![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > subrngint | Structured version Visualization version GIF version |
Description: The intersection of a nonempty collection of subrings is a subring. (Contributed by AV, 15-Feb-2025.) |
Ref | Expression |
---|---|
subrngint | ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubRng‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrngsubg 46721 | . . . . 5 ⊢ (𝑟 ∈ (SubRng‘𝑅) → 𝑟 ∈ (SubGrp‘𝑅)) | |
2 | 1 | ssriv 3986 | . . . 4 ⊢ (SubRng‘𝑅) ⊆ (SubGrp‘𝑅) |
3 | sstr 3990 | . . . 4 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ (SubRng‘𝑅) ⊆ (SubGrp‘𝑅)) → 𝑆 ⊆ (SubGrp‘𝑅)) | |
4 | 2, 3 | mpan2 689 | . . 3 ⊢ (𝑆 ⊆ (SubRng‘𝑅) → 𝑆 ⊆ (SubGrp‘𝑅)) |
5 | subgint 19029 | . . 3 ⊢ ((𝑆 ⊆ (SubGrp‘𝑅) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubGrp‘𝑅)) | |
6 | 4, 5 | sylan 580 | . 2 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubGrp‘𝑅)) |
7 | ssel2 3977 | . . . . . . 7 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑟 ∈ 𝑆) → 𝑟 ∈ (SubRng‘𝑅)) | |
8 | 7 | ad4ant14 750 | . . . . . 6 ⊢ ((((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) ∧ 𝑟 ∈ 𝑆) → 𝑟 ∈ (SubRng‘𝑅)) |
9 | simprl 769 | . . . . . . 7 ⊢ (((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) → 𝑥 ∈ ∩ 𝑆) | |
10 | elinti 4959 | . . . . . . . 8 ⊢ (𝑥 ∈ ∩ 𝑆 → (𝑟 ∈ 𝑆 → 𝑥 ∈ 𝑟)) | |
11 | 10 | imp 407 | . . . . . . 7 ⊢ ((𝑥 ∈ ∩ 𝑆 ∧ 𝑟 ∈ 𝑆) → 𝑥 ∈ 𝑟) |
12 | 9, 11 | sylan 580 | . . . . . 6 ⊢ ((((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) ∧ 𝑟 ∈ 𝑆) → 𝑥 ∈ 𝑟) |
13 | simprr 771 | . . . . . . 7 ⊢ (((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) → 𝑦 ∈ ∩ 𝑆) | |
14 | elinti 4959 | . . . . . . . 8 ⊢ (𝑦 ∈ ∩ 𝑆 → (𝑟 ∈ 𝑆 → 𝑦 ∈ 𝑟)) | |
15 | 14 | imp 407 | . . . . . . 7 ⊢ ((𝑦 ∈ ∩ 𝑆 ∧ 𝑟 ∈ 𝑆) → 𝑦 ∈ 𝑟) |
16 | 13, 15 | sylan 580 | . . . . . 6 ⊢ ((((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) ∧ 𝑟 ∈ 𝑆) → 𝑦 ∈ 𝑟) |
17 | eqid 2732 | . . . . . . 7 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
18 | 17 | subrngmcl 46726 | . . . . . 6 ⊢ ((𝑟 ∈ (SubRng‘𝑅) ∧ 𝑥 ∈ 𝑟 ∧ 𝑦 ∈ 𝑟) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑟) |
19 | 8, 12, 16, 18 | syl3anc 1371 | . . . . 5 ⊢ ((((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) ∧ 𝑟 ∈ 𝑆) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑟) |
20 | 19 | ralrimiva 3146 | . . . 4 ⊢ (((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) → ∀𝑟 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑟) |
21 | ovex 7441 | . . . . 5 ⊢ (𝑥(.r‘𝑅)𝑦) ∈ V | |
22 | 21 | elint2 4957 | . . . 4 ⊢ ((𝑥(.r‘𝑅)𝑦) ∈ ∩ 𝑆 ↔ ∀𝑟 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑟) |
23 | 20, 22 | sylibr 233 | . . 3 ⊢ (((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) → (𝑥(.r‘𝑅)𝑦) ∈ ∩ 𝑆) |
24 | 23 | ralrimivva 3200 | . 2 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → ∀𝑥 ∈ ∩ 𝑆∀𝑦 ∈ ∩ 𝑆(𝑥(.r‘𝑅)𝑦) ∈ ∩ 𝑆) |
25 | ssn0 4400 | . . 3 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → (SubRng‘𝑅) ≠ ∅) | |
26 | n0 4346 | . . . 4 ⊢ ((SubRng‘𝑅) ≠ ∅ ↔ ∃𝑟 𝑟 ∈ (SubRng‘𝑅)) | |
27 | subrngrcl 46720 | . . . . 5 ⊢ (𝑟 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng) | |
28 | 27 | exlimiv 1933 | . . . 4 ⊢ (∃𝑟 𝑟 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng) |
29 | 26, 28 | sylbi 216 | . . 3 ⊢ ((SubRng‘𝑅) ≠ ∅ → 𝑅 ∈ Rng) |
30 | eqid 2732 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
31 | 30, 17 | issubrng2 46727 | . . 3 ⊢ (𝑅 ∈ Rng → (∩ 𝑆 ∈ (SubRng‘𝑅) ↔ (∩ 𝑆 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ ∩ 𝑆∀𝑦 ∈ ∩ 𝑆(𝑥(.r‘𝑅)𝑦) ∈ ∩ 𝑆))) |
32 | 25, 29, 31 | 3syl 18 | . 2 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → (∩ 𝑆 ∈ (SubRng‘𝑅) ↔ (∩ 𝑆 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ ∩ 𝑆∀𝑦 ∈ ∩ 𝑆(𝑥(.r‘𝑅)𝑦) ∈ ∩ 𝑆))) |
33 | 6, 24, 32 | mpbir2and 711 | 1 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubRng‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∃wex 1781 ∈ wcel 2106 ≠ wne 2940 ∀wral 3061 ⊆ wss 3948 ∅c0 4322 ∩ cint 4950 ‘cfv 6543 (class class class)co 7408 Basecbs 17143 .rcmulr 17197 SubGrpcsubg 18999 Rngcrng 46638 SubRngcsubrng 46714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-0g 17386 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 df-minusg 18822 df-subg 19002 df-cmn 19649 df-abl 19650 df-mgp 19987 df-rng 46639 df-subrng 46715 |
This theorem is referenced by: subrngin 46730 subrngmre 46731 |
Copyright terms: Public domain | W3C validator |