![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subrngint | Structured version Visualization version GIF version |
Description: The intersection of a nonempty collection of subrings is a subring. (Contributed by AV, 15-Feb-2025.) |
Ref | Expression |
---|---|
subrngint | ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubRng‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrngsubg 20568 | . . . . 5 ⊢ (𝑟 ∈ (SubRng‘𝑅) → 𝑟 ∈ (SubGrp‘𝑅)) | |
2 | 1 | ssriv 3998 | . . . 4 ⊢ (SubRng‘𝑅) ⊆ (SubGrp‘𝑅) |
3 | sstr 4003 | . . . 4 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ (SubRng‘𝑅) ⊆ (SubGrp‘𝑅)) → 𝑆 ⊆ (SubGrp‘𝑅)) | |
4 | 2, 3 | mpan2 691 | . . 3 ⊢ (𝑆 ⊆ (SubRng‘𝑅) → 𝑆 ⊆ (SubGrp‘𝑅)) |
5 | subgint 19180 | . . 3 ⊢ ((𝑆 ⊆ (SubGrp‘𝑅) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubGrp‘𝑅)) | |
6 | 4, 5 | sylan 580 | . 2 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubGrp‘𝑅)) |
7 | ssel2 3989 | . . . . . . 7 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑟 ∈ 𝑆) → 𝑟 ∈ (SubRng‘𝑅)) | |
8 | 7 | ad4ant14 752 | . . . . . 6 ⊢ ((((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) ∧ 𝑟 ∈ 𝑆) → 𝑟 ∈ (SubRng‘𝑅)) |
9 | simprl 771 | . . . . . . 7 ⊢ (((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) → 𝑥 ∈ ∩ 𝑆) | |
10 | elinti 4959 | . . . . . . . 8 ⊢ (𝑥 ∈ ∩ 𝑆 → (𝑟 ∈ 𝑆 → 𝑥 ∈ 𝑟)) | |
11 | 10 | imp 406 | . . . . . . 7 ⊢ ((𝑥 ∈ ∩ 𝑆 ∧ 𝑟 ∈ 𝑆) → 𝑥 ∈ 𝑟) |
12 | 9, 11 | sylan 580 | . . . . . 6 ⊢ ((((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) ∧ 𝑟 ∈ 𝑆) → 𝑥 ∈ 𝑟) |
13 | simprr 773 | . . . . . . 7 ⊢ (((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) → 𝑦 ∈ ∩ 𝑆) | |
14 | elinti 4959 | . . . . . . . 8 ⊢ (𝑦 ∈ ∩ 𝑆 → (𝑟 ∈ 𝑆 → 𝑦 ∈ 𝑟)) | |
15 | 14 | imp 406 | . . . . . . 7 ⊢ ((𝑦 ∈ ∩ 𝑆 ∧ 𝑟 ∈ 𝑆) → 𝑦 ∈ 𝑟) |
16 | 13, 15 | sylan 580 | . . . . . 6 ⊢ ((((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) ∧ 𝑟 ∈ 𝑆) → 𝑦 ∈ 𝑟) |
17 | eqid 2734 | . . . . . . 7 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
18 | 17 | subrngmcl 20573 | . . . . . 6 ⊢ ((𝑟 ∈ (SubRng‘𝑅) ∧ 𝑥 ∈ 𝑟 ∧ 𝑦 ∈ 𝑟) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑟) |
19 | 8, 12, 16, 18 | syl3anc 1370 | . . . . 5 ⊢ ((((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) ∧ 𝑟 ∈ 𝑆) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑟) |
20 | 19 | ralrimiva 3143 | . . . 4 ⊢ (((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) → ∀𝑟 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑟) |
21 | ovex 7463 | . . . . 5 ⊢ (𝑥(.r‘𝑅)𝑦) ∈ V | |
22 | 21 | elint2 4957 | . . . 4 ⊢ ((𝑥(.r‘𝑅)𝑦) ∈ ∩ 𝑆 ↔ ∀𝑟 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑟) |
23 | 20, 22 | sylibr 234 | . . 3 ⊢ (((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) → (𝑥(.r‘𝑅)𝑦) ∈ ∩ 𝑆) |
24 | 23 | ralrimivva 3199 | . 2 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → ∀𝑥 ∈ ∩ 𝑆∀𝑦 ∈ ∩ 𝑆(𝑥(.r‘𝑅)𝑦) ∈ ∩ 𝑆) |
25 | ssn0 4409 | . . 3 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → (SubRng‘𝑅) ≠ ∅) | |
26 | n0 4358 | . . . 4 ⊢ ((SubRng‘𝑅) ≠ ∅ ↔ ∃𝑟 𝑟 ∈ (SubRng‘𝑅)) | |
27 | subrngrcl 20567 | . . . . 5 ⊢ (𝑟 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng) | |
28 | 27 | exlimiv 1927 | . . . 4 ⊢ (∃𝑟 𝑟 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng) |
29 | 26, 28 | sylbi 217 | . . 3 ⊢ ((SubRng‘𝑅) ≠ ∅ → 𝑅 ∈ Rng) |
30 | eqid 2734 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
31 | 30, 17 | issubrng2 20574 | . . 3 ⊢ (𝑅 ∈ Rng → (∩ 𝑆 ∈ (SubRng‘𝑅) ↔ (∩ 𝑆 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ ∩ 𝑆∀𝑦 ∈ ∩ 𝑆(𝑥(.r‘𝑅)𝑦) ∈ ∩ 𝑆))) |
32 | 25, 29, 31 | 3syl 18 | . 2 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → (∩ 𝑆 ∈ (SubRng‘𝑅) ↔ (∩ 𝑆 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ ∩ 𝑆∀𝑦 ∈ ∩ 𝑆(𝑥(.r‘𝑅)𝑦) ∈ ∩ 𝑆))) |
33 | 6, 24, 32 | mpbir2and 713 | 1 ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubRng‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1775 ∈ wcel 2105 ≠ wne 2937 ∀wral 3058 ⊆ wss 3962 ∅c0 4338 ∩ cint 4950 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 .rcmulr 17298 SubGrpcsubg 19150 Rngcrng 20169 SubRngcsubrng 20561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-3 12327 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-0g 17487 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-grp 18966 df-minusg 18967 df-subg 19153 df-cmn 19814 df-abl 19815 df-mgp 20152 df-rng 20170 df-subrng 20562 |
This theorem is referenced by: subrngin 20577 subrngmre 20578 |
Copyright terms: Public domain | W3C validator |