HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shintcli Structured version   Visualization version   GIF version

Theorem shintcli 29116
Description: Closure of intersection of a nonempty subset of S. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
shintcl.1 (𝐴S𝐴 ≠ ∅)
Assertion
Ref Expression
shintcli 𝐴S

Proof of Theorem shintcli
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shintcl.1 . . . . 5 (𝐴S𝐴 ≠ ∅)
21simpri 489 . . . 4 𝐴 ≠ ∅
3 n0 4263 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
4 intss1 4856 . . . . . . 7 (𝑧𝐴 𝐴𝑧)
51simpli 487 . . . . . . . . 9 𝐴S
65sseli 3914 . . . . . . . 8 (𝑧𝐴𝑧S )
7 shss 28997 . . . . . . . 8 (𝑧S𝑧 ⊆ ℋ)
86, 7syl 17 . . . . . . 7 (𝑧𝐴𝑧 ⊆ ℋ)
94, 8sstrd 3928 . . . . . 6 (𝑧𝐴 𝐴 ⊆ ℋ)
109exlimiv 1931 . . . . 5 (∃𝑧 𝑧𝐴 𝐴 ⊆ ℋ)
113, 10sylbi 220 . . . 4 (𝐴 ≠ ∅ → 𝐴 ⊆ ℋ)
122, 11ax-mp 5 . . 3 𝐴 ⊆ ℋ
13 ax-hv0cl 28790 . . . . . 6 0 ∈ ℋ
1413elexi 3463 . . . . 5 0 ∈ V
1514elint2 4848 . . . 4 (0 𝐴 ↔ ∀𝑧𝐴 0𝑧)
16 sh0 29003 . . . . 5 (𝑧S → 0𝑧)
176, 16syl 17 . . . 4 (𝑧𝐴 → 0𝑧)
1815, 17mprgbir 3124 . . 3 0 𝐴
1912, 18pm3.2i 474 . 2 ( 𝐴 ⊆ ℋ ∧ 0 𝐴)
20 elinti 4850 . . . . . . . . 9 (𝑥 𝐴 → (𝑧𝐴𝑥𝑧))
2120com12 32 . . . . . . . 8 (𝑧𝐴 → (𝑥 𝐴𝑥𝑧))
22 elinti 4850 . . . . . . . . 9 (𝑦 𝐴 → (𝑧𝐴𝑦𝑧))
2322com12 32 . . . . . . . 8 (𝑧𝐴 → (𝑦 𝐴𝑦𝑧))
24 shaddcl 29004 . . . . . . . . . 10 ((𝑧S𝑥𝑧𝑦𝑧) → (𝑥 + 𝑦) ∈ 𝑧)
256, 24syl3an1 1160 . . . . . . . . 9 ((𝑧𝐴𝑥𝑧𝑦𝑧) → (𝑥 + 𝑦) ∈ 𝑧)
26253expib 1119 . . . . . . . 8 (𝑧𝐴 → ((𝑥𝑧𝑦𝑧) → (𝑥 + 𝑦) ∈ 𝑧))
2721, 23, 26syl2and 610 . . . . . . 7 (𝑧𝐴 → ((𝑥 𝐴𝑦 𝐴) → (𝑥 + 𝑦) ∈ 𝑧))
2827com12 32 . . . . . 6 ((𝑥 𝐴𝑦 𝐴) → (𝑧𝐴 → (𝑥 + 𝑦) ∈ 𝑧))
2928ralrimiv 3151 . . . . 5 ((𝑥 𝐴𝑦 𝐴) → ∀𝑧𝐴 (𝑥 + 𝑦) ∈ 𝑧)
30 ovex 7172 . . . . . 6 (𝑥 + 𝑦) ∈ V
3130elint2 4848 . . . . 5 ((𝑥 + 𝑦) ∈ 𝐴 ↔ ∀𝑧𝐴 (𝑥 + 𝑦) ∈ 𝑧)
3229, 31sylibr 237 . . . 4 ((𝑥 𝐴𝑦 𝐴) → (𝑥 + 𝑦) ∈ 𝐴)
3332rgen2 3171 . . 3 𝑥 𝐴𝑦 𝐴(𝑥 + 𝑦) ∈ 𝐴
34 shmulcl 29005 . . . . . . . . . 10 ((𝑧S𝑥 ∈ ℂ ∧ 𝑦𝑧) → (𝑥 · 𝑦) ∈ 𝑧)
356, 34syl3an1 1160 . . . . . . . . 9 ((𝑧𝐴𝑥 ∈ ℂ ∧ 𝑦𝑧) → (𝑥 · 𝑦) ∈ 𝑧)
36353expib 1119 . . . . . . . 8 (𝑧𝐴 → ((𝑥 ∈ ℂ ∧ 𝑦𝑧) → (𝑥 · 𝑦) ∈ 𝑧))
3723, 36sylan2d 607 . . . . . . 7 (𝑧𝐴 → ((𝑥 ∈ ℂ ∧ 𝑦 𝐴) → (𝑥 · 𝑦) ∈ 𝑧))
3837com12 32 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 𝐴) → (𝑧𝐴 → (𝑥 · 𝑦) ∈ 𝑧))
3938ralrimiv 3151 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 𝐴) → ∀𝑧𝐴 (𝑥 · 𝑦) ∈ 𝑧)
40 ovex 7172 . . . . . 6 (𝑥 · 𝑦) ∈ V
4140elint2 4848 . . . . 5 ((𝑥 · 𝑦) ∈ 𝐴 ↔ ∀𝑧𝐴 (𝑥 · 𝑦) ∈ 𝑧)
4239, 41sylibr 237 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 𝐴) → (𝑥 · 𝑦) ∈ 𝐴)
4342rgen2 3171 . . 3 𝑥 ∈ ℂ ∀𝑦 𝐴(𝑥 · 𝑦) ∈ 𝐴
4433, 43pm3.2i 474 . 2 (∀𝑥 𝐴𝑦 𝐴(𝑥 + 𝑦) ∈ 𝐴 ∧ ∀𝑥 ∈ ℂ ∀𝑦 𝐴(𝑥 · 𝑦) ∈ 𝐴)
45 issh2 28996 . 2 ( 𝐴S ↔ (( 𝐴 ⊆ ℋ ∧ 0 𝐴) ∧ (∀𝑥 𝐴𝑦 𝐴(𝑥 + 𝑦) ∈ 𝐴 ∧ ∀𝑥 ∈ ℂ ∀𝑦 𝐴(𝑥 · 𝑦) ∈ 𝐴)))
4619, 44, 45mpbir2an 710 1 𝐴S
Colors of variables: wff setvar class
Syntax hints:  wa 399  wex 1781  wcel 2112  wne 2990  wral 3109  wss 3884  c0 4246   cint 4841  (class class class)co 7139  cc 10528  chba 28706   + cva 28707   · csm 28708  0c0v 28711   S csh 28715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298  ax-hilex 28786  ax-hfvadd 28787  ax-hv0cl 28790  ax-hfvmul 28792
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-fv 6336  df-ov 7142  df-sh 28994
This theorem is referenced by:  shintcl  29117  chintcli  29118  shincli  29149
  Copyright terms: Public domain W3C validator