Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfsconcat0b Structured version   Visualization version   GIF version

Theorem tfsconcat0b 43335
Description: The concatentation with the empty series leaves the finite series unchanged. (Contributed by RP, 1-Mar-2025.)
Hypothesis
Ref Expression
tfsconcat.op + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
Assertion
Ref Expression
tfsconcat0b (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ ω)) → (𝐴 = ∅ ↔ (𝐴 + 𝐵) = 𝐵))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏,𝑥,𝑦,𝑧   𝐶,𝑎,𝑏,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑥,𝑦,𝑧
Allowed substitution hints:   + (𝑥,𝑦,𝑧,𝑎,𝑏)

Proof of Theorem tfsconcat0b
StepHypRef Expression
1 nnon 7848 . . . . 5 (𝐷 ∈ ω → 𝐷 ∈ On)
21anim2i 617 . . . 4 ((𝐶 ∈ On ∧ 𝐷 ∈ ω) → (𝐶 ∈ On ∧ 𝐷 ∈ On))
32anim2i 617 . . 3 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ ω)) → ((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)))
4 tfsconcat.op . . . 4 + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
54tfsconcat0i 43334 . . 3 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 = ∅ → (𝐴 + 𝐵) = 𝐵))
63, 5syl 17 . 2 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ ω)) → (𝐴 = ∅ → (𝐴 + 𝐵) = 𝐵))
7 dmeq 5867 . . 3 ((𝐴 + 𝐵) = 𝐵 → dom (𝐴 + 𝐵) = dom 𝐵)
8 nna0r 8573 . . . . . . . . 9 (𝐷 ∈ ω → (∅ +o 𝐷) = 𝐷)
98adantl 481 . . . . . . . 8 ((𝐶 ∈ On ∧ 𝐷 ∈ ω) → (∅ +o 𝐷) = 𝐷)
109eqeq2d 2740 . . . . . . 7 ((𝐶 ∈ On ∧ 𝐷 ∈ ω) → ((𝐶 +o 𝐷) = (∅ +o 𝐷) ↔ (𝐶 +o 𝐷) = 𝐷))
11 eqcom 2736 . . . . . . 7 ((𝐶 +o 𝐷) = (∅ +o 𝐷) ↔ (∅ +o 𝐷) = (𝐶 +o 𝐷))
1210, 11bitr3di 286 . . . . . 6 ((𝐶 ∈ On ∧ 𝐷 ∈ ω) → ((𝐶 +o 𝐷) = 𝐷 ↔ (∅ +o 𝐷) = (𝐶 +o 𝐷)))
13 on0eln0 6389 . . . . . . . . . 10 (𝐶 ∈ On → (∅ ∈ 𝐶𝐶 ≠ ∅))
1413adantr 480 . . . . . . . . 9 ((𝐶 ∈ On ∧ 𝐷 ∈ ω) → (∅ ∈ 𝐶𝐶 ≠ ∅))
15 df-ne 2926 . . . . . . . . 9 (𝐶 ≠ ∅ ↔ ¬ 𝐶 = ∅)
1614, 15bitr2di 288 . . . . . . . 8 ((𝐶 ∈ On ∧ 𝐷 ∈ ω) → (¬ 𝐶 = ∅ ↔ ∅ ∈ 𝐶))
17 peano1 7865 . . . . . . . . . . . . . . 15 ∅ ∈ ω
18 nnaordr 8584 . . . . . . . . . . . . . . 15 ((∅ ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐷 ∈ ω) → (∅ ∈ 𝐶 ↔ (∅ +o 𝐷) ∈ (𝐶 +o 𝐷)))
1917, 18mp3an1 1450 . . . . . . . . . . . . . 14 ((𝐶 ∈ ω ∧ 𝐷 ∈ ω) → (∅ ∈ 𝐶 ↔ (∅ +o 𝐷) ∈ (𝐶 +o 𝐷)))
2019biimpd 229 . . . . . . . . . . . . 13 ((𝐶 ∈ ω ∧ 𝐷 ∈ ω) → (∅ ∈ 𝐶 → (∅ +o 𝐷) ∈ (𝐶 +o 𝐷)))
2120ex 412 . . . . . . . . . . . 12 (𝐶 ∈ ω → (𝐷 ∈ ω → (∅ ∈ 𝐶 → (∅ +o 𝐷) ∈ (𝐶 +o 𝐷))))
2221a1i 11 . . . . . . . . . . 11 (𝐶 ∈ On → (𝐶 ∈ ω → (𝐷 ∈ ω → (∅ ∈ 𝐶 → (∅ +o 𝐷) ∈ (𝐶 +o 𝐷)))))
23 simpr 484 . . . . . . . . . . . . . . . 16 (((𝐶 ∈ On ∧ 𝐷 ∈ ω) ∧ ω ⊆ 𝐶) → ω ⊆ 𝐶)
24 oaword1 8516 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → 𝐶 ⊆ (𝐶 +o 𝐷))
252, 24syl 17 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ On ∧ 𝐷 ∈ ω) → 𝐶 ⊆ (𝐶 +o 𝐷))
2625adantr 480 . . . . . . . . . . . . . . . 16 (((𝐶 ∈ On ∧ 𝐷 ∈ ω) ∧ ω ⊆ 𝐶) → 𝐶 ⊆ (𝐶 +o 𝐷))
2723, 26sstrd 3957 . . . . . . . . . . . . . . 15 (((𝐶 ∈ On ∧ 𝐷 ∈ ω) ∧ ω ⊆ 𝐶) → ω ⊆ (𝐶 +o 𝐷))
28 id 22 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ ω → 𝐷 ∈ ω)
298, 28eqeltrd 2828 . . . . . . . . . . . . . . . 16 (𝐷 ∈ ω → (∅ +o 𝐷) ∈ ω)
3029ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝐶 ∈ On ∧ 𝐷 ∈ ω) ∧ ω ⊆ 𝐶) → (∅ +o 𝐷) ∈ ω)
3127, 30sseldd 3947 . . . . . . . . . . . . . 14 (((𝐶 ∈ On ∧ 𝐷 ∈ ω) ∧ ω ⊆ 𝐶) → (∅ +o 𝐷) ∈ (𝐶 +o 𝐷))
3231a1d 25 . . . . . . . . . . . . 13 (((𝐶 ∈ On ∧ 𝐷 ∈ ω) ∧ ω ⊆ 𝐶) → (∅ ∈ 𝐶 → (∅ +o 𝐷) ∈ (𝐶 +o 𝐷)))
3332exp31 419 . . . . . . . . . . . 12 (𝐶 ∈ On → (𝐷 ∈ ω → (ω ⊆ 𝐶 → (∅ ∈ 𝐶 → (∅ +o 𝐷) ∈ (𝐶 +o 𝐷)))))
3433com23 86 . . . . . . . . . . 11 (𝐶 ∈ On → (ω ⊆ 𝐶 → (𝐷 ∈ ω → (∅ ∈ 𝐶 → (∅ +o 𝐷) ∈ (𝐶 +o 𝐷)))))
35 eloni 6342 . . . . . . . . . . . 12 (𝐶 ∈ On → Ord 𝐶)
36 ordom 7852 . . . . . . . . . . . 12 Ord ω
37 ordtri2or 6432 . . . . . . . . . . . 12 ((Ord 𝐶 ∧ Ord ω) → (𝐶 ∈ ω ∨ ω ⊆ 𝐶))
3835, 36, 37sylancl 586 . . . . . . . . . . 11 (𝐶 ∈ On → (𝐶 ∈ ω ∨ ω ⊆ 𝐶))
3922, 34, 38mpjaod 860 . . . . . . . . . 10 (𝐶 ∈ On → (𝐷 ∈ ω → (∅ ∈ 𝐶 → (∅ +o 𝐷) ∈ (𝐶 +o 𝐷))))
4039imp 406 . . . . . . . . 9 ((𝐶 ∈ On ∧ 𝐷 ∈ ω) → (∅ ∈ 𝐶 → (∅ +o 𝐷) ∈ (𝐶 +o 𝐷)))
41 elneq 9551 . . . . . . . . . 10 ((∅ +o 𝐷) ∈ (𝐶 +o 𝐷) → (∅ +o 𝐷) ≠ (𝐶 +o 𝐷))
4241neneqd 2930 . . . . . . . . 9 ((∅ +o 𝐷) ∈ (𝐶 +o 𝐷) → ¬ (∅ +o 𝐷) = (𝐶 +o 𝐷))
4340, 42syl6 35 . . . . . . . 8 ((𝐶 ∈ On ∧ 𝐷 ∈ ω) → (∅ ∈ 𝐶 → ¬ (∅ +o 𝐷) = (𝐶 +o 𝐷)))
4416, 43sylbid 240 . . . . . . 7 ((𝐶 ∈ On ∧ 𝐷 ∈ ω) → (¬ 𝐶 = ∅ → ¬ (∅ +o 𝐷) = (𝐶 +o 𝐷)))
4544con4d 115 . . . . . 6 ((𝐶 ∈ On ∧ 𝐷 ∈ ω) → ((∅ +o 𝐷) = (𝐶 +o 𝐷) → 𝐶 = ∅))
4612, 45sylbid 240 . . . . 5 ((𝐶 ∈ On ∧ 𝐷 ∈ ω) → ((𝐶 +o 𝐷) = 𝐷𝐶 = ∅))
4746adantl 481 . . . 4 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ ω)) → ((𝐶 +o 𝐷) = 𝐷𝐶 = ∅))
484tfsconcatfn 43327 . . . . . . 7 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 + 𝐵) Fn (𝐶 +o 𝐷))
493, 48syl 17 . . . . . 6 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ ω)) → (𝐴 + 𝐵) Fn (𝐶 +o 𝐷))
5049fndmd 6623 . . . . 5 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ ω)) → dom (𝐴 + 𝐵) = (𝐶 +o 𝐷))
51 fndm 6621 . . . . . 6 (𝐵 Fn 𝐷 → dom 𝐵 = 𝐷)
5251ad2antlr 727 . . . . 5 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ ω)) → dom 𝐵 = 𝐷)
5350, 52eqeq12d 2745 . . . 4 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ ω)) → (dom (𝐴 + 𝐵) = dom 𝐵 ↔ (𝐶 +o 𝐷) = 𝐷))
54 fnrel 6620 . . . . . . . 8 (𝐴 Fn 𝐶 → Rel 𝐴)
55 reldm0 5891 . . . . . . . 8 (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅))
5654, 55syl 17 . . . . . . 7 (𝐴 Fn 𝐶 → (𝐴 = ∅ ↔ dom 𝐴 = ∅))
57 fndm 6621 . . . . . . . 8 (𝐴 Fn 𝐶 → dom 𝐴 = 𝐶)
5857eqeq1d 2731 . . . . . . 7 (𝐴 Fn 𝐶 → (dom 𝐴 = ∅ ↔ 𝐶 = ∅))
5956, 58bitrd 279 . . . . . 6 (𝐴 Fn 𝐶 → (𝐴 = ∅ ↔ 𝐶 = ∅))
6059adantr 480 . . . . 5 ((𝐴 Fn 𝐶𝐵 Fn 𝐷) → (𝐴 = ∅ ↔ 𝐶 = ∅))
6160adantr 480 . . . 4 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ ω)) → (𝐴 = ∅ ↔ 𝐶 = ∅))
6247, 53, 613imtr4d 294 . . 3 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ ω)) → (dom (𝐴 + 𝐵) = dom 𝐵𝐴 = ∅))
637, 62syl5 34 . 2 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ ω)) → ((𝐴 + 𝐵) = 𝐵𝐴 = ∅))
646, 63impbid 212 1 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ ω)) → (𝐴 = ∅ ↔ (𝐴 + 𝐵) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wrex 3053  Vcvv 3447  cdif 3911  cun 3912  wss 3914  c0 4296  {copab 5169  dom cdm 5638  Rel wrel 5643  Ord word 6331  Oncon0 6332   Fn wfn 6506  cfv 6511  (class class class)co 7387  cmpo 7389  ωcom 7842   +o coa 8431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-reg 9545
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-oadd 8438
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator