HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shintcli Structured version   Visualization version   GIF version

Theorem shintcli 29100
Description: Closure of intersection of a nonempty subset of S. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
shintcl.1 (𝐴S𝐴 ≠ ∅)
Assertion
Ref Expression
shintcli 𝐴S

Proof of Theorem shintcli
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shintcl.1 . . . . 5 (𝐴S𝐴 ≠ ∅)
21simpri 488 . . . 4 𝐴 ≠ ∅
3 n0 4309 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
4 intss1 4883 . . . . . . 7 (𝑧𝐴 𝐴𝑧)
51simpli 486 . . . . . . . . 9 𝐴S
65sseli 3962 . . . . . . . 8 (𝑧𝐴𝑧S )
7 shss 28981 . . . . . . . 8 (𝑧S𝑧 ⊆ ℋ)
86, 7syl 17 . . . . . . 7 (𝑧𝐴𝑧 ⊆ ℋ)
94, 8sstrd 3976 . . . . . 6 (𝑧𝐴 𝐴 ⊆ ℋ)
109exlimiv 1927 . . . . 5 (∃𝑧 𝑧𝐴 𝐴 ⊆ ℋ)
113, 10sylbi 219 . . . 4 (𝐴 ≠ ∅ → 𝐴 ⊆ ℋ)
122, 11ax-mp 5 . . 3 𝐴 ⊆ ℋ
13 ax-hv0cl 28774 . . . . . 6 0 ∈ ℋ
1413elexi 3513 . . . . 5 0 ∈ V
1514elint2 4875 . . . 4 (0 𝐴 ↔ ∀𝑧𝐴 0𝑧)
16 sh0 28987 . . . . 5 (𝑧S → 0𝑧)
176, 16syl 17 . . . 4 (𝑧𝐴 → 0𝑧)
1815, 17mprgbir 3153 . . 3 0 𝐴
1912, 18pm3.2i 473 . 2 ( 𝐴 ⊆ ℋ ∧ 0 𝐴)
20 elinti 4877 . . . . . . . . 9 (𝑥 𝐴 → (𝑧𝐴𝑥𝑧))
2120com12 32 . . . . . . . 8 (𝑧𝐴 → (𝑥 𝐴𝑥𝑧))
22 elinti 4877 . . . . . . . . 9 (𝑦 𝐴 → (𝑧𝐴𝑦𝑧))
2322com12 32 . . . . . . . 8 (𝑧𝐴 → (𝑦 𝐴𝑦𝑧))
24 shaddcl 28988 . . . . . . . . . 10 ((𝑧S𝑥𝑧𝑦𝑧) → (𝑥 + 𝑦) ∈ 𝑧)
256, 24syl3an1 1159 . . . . . . . . 9 ((𝑧𝐴𝑥𝑧𝑦𝑧) → (𝑥 + 𝑦) ∈ 𝑧)
26253expib 1118 . . . . . . . 8 (𝑧𝐴 → ((𝑥𝑧𝑦𝑧) → (𝑥 + 𝑦) ∈ 𝑧))
2721, 23, 26syl2and 609 . . . . . . 7 (𝑧𝐴 → ((𝑥 𝐴𝑦 𝐴) → (𝑥 + 𝑦) ∈ 𝑧))
2827com12 32 . . . . . 6 ((𝑥 𝐴𝑦 𝐴) → (𝑧𝐴 → (𝑥 + 𝑦) ∈ 𝑧))
2928ralrimiv 3181 . . . . 5 ((𝑥 𝐴𝑦 𝐴) → ∀𝑧𝐴 (𝑥 + 𝑦) ∈ 𝑧)
30 ovex 7183 . . . . . 6 (𝑥 + 𝑦) ∈ V
3130elint2 4875 . . . . 5 ((𝑥 + 𝑦) ∈ 𝐴 ↔ ∀𝑧𝐴 (𝑥 + 𝑦) ∈ 𝑧)
3229, 31sylibr 236 . . . 4 ((𝑥 𝐴𝑦 𝐴) → (𝑥 + 𝑦) ∈ 𝐴)
3332rgen2 3203 . . 3 𝑥 𝐴𝑦 𝐴(𝑥 + 𝑦) ∈ 𝐴
34 shmulcl 28989 . . . . . . . . . 10 ((𝑧S𝑥 ∈ ℂ ∧ 𝑦𝑧) → (𝑥 · 𝑦) ∈ 𝑧)
356, 34syl3an1 1159 . . . . . . . . 9 ((𝑧𝐴𝑥 ∈ ℂ ∧ 𝑦𝑧) → (𝑥 · 𝑦) ∈ 𝑧)
36353expib 1118 . . . . . . . 8 (𝑧𝐴 → ((𝑥 ∈ ℂ ∧ 𝑦𝑧) → (𝑥 · 𝑦) ∈ 𝑧))
3723, 36sylan2d 606 . . . . . . 7 (𝑧𝐴 → ((𝑥 ∈ ℂ ∧ 𝑦 𝐴) → (𝑥 · 𝑦) ∈ 𝑧))
3837com12 32 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 𝐴) → (𝑧𝐴 → (𝑥 · 𝑦) ∈ 𝑧))
3938ralrimiv 3181 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 𝐴) → ∀𝑧𝐴 (𝑥 · 𝑦) ∈ 𝑧)
40 ovex 7183 . . . . . 6 (𝑥 · 𝑦) ∈ V
4140elint2 4875 . . . . 5 ((𝑥 · 𝑦) ∈ 𝐴 ↔ ∀𝑧𝐴 (𝑥 · 𝑦) ∈ 𝑧)
4239, 41sylibr 236 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 𝐴) → (𝑥 · 𝑦) ∈ 𝐴)
4342rgen2 3203 . . 3 𝑥 ∈ ℂ ∀𝑦 𝐴(𝑥 · 𝑦) ∈ 𝐴
4433, 43pm3.2i 473 . 2 (∀𝑥 𝐴𝑦 𝐴(𝑥 + 𝑦) ∈ 𝐴 ∧ ∀𝑥 ∈ ℂ ∀𝑦 𝐴(𝑥 · 𝑦) ∈ 𝐴)
45 issh2 28980 . 2 ( 𝐴S ↔ (( 𝐴 ⊆ ℋ ∧ 0 𝐴) ∧ (∀𝑥 𝐴𝑦 𝐴(𝑥 + 𝑦) ∈ 𝐴 ∧ ∀𝑥 ∈ ℂ ∀𝑦 𝐴(𝑥 · 𝑦) ∈ 𝐴)))
4619, 44, 45mpbir2an 709 1 𝐴S
Colors of variables: wff setvar class
Syntax hints:  wa 398  wex 1776  wcel 2110  wne 3016  wral 3138  wss 3935  c0 4290   cint 4868  (class class class)co 7150  cc 10529  chba 28690   + cva 28691   · csm 28692  0c0v 28695   S csh 28699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321  ax-hilex 28770  ax-hfvadd 28771  ax-hv0cl 28774  ax-hfvmul 28776
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-fv 6357  df-ov 7153  df-sh 28978
This theorem is referenced by:  shintcl  29101  chintcli  29102  shincli  29133
  Copyright terms: Public domain W3C validator