Step | Hyp | Ref
| Expression |
1 | | nnon 7865 |
. . . . 5
⊢ (𝐷 ∈ ω → 𝐷 ∈ On) |
2 | 1 | anim2i 616 |
. . . 4
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ ω) → (𝐶 ∈ On ∧ 𝐷 ∈ On)) |
3 | 2 | anim2i 616 |
. . 3
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ ω)) → ((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On))) |
4 | | tfsconcat.op |
. . . 4
⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) |
5 | 4 | tfsconcat0i 42398 |
. . 3
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 = ∅ → (𝐴 + 𝐵) = 𝐵)) |
6 | 3, 5 | syl 17 |
. 2
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ ω)) → (𝐴 = ∅ → (𝐴 + 𝐵) = 𝐵)) |
7 | | dmeq 5903 |
. . 3
⊢ ((𝐴 + 𝐵) = 𝐵 → dom (𝐴 + 𝐵) = dom 𝐵) |
8 | | nna0r 8613 |
. . . . . . . . 9
⊢ (𝐷 ∈ ω → (∅
+o 𝐷) = 𝐷) |
9 | 8 | adantl 481 |
. . . . . . . 8
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ ω) → (∅
+o 𝐷) = 𝐷) |
10 | 9 | eqeq2d 2742 |
. . . . . . 7
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ ω) → ((𝐶 +o 𝐷) = (∅ +o 𝐷) ↔ (𝐶 +o 𝐷) = 𝐷)) |
11 | | eqcom 2738 |
. . . . . . 7
⊢ ((𝐶 +o 𝐷) = (∅ +o 𝐷) ↔ (∅ +o 𝐷) = (𝐶 +o 𝐷)) |
12 | 10, 11 | bitr3di 286 |
. . . . . 6
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ ω) → ((𝐶 +o 𝐷) = 𝐷 ↔ (∅ +o 𝐷) = (𝐶 +o 𝐷))) |
13 | | on0eln0 6420 |
. . . . . . . . . 10
⊢ (𝐶 ∈ On → (∅
∈ 𝐶 ↔ 𝐶 ≠ ∅)) |
14 | 13 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ ω) → (∅
∈ 𝐶 ↔ 𝐶 ≠ ∅)) |
15 | | df-ne 2940 |
. . . . . . . . 9
⊢ (𝐶 ≠ ∅ ↔ ¬ 𝐶 = ∅) |
16 | 14, 15 | bitr2di 288 |
. . . . . . . 8
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ ω) → (¬
𝐶 = ∅ ↔ ∅
∈ 𝐶)) |
17 | | peano1 7883 |
. . . . . . . . . . . . . . 15
⊢ ∅
∈ ω |
18 | | nnaordr 8624 |
. . . . . . . . . . . . . . 15
⊢ ((∅
∈ ω ∧ 𝐶
∈ ω ∧ 𝐷
∈ ω) → (∅ ∈ 𝐶 ↔ (∅ +o 𝐷) ∈ (𝐶 +o 𝐷))) |
19 | 17, 18 | mp3an1 1447 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ ω ∧ 𝐷 ∈ ω) → (∅
∈ 𝐶 ↔ (∅
+o 𝐷) ∈
(𝐶 +o 𝐷))) |
20 | 19 | biimpd 228 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ω ∧ 𝐷 ∈ ω) → (∅
∈ 𝐶 → (∅
+o 𝐷) ∈
(𝐶 +o 𝐷))) |
21 | 20 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ ω → (𝐷 ∈ ω → (∅
∈ 𝐶 → (∅
+o 𝐷) ∈
(𝐶 +o 𝐷)))) |
22 | 21 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ On → (𝐶 ∈ ω → (𝐷 ∈ ω → (∅
∈ 𝐶 → (∅
+o 𝐷) ∈
(𝐶 +o 𝐷))))) |
23 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ ω) ∧ ω
⊆ 𝐶) → ω
⊆ 𝐶) |
24 | | oaword1 8556 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → 𝐶 ⊆ (𝐶 +o 𝐷)) |
25 | 2, 24 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ ω) → 𝐶 ⊆ (𝐶 +o 𝐷)) |
26 | 25 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ ω) ∧ ω
⊆ 𝐶) → 𝐶 ⊆ (𝐶 +o 𝐷)) |
27 | 23, 26 | sstrd 3992 |
. . . . . . . . . . . . . . 15
⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ ω) ∧ ω
⊆ 𝐶) → ω
⊆ (𝐶 +o
𝐷)) |
28 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐷 ∈ ω → 𝐷 ∈
ω) |
29 | 8, 28 | eqeltrd 2832 |
. . . . . . . . . . . . . . . 16
⊢ (𝐷 ∈ ω → (∅
+o 𝐷) ∈
ω) |
30 | 29 | ad2antlr 724 |
. . . . . . . . . . . . . . 15
⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ ω) ∧ ω
⊆ 𝐶) → (∅
+o 𝐷) ∈
ω) |
31 | 27, 30 | sseldd 3983 |
. . . . . . . . . . . . . 14
⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ ω) ∧ ω
⊆ 𝐶) → (∅
+o 𝐷) ∈
(𝐶 +o 𝐷)) |
32 | 31 | a1d 25 |
. . . . . . . . . . . . 13
⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ ω) ∧ ω
⊆ 𝐶) → (∅
∈ 𝐶 → (∅
+o 𝐷) ∈
(𝐶 +o 𝐷))) |
33 | 32 | exp31 419 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ On → (𝐷 ∈ ω → (ω
⊆ 𝐶 → (∅
∈ 𝐶 → (∅
+o 𝐷) ∈
(𝐶 +o 𝐷))))) |
34 | 33 | com23 86 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ On → (ω
⊆ 𝐶 → (𝐷 ∈ ω → (∅
∈ 𝐶 → (∅
+o 𝐷) ∈
(𝐶 +o 𝐷))))) |
35 | | eloni 6374 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ On → Ord 𝐶) |
36 | | ordom 7869 |
. . . . . . . . . . . 12
⊢ Ord
ω |
37 | | ordtri2or 6462 |
. . . . . . . . . . . 12
⊢ ((Ord
𝐶 ∧ Ord ω) →
(𝐶 ∈ ω ∨
ω ⊆ 𝐶)) |
38 | 35, 36, 37 | sylancl 585 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ On → (𝐶 ∈ ω ∨ ω
⊆ 𝐶)) |
39 | 22, 34, 38 | mpjaod 857 |
. . . . . . . . . 10
⊢ (𝐶 ∈ On → (𝐷 ∈ ω → (∅
∈ 𝐶 → (∅
+o 𝐷) ∈
(𝐶 +o 𝐷)))) |
40 | 39 | imp 406 |
. . . . . . . . 9
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ ω) → (∅
∈ 𝐶 → (∅
+o 𝐷) ∈
(𝐶 +o 𝐷))) |
41 | | elneq 9597 |
. . . . . . . . . 10
⊢ ((∅
+o 𝐷) ∈
(𝐶 +o 𝐷) → (∅ +o
𝐷) ≠ (𝐶 +o 𝐷)) |
42 | 41 | neneqd 2944 |
. . . . . . . . 9
⊢ ((∅
+o 𝐷) ∈
(𝐶 +o 𝐷) → ¬ (∅
+o 𝐷) = (𝐶 +o 𝐷)) |
43 | 40, 42 | syl6 35 |
. . . . . . . 8
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ ω) → (∅
∈ 𝐶 → ¬
(∅ +o 𝐷) =
(𝐶 +o 𝐷))) |
44 | 16, 43 | sylbid 239 |
. . . . . . 7
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ ω) → (¬
𝐶 = ∅ → ¬
(∅ +o 𝐷) =
(𝐶 +o 𝐷))) |
45 | 44 | con4d 115 |
. . . . . 6
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ ω) →
((∅ +o 𝐷)
= (𝐶 +o 𝐷) → 𝐶 = ∅)) |
46 | 12, 45 | sylbid 239 |
. . . . 5
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ ω) → ((𝐶 +o 𝐷) = 𝐷 → 𝐶 = ∅)) |
47 | 46 | adantl 481 |
. . . 4
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ ω)) → ((𝐶 +o 𝐷) = 𝐷 → 𝐶 = ∅)) |
48 | 4 | tfsconcatfn 42391 |
. . . . . . 7
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 + 𝐵) Fn (𝐶 +o 𝐷)) |
49 | 3, 48 | syl 17 |
. . . . . 6
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ ω)) → (𝐴 + 𝐵) Fn (𝐶 +o 𝐷)) |
50 | 49 | fndmd 6654 |
. . . . 5
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ ω)) → dom (𝐴 + 𝐵) = (𝐶 +o 𝐷)) |
51 | | fndm 6652 |
. . . . . 6
⊢ (𝐵 Fn 𝐷 → dom 𝐵 = 𝐷) |
52 | 51 | ad2antlr 724 |
. . . . 5
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ ω)) → dom 𝐵 = 𝐷) |
53 | 50, 52 | eqeq12d 2747 |
. . . 4
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ ω)) → (dom (𝐴 + 𝐵) = dom 𝐵 ↔ (𝐶 +o 𝐷) = 𝐷)) |
54 | | fnrel 6651 |
. . . . . . . 8
⊢ (𝐴 Fn 𝐶 → Rel 𝐴) |
55 | | reldm0 5927 |
. . . . . . . 8
⊢ (Rel
𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅)) |
56 | 54, 55 | syl 17 |
. . . . . . 7
⊢ (𝐴 Fn 𝐶 → (𝐴 = ∅ ↔ dom 𝐴 = ∅)) |
57 | | fndm 6652 |
. . . . . . . 8
⊢ (𝐴 Fn 𝐶 → dom 𝐴 = 𝐶) |
58 | 57 | eqeq1d 2733 |
. . . . . . 7
⊢ (𝐴 Fn 𝐶 → (dom 𝐴 = ∅ ↔ 𝐶 = ∅)) |
59 | 56, 58 | bitrd 279 |
. . . . . 6
⊢ (𝐴 Fn 𝐶 → (𝐴 = ∅ ↔ 𝐶 = ∅)) |
60 | 59 | adantr 480 |
. . . . 5
⊢ ((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) → (𝐴 = ∅ ↔ 𝐶 = ∅)) |
61 | 60 | adantr 480 |
. . . 4
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ ω)) → (𝐴 = ∅ ↔ 𝐶 = ∅)) |
62 | 47, 53, 61 | 3imtr4d 294 |
. . 3
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ ω)) → (dom (𝐴 + 𝐵) = dom 𝐵 → 𝐴 = ∅)) |
63 | 7, 62 | syl5 34 |
. 2
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ ω)) → ((𝐴 + 𝐵) = 𝐵 → 𝐴 = ∅)) |
64 | 6, 63 | impbid 211 |
1
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ ω)) → (𝐴 = ∅ ↔ (𝐴 + 𝐵) = 𝐵)) |