![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subrngint | Structured version Visualization version GIF version |
Description: The intersection of a nonempty collection of subrings is a subring. (Contributed by AV, 15-Feb-2025.) |
Ref | Expression |
---|---|
subrngint | ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubRng‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrngsubg 20488 | . . . . 5 ⊢ (𝑟 ∈ (SubRng‘𝑅) → 𝑟 ∈ (SubGrp‘𝑅)) | |
2 | 1 | ssriv 3984 | . . . 4 ⊢ (SubRng‘𝑅) ⊆ (SubGrp‘𝑅) |
3 | sstr 3988 | . . . 4 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ (SubRng‘𝑅) ⊆ (SubGrp‘𝑅)) → 𝑆 ⊆ (SubGrp‘𝑅)) | |
4 | 2, 3 | mpan2 690 | . . 3 ⊢ (𝑆 ⊆ (SubRng‘𝑅) → 𝑆 ⊆ (SubGrp‘𝑅)) |
5 | subgint 19104 | . . 3 ⊢ ((𝑆 ⊆ (SubGrp‘𝑅) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubGrp‘𝑅)) | |
6 | 4, 5 | sylan 579 | . 2 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubGrp‘𝑅)) |
7 | ssel2 3975 | . . . . . . 7 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑟 ∈ 𝑆) → 𝑟 ∈ (SubRng‘𝑅)) | |
8 | 7 | ad4ant14 751 | . . . . . 6 ⊢ ((((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) ∧ 𝑟 ∈ 𝑆) → 𝑟 ∈ (SubRng‘𝑅)) |
9 | simprl 770 | . . . . . . 7 ⊢ (((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) → 𝑥 ∈ ∩ 𝑆) | |
10 | elinti 4958 | . . . . . . . 8 ⊢ (𝑥 ∈ ∩ 𝑆 → (𝑟 ∈ 𝑆 → 𝑥 ∈ 𝑟)) | |
11 | 10 | imp 406 | . . . . . . 7 ⊢ ((𝑥 ∈ ∩ 𝑆 ∧ 𝑟 ∈ 𝑆) → 𝑥 ∈ 𝑟) |
12 | 9, 11 | sylan 579 | . . . . . 6 ⊢ ((((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) ∧ 𝑟 ∈ 𝑆) → 𝑥 ∈ 𝑟) |
13 | simprr 772 | . . . . . . 7 ⊢ (((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) → 𝑦 ∈ ∩ 𝑆) | |
14 | elinti 4958 | . . . . . . . 8 ⊢ (𝑦 ∈ ∩ 𝑆 → (𝑟 ∈ 𝑆 → 𝑦 ∈ 𝑟)) | |
15 | 14 | imp 406 | . . . . . . 7 ⊢ ((𝑦 ∈ ∩ 𝑆 ∧ 𝑟 ∈ 𝑆) → 𝑦 ∈ 𝑟) |
16 | 13, 15 | sylan 579 | . . . . . 6 ⊢ ((((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) ∧ 𝑟 ∈ 𝑆) → 𝑦 ∈ 𝑟) |
17 | eqid 2728 | . . . . . . 7 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
18 | 17 | subrngmcl 20493 | . . . . . 6 ⊢ ((𝑟 ∈ (SubRng‘𝑅) ∧ 𝑥 ∈ 𝑟 ∧ 𝑦 ∈ 𝑟) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑟) |
19 | 8, 12, 16, 18 | syl3anc 1369 | . . . . 5 ⊢ ((((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) ∧ 𝑟 ∈ 𝑆) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑟) |
20 | 19 | ralrimiva 3143 | . . . 4 ⊢ (((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) → ∀𝑟 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑟) |
21 | ovex 7453 | . . . . 5 ⊢ (𝑥(.r‘𝑅)𝑦) ∈ V | |
22 | 21 | elint2 4956 | . . . 4 ⊢ ((𝑥(.r‘𝑅)𝑦) ∈ ∩ 𝑆 ↔ ∀𝑟 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑟) |
23 | 20, 22 | sylibr 233 | . . 3 ⊢ (((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) → (𝑥(.r‘𝑅)𝑦) ∈ ∩ 𝑆) |
24 | 23 | ralrimivva 3197 | . 2 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → ∀𝑥 ∈ ∩ 𝑆∀𝑦 ∈ ∩ 𝑆(𝑥(.r‘𝑅)𝑦) ∈ ∩ 𝑆) |
25 | ssn0 4401 | . . 3 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → (SubRng‘𝑅) ≠ ∅) | |
26 | n0 4347 | . . . 4 ⊢ ((SubRng‘𝑅) ≠ ∅ ↔ ∃𝑟 𝑟 ∈ (SubRng‘𝑅)) | |
27 | subrngrcl 20487 | . . . . 5 ⊢ (𝑟 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng) | |
28 | 27 | exlimiv 1926 | . . . 4 ⊢ (∃𝑟 𝑟 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng) |
29 | 26, 28 | sylbi 216 | . . 3 ⊢ ((SubRng‘𝑅) ≠ ∅ → 𝑅 ∈ Rng) |
30 | eqid 2728 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
31 | 30, 17 | issubrng2 20494 | . . 3 ⊢ (𝑅 ∈ Rng → (∩ 𝑆 ∈ (SubRng‘𝑅) ↔ (∩ 𝑆 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ ∩ 𝑆∀𝑦 ∈ ∩ 𝑆(𝑥(.r‘𝑅)𝑦) ∈ ∩ 𝑆))) |
32 | 25, 29, 31 | 3syl 18 | . 2 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → (∩ 𝑆 ∈ (SubRng‘𝑅) ↔ (∩ 𝑆 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ ∩ 𝑆∀𝑦 ∈ ∩ 𝑆(𝑥(.r‘𝑅)𝑦) ∈ ∩ 𝑆))) |
33 | 6, 24, 32 | mpbir2and 712 | 1 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubRng‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∃wex 1774 ∈ wcel 2099 ≠ wne 2937 ∀wral 3058 ⊆ wss 3947 ∅c0 4323 ∩ cint 4949 ‘cfv 6548 (class class class)co 7420 Basecbs 17179 .rcmulr 17233 SubGrpcsubg 19074 Rngcrng 20091 SubRngcsubrng 20481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-0g 17422 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-grp 18892 df-minusg 18893 df-subg 19077 df-cmn 19736 df-abl 19737 df-mgp 20074 df-rng 20092 df-subrng 20482 |
This theorem is referenced by: subrngin 20497 subrngmre 20498 |
Copyright terms: Public domain | W3C validator |