔) → (𝑥(+g𝐺)𝑦) ∈ 𝑔)
3120, 24, 28, 30syl3anc 1371 . . . . . . . 8 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑔𝑆) → (𝑥(+g𝐺)𝑦) ∈ 𝑔)
3231ralrimiva 3146 . . . . . . 7 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → ∀𝑔𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑔)
33 ovex 7438 . . . . . . . 8 (𝑥(+g𝐺)𝑦) ∈ V
3433elint2 4956 . . . . . . 7 ((𝑥(+g𝐺)𝑦) ∈ 𝑆 ↔ ∀𝑔𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑔)
3532, 34sylibr 233 . . . . . 6 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
3635anassrs 468 . . . . 5 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 𝑆) ∧ 𝑦 𝑆) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
3736ralrimiva 3146 . . . 4 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 𝑆) → ∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆)
384adantlr 713 . . . . . . 7 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 𝑆) ∧ 𝑔𝑆) → 𝑔 ∈ (SubGrp‘𝐺))
3923adantll 712 . . . . . . 7 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 𝑆) ∧ 𝑔𝑆) → 𝑥𝑔)
40 eqid 2732 . . . . . . . 8 (invg𝐺) = (invg𝐺)
4140subginvcl 19009 . . . . . . 7 ((𝑔 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑔) → ((invg𝐺)‘𝑥) ∈ 𝑔)
4238, 39, 41syl2anc 584 . . . . . 6 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 𝑆) ∧ 𝑔𝑆) → ((invg𝐺)‘𝑥) ∈ 𝑔)
4342ralrimiva 3146 . . . . 5 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 𝑆) → ∀𝑔𝑆 ((invg𝐺)‘𝑥) ∈ 𝑔)
44 fvex 6901 . . . . . 6 ((invg𝐺)‘𝑥) ∈ V
4544elint2 4956 . . . . 5 (((invg𝐺)‘𝑥) ∈ 𝑆 ↔ ∀𝑔𝑆 ((invg𝐺)‘𝑥) ∈ 𝑔)
4643, 45sylibr 233 . . . 4 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 𝑆) → ((invg𝐺)‘𝑥) ∈ 𝑆)
4737, 46jca 512 . . 3 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 𝑆) → (∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ((invg𝐺)‘𝑥) ∈ 𝑆))
4847ralrimiva 3146 . 2 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → ∀𝑥 𝑆(∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ((invg𝐺)‘𝑥) ∈ 𝑆))
49 ssn0 4399 . . 3 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → (SubGrp‘𝐺) ≠ ∅)
50 n0 4345 . . . 4 ((SubGrp‘𝐺) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (SubGrp‘𝐺))
51 subgrcl 19005 . . . . 5 (𝑔 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
5251exlimiv 1933 . . . 4 (∃𝑔 𝑔 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
5350, 52sylbi 216 . . 3 ((SubGrp‘𝐺) ≠ ∅ → 𝐺 ∈ Grp)
545, 29, 40issubg2 19015 . . 3 (𝐺 ∈ Grp → ( 𝑆 ∈ (SubGrp‘𝐺) ↔ ( 𝑆 ⊆ (Base‘𝐺) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥 𝑆(∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ((invg𝐺)‘𝑥) ∈ 𝑆))))
5549, 53, 543syl 18 . 2 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → ( 𝑆 ∈ (SubGrp‘𝐺) ↔ ( 𝑆 ⊆ (Base‘𝐺) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥 𝑆(∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ((invg𝐺)‘𝑥) ∈ 𝑆))))
5611, 19, 48, 55mpbir3and 1342 1 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087  wex 1781  wcel 2106  wne 2940  wral 3061  wss 3947  c0 4321   cuni 4907   cint 4949  cfv 6540  (class class class)co 7405  Basecbs 17140  +gcplusg 17193  0gc0g 17381  Grpcgrp 18815  invgcminusg 18816  SubGrpcsubg 18994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-subg 18997
This theorem is referenced by:  subrgint  20378  subdrgint  20411  primefld0cl  20414  subrngint  46723
  Copyright terms: Public domain W3C validator