![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subrngint | Structured version Visualization version GIF version |
Description: The intersection of a nonempty collection of subrings is a subring. (Contributed by AV, 15-Feb-2025.) |
Ref | Expression |
---|---|
subrngint | ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubRng‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrngsubg 20578 | . . . . 5 ⊢ (𝑟 ∈ (SubRng‘𝑅) → 𝑟 ∈ (SubGrp‘𝑅)) | |
2 | 1 | ssriv 4012 | . . . 4 ⊢ (SubRng‘𝑅) ⊆ (SubGrp‘𝑅) |
3 | sstr 4017 | . . . 4 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ (SubRng‘𝑅) ⊆ (SubGrp‘𝑅)) → 𝑆 ⊆ (SubGrp‘𝑅)) | |
4 | 2, 3 | mpan2 690 | . . 3 ⊢ (𝑆 ⊆ (SubRng‘𝑅) → 𝑆 ⊆ (SubGrp‘𝑅)) |
5 | subgint 19190 | . . 3 ⊢ ((𝑆 ⊆ (SubGrp‘𝑅) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubGrp‘𝑅)) | |
6 | 4, 5 | sylan 579 | . 2 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubGrp‘𝑅)) |
7 | ssel2 4003 | . . . . . . 7 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑟 ∈ 𝑆) → 𝑟 ∈ (SubRng‘𝑅)) | |
8 | 7 | ad4ant14 751 | . . . . . 6 ⊢ ((((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) ∧ 𝑟 ∈ 𝑆) → 𝑟 ∈ (SubRng‘𝑅)) |
9 | simprl 770 | . . . . . . 7 ⊢ (((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) → 𝑥 ∈ ∩ 𝑆) | |
10 | elinti 4979 | . . . . . . . 8 ⊢ (𝑥 ∈ ∩ 𝑆 → (𝑟 ∈ 𝑆 → 𝑥 ∈ 𝑟)) | |
11 | 10 | imp 406 | . . . . . . 7 ⊢ ((𝑥 ∈ ∩ 𝑆 ∧ 𝑟 ∈ 𝑆) → 𝑥 ∈ 𝑟) |
12 | 9, 11 | sylan 579 | . . . . . 6 ⊢ ((((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) ∧ 𝑟 ∈ 𝑆) → 𝑥 ∈ 𝑟) |
13 | simprr 772 | . . . . . . 7 ⊢ (((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) → 𝑦 ∈ ∩ 𝑆) | |
14 | elinti 4979 | . . . . . . . 8 ⊢ (𝑦 ∈ ∩ 𝑆 → (𝑟 ∈ 𝑆 → 𝑦 ∈ 𝑟)) | |
15 | 14 | imp 406 | . . . . . . 7 ⊢ ((𝑦 ∈ ∩ 𝑆 ∧ 𝑟 ∈ 𝑆) → 𝑦 ∈ 𝑟) |
16 | 13, 15 | sylan 579 | . . . . . 6 ⊢ ((((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) ∧ 𝑟 ∈ 𝑆) → 𝑦 ∈ 𝑟) |
17 | eqid 2740 | . . . . . . 7 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
18 | 17 | subrngmcl 20583 | . . . . . 6 ⊢ ((𝑟 ∈ (SubRng‘𝑅) ∧ 𝑥 ∈ 𝑟 ∧ 𝑦 ∈ 𝑟) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑟) |
19 | 8, 12, 16, 18 | syl3anc 1371 | . . . . 5 ⊢ ((((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) ∧ 𝑟 ∈ 𝑆) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑟) |
20 | 19 | ralrimiva 3152 | . . . 4 ⊢ (((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) → ∀𝑟 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑟) |
21 | ovex 7481 | . . . . 5 ⊢ (𝑥(.r‘𝑅)𝑦) ∈ V | |
22 | 21 | elint2 4977 | . . . 4 ⊢ ((𝑥(.r‘𝑅)𝑦) ∈ ∩ 𝑆 ↔ ∀𝑟 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑟) |
23 | 20, 22 | sylibr 234 | . . 3 ⊢ (((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) → (𝑥(.r‘𝑅)𝑦) ∈ ∩ 𝑆) |
24 | 23 | ralrimivva 3208 | . 2 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → ∀𝑥 ∈ ∩ 𝑆∀𝑦 ∈ ∩ 𝑆(𝑥(.r‘𝑅)𝑦) ∈ ∩ 𝑆) |
25 | ssn0 4427 | . . 3 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → (SubRng‘𝑅) ≠ ∅) | |
26 | n0 4376 | . . . 4 ⊢ ((SubRng‘𝑅) ≠ ∅ ↔ ∃𝑟 𝑟 ∈ (SubRng‘𝑅)) | |
27 | subrngrcl 20577 | . . . . 5 ⊢ (𝑟 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng) | |
28 | 27 | exlimiv 1929 | . . . 4 ⊢ (∃𝑟 𝑟 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng) |
29 | 26, 28 | sylbi 217 | . . 3 ⊢ ((SubRng‘𝑅) ≠ ∅ → 𝑅 ∈ Rng) |
30 | eqid 2740 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
31 | 30, 17 | issubrng2 20584 | . . 3 ⊢ (𝑅 ∈ Rng → (∩ 𝑆 ∈ (SubRng‘𝑅) ↔ (∩ 𝑆 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ ∩ 𝑆∀𝑦 ∈ ∩ 𝑆(𝑥(.r‘𝑅)𝑦) ∈ ∩ 𝑆))) |
32 | 25, 29, 31 | 3syl 18 | . 2 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → (∩ 𝑆 ∈ (SubRng‘𝑅) ↔ (∩ 𝑆 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ ∩ 𝑆∀𝑦 ∈ ∩ 𝑆(𝑥(.r‘𝑅)𝑦) ∈ ∩ 𝑆))) |
33 | 6, 24, 32 | mpbir2and 712 | 1 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubRng‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ⊆ wss 3976 ∅c0 4352 ∩ cint 4970 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 .rcmulr 17312 SubGrpcsubg 19160 Rngcrng 20179 SubRngcsubrng 20571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-subg 19163 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-subrng 20572 |
This theorem is referenced by: subrngin 20587 subrngmre 20588 |
Copyright terms: Public domain | W3C validator |