![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subrngint | Structured version Visualization version GIF version |
Description: The intersection of a nonempty collection of subrings is a subring. (Contributed by AV, 15-Feb-2025.) |
Ref | Expression |
---|---|
subrngint | ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubRng‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrngsubg 20452 | . . . . 5 ⊢ (𝑟 ∈ (SubRng‘𝑅) → 𝑟 ∈ (SubGrp‘𝑅)) | |
2 | 1 | ssriv 3981 | . . . 4 ⊢ (SubRng‘𝑅) ⊆ (SubGrp‘𝑅) |
3 | sstr 3985 | . . . 4 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ (SubRng‘𝑅) ⊆ (SubGrp‘𝑅)) → 𝑆 ⊆ (SubGrp‘𝑅)) | |
4 | 2, 3 | mpan2 688 | . . 3 ⊢ (𝑆 ⊆ (SubRng‘𝑅) → 𝑆 ⊆ (SubGrp‘𝑅)) |
5 | subgint 19077 | . . 3 ⊢ ((𝑆 ⊆ (SubGrp‘𝑅) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubGrp‘𝑅)) | |
6 | 4, 5 | sylan 579 | . 2 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubGrp‘𝑅)) |
7 | ssel2 3972 | . . . . . . 7 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑟 ∈ 𝑆) → 𝑟 ∈ (SubRng‘𝑅)) | |
8 | 7 | ad4ant14 749 | . . . . . 6 ⊢ ((((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) ∧ 𝑟 ∈ 𝑆) → 𝑟 ∈ (SubRng‘𝑅)) |
9 | simprl 768 | . . . . . . 7 ⊢ (((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) → 𝑥 ∈ ∩ 𝑆) | |
10 | elinti 4952 | . . . . . . . 8 ⊢ (𝑥 ∈ ∩ 𝑆 → (𝑟 ∈ 𝑆 → 𝑥 ∈ 𝑟)) | |
11 | 10 | imp 406 | . . . . . . 7 ⊢ ((𝑥 ∈ ∩ 𝑆 ∧ 𝑟 ∈ 𝑆) → 𝑥 ∈ 𝑟) |
12 | 9, 11 | sylan 579 | . . . . . 6 ⊢ ((((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) ∧ 𝑟 ∈ 𝑆) → 𝑥 ∈ 𝑟) |
13 | simprr 770 | . . . . . . 7 ⊢ (((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) → 𝑦 ∈ ∩ 𝑆) | |
14 | elinti 4952 | . . . . . . . 8 ⊢ (𝑦 ∈ ∩ 𝑆 → (𝑟 ∈ 𝑆 → 𝑦 ∈ 𝑟)) | |
15 | 14 | imp 406 | . . . . . . 7 ⊢ ((𝑦 ∈ ∩ 𝑆 ∧ 𝑟 ∈ 𝑆) → 𝑦 ∈ 𝑟) |
16 | 13, 15 | sylan 579 | . . . . . 6 ⊢ ((((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) ∧ 𝑟 ∈ 𝑆) → 𝑦 ∈ 𝑟) |
17 | eqid 2726 | . . . . . . 7 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
18 | 17 | subrngmcl 20457 | . . . . . 6 ⊢ ((𝑟 ∈ (SubRng‘𝑅) ∧ 𝑥 ∈ 𝑟 ∧ 𝑦 ∈ 𝑟) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑟) |
19 | 8, 12, 16, 18 | syl3anc 1368 | . . . . 5 ⊢ ((((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) ∧ 𝑟 ∈ 𝑆) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑟) |
20 | 19 | ralrimiva 3140 | . . . 4 ⊢ (((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) → ∀𝑟 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑟) |
21 | ovex 7438 | . . . . 5 ⊢ (𝑥(.r‘𝑅)𝑦) ∈ V | |
22 | 21 | elint2 4950 | . . . 4 ⊢ ((𝑥(.r‘𝑅)𝑦) ∈ ∩ 𝑆 ↔ ∀𝑟 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑟) |
23 | 20, 22 | sylibr 233 | . . 3 ⊢ (((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) → (𝑥(.r‘𝑅)𝑦) ∈ ∩ 𝑆) |
24 | 23 | ralrimivva 3194 | . 2 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → ∀𝑥 ∈ ∩ 𝑆∀𝑦 ∈ ∩ 𝑆(𝑥(.r‘𝑅)𝑦) ∈ ∩ 𝑆) |
25 | ssn0 4395 | . . 3 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → (SubRng‘𝑅) ≠ ∅) | |
26 | n0 4341 | . . . 4 ⊢ ((SubRng‘𝑅) ≠ ∅ ↔ ∃𝑟 𝑟 ∈ (SubRng‘𝑅)) | |
27 | subrngrcl 20451 | . . . . 5 ⊢ (𝑟 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng) | |
28 | 27 | exlimiv 1925 | . . . 4 ⊢ (∃𝑟 𝑟 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng) |
29 | 26, 28 | sylbi 216 | . . 3 ⊢ ((SubRng‘𝑅) ≠ ∅ → 𝑅 ∈ Rng) |
30 | eqid 2726 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
31 | 30, 17 | issubrng2 20458 | . . 3 ⊢ (𝑅 ∈ Rng → (∩ 𝑆 ∈ (SubRng‘𝑅) ↔ (∩ 𝑆 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ ∩ 𝑆∀𝑦 ∈ ∩ 𝑆(𝑥(.r‘𝑅)𝑦) ∈ ∩ 𝑆))) |
32 | 25, 29, 31 | 3syl 18 | . 2 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → (∩ 𝑆 ∈ (SubRng‘𝑅) ↔ (∩ 𝑆 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ ∩ 𝑆∀𝑦 ∈ ∩ 𝑆(𝑥(.r‘𝑅)𝑦) ∈ ∩ 𝑆))) |
33 | 6, 24, 32 | mpbir2and 710 | 1 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubRng‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∃wex 1773 ∈ wcel 2098 ≠ wne 2934 ∀wral 3055 ⊆ wss 3943 ∅c0 4317 ∩ cint 4943 ‘cfv 6537 (class class class)co 7405 Basecbs 17153 .rcmulr 17207 SubGrpcsubg 19047 Rngcrng 20057 SubRngcsubrng 20445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-0g 17396 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18866 df-minusg 18867 df-subg 19050 df-cmn 19702 df-abl 19703 df-mgp 20040 df-rng 20058 df-subrng 20446 |
This theorem is referenced by: subrngin 20461 subrngmre 20462 |
Copyright terms: Public domain | W3C validator |