Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subrngint Structured version   Visualization version   GIF version

Theorem subrngint 46729
Description: The intersection of a nonempty collection of subrings is a subring. (Contributed by AV, 15-Feb-2025.)
Assertion
Ref Expression
subrngint ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubRng‘𝑅))

Proof of Theorem subrngint
Dummy variables 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngsubg 46721 . . . . 5 (𝑟 ∈ (SubRng‘𝑅) → 𝑟 ∈ (SubGrp‘𝑅))
21ssriv 3986 . . . 4 (SubRng‘𝑅) ⊆ (SubGrp‘𝑅)
3 sstr 3990 . . . 4 ((𝑆 ⊆ (SubRng‘𝑅) ∧ (SubRng‘𝑅) ⊆ (SubGrp‘𝑅)) → 𝑆 ⊆ (SubGrp‘𝑅))
42, 3mpan2 689 . . 3 (𝑆 ⊆ (SubRng‘𝑅) → 𝑆 ⊆ (SubGrp‘𝑅))
5 subgint 19029 . . 3 ((𝑆 ⊆ (SubGrp‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubGrp‘𝑅))
64, 5sylan 580 . 2 ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubGrp‘𝑅))
7 ssel2 3977 . . . . . . 7 ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRng‘𝑅))
87ad4ant14 750 . . . . . 6 ((((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRng‘𝑅))
9 simprl 769 . . . . . . 7 (((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑥 𝑆)
10 elinti 4959 . . . . . . . 8 (𝑥 𝑆 → (𝑟𝑆𝑥𝑟))
1110imp 407 . . . . . . 7 ((𝑥 𝑆𝑟𝑆) → 𝑥𝑟)
129, 11sylan 580 . . . . . 6 ((((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑥𝑟)
13 simprr 771 . . . . . . 7 (((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑦 𝑆)
14 elinti 4959 . . . . . . . 8 (𝑦 𝑆 → (𝑟𝑆𝑦𝑟))
1514imp 407 . . . . . . 7 ((𝑦 𝑆𝑟𝑆) → 𝑦𝑟)
1613, 15sylan 580 . . . . . 6 ((((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑦𝑟)
17 eqid 2732 . . . . . . 7 (.r𝑅) = (.r𝑅)
1817subrngmcl 46726 . . . . . 6 ((𝑟 ∈ (SubRng‘𝑅) ∧ 𝑥𝑟𝑦𝑟) → (𝑥(.r𝑅)𝑦) ∈ 𝑟)
198, 12, 16, 18syl3anc 1371 . . . . 5 ((((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → (𝑥(.r𝑅)𝑦) ∈ 𝑟)
2019ralrimiva 3146 . . . 4 (((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟)
21 ovex 7441 . . . . 5 (𝑥(.r𝑅)𝑦) ∈ V
2221elint2 4957 . . . 4 ((𝑥(.r𝑅)𝑦) ∈ 𝑆 ↔ ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟)
2320, 22sylibr 233 . . 3 (((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → (𝑥(.r𝑅)𝑦) ∈ 𝑆)
2423ralrimivva 3200 . 2 ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)
25 ssn0 4400 . . 3 ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → (SubRng‘𝑅) ≠ ∅)
26 n0 4346 . . . 4 ((SubRng‘𝑅) ≠ ∅ ↔ ∃𝑟 𝑟 ∈ (SubRng‘𝑅))
27 subrngrcl 46720 . . . . 5 (𝑟 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)
2827exlimiv 1933 . . . 4 (∃𝑟 𝑟 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)
2926, 28sylbi 216 . . 3 ((SubRng‘𝑅) ≠ ∅ → 𝑅 ∈ Rng)
30 eqid 2732 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3130, 17issubrng2 46727 . . 3 (𝑅 ∈ Rng → ( 𝑆 ∈ (SubRng‘𝑅) ↔ ( 𝑆 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)))
3225, 29, 313syl 18 . 2 ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → ( 𝑆 ∈ (SubRng‘𝑅) ↔ ( 𝑆 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)))
336, 24, 32mpbir2and 711 1 ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubRng‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wex 1781  wcel 2106  wne 2940  wral 3061  wss 3948  c0 4322   cint 4950  cfv 6543  (class class class)co 7408  Basecbs 17143  .rcmulr 17197  SubGrpcsubg 18999  Rngcrng 46638  SubRngcsubrng 46714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-0g 17386  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-grp 18821  df-minusg 18822  df-subg 19002  df-cmn 19649  df-abl 19650  df-mgp 19987  df-rng 46639  df-subrng 46715
This theorem is referenced by:  subrngin  46730  subrngmre  46731
  Copyright terms: Public domain W3C validator