Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oenassex Structured version   Visualization version   GIF version

Theorem oenassex 43307
Description: Ordinal two raised to two to the zeroth power is not the same as two squared then raised to the zeroth power. (Contributed by RP, 30-Jan-2025.)
Assertion
Ref Expression
oenassex ¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅)

Proof of Theorem oenassex
StepHypRef Expression
1 1oex 8444 . . . 4 1o ∈ V
21prid2 4727 . . 3 1o ∈ {∅, 1o}
3 df2o3 8442 . . 3 2o = {∅, 1o}
42, 3eleqtrri 2827 . 2 1o ∈ 2o
5 elneq 9551 . . 3 (1o ∈ 2o → 1o ≠ 2o)
6 df-ne 2926 . . . 4 (2o ≠ 1o ↔ ¬ 2o = 1o)
7 necom 2978 . . . 4 (1o ≠ 2o ↔ 2o ≠ 1o)
8 2on 8447 . . . . . . . . 9 2o ∈ On
9 oe0 8486 . . . . . . . . 9 (2o ∈ On → (2oo ∅) = 1o)
108, 9ax-mp 5 . . . . . . . 8 (2oo ∅) = 1o
1110oveq2i 7398 . . . . . . 7 (2oo (2oo ∅)) = (2oo 1o)
12 oe1 8508 . . . . . . . 8 (2o ∈ On → (2oo 1o) = 2o)
138, 12ax-mp 5 . . . . . . 7 (2oo 1o) = 2o
1411, 13eqtri 2752 . . . . . 6 (2oo (2oo ∅)) = 2o
158, 8pm3.2i 470 . . . . . . 7 (2o ∈ On ∧ 2o ∈ On)
16 oecl 8501 . . . . . . 7 ((2o ∈ On ∧ 2o ∈ On) → (2oo 2o) ∈ On)
17 oe0 8486 . . . . . . 7 ((2oo 2o) ∈ On → ((2oo 2o) ↑o ∅) = 1o)
1815, 16, 17mp2b 10 . . . . . 6 ((2oo 2o) ↑o ∅) = 1o
1914, 18eqeq12i 2747 . . . . 5 ((2oo (2oo ∅)) = ((2oo 2o) ↑o ∅) ↔ 2o = 1o)
2019notbii 320 . . . 4 (¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅) ↔ ¬ 2o = 1o)
216, 7, 203bitr4i 303 . . 3 (1o ≠ 2o ↔ ¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅))
225, 21sylib 218 . 2 (1o ∈ 2o → ¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅))
234, 22ax-mp 5 1 ¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2109  wne 2925  c0 4296  {cpr 4591  Oncon0 6332  (class class class)co 7387  1oc1o 8427  2oc2o 8428  o coe 8433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711  ax-reg 9545
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-oexp 8440
This theorem is referenced by:  oenass  43308
  Copyright terms: Public domain W3C validator