| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oenassex | Structured version Visualization version GIF version | ||
| Description: Ordinal two raised to two to the zeroth power is not the same as two squared then raised to the zeroth power. (Contributed by RP, 30-Jan-2025.) |
| Ref | Expression |
|---|---|
| oenassex | ⊢ ¬ (2o ↑o (2o ↑o ∅)) = ((2o ↑o 2o) ↑o ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 8401 | . . . 4 ⊢ 1o ∈ V | |
| 2 | 1 | prid2 4715 | . . 3 ⊢ 1o ∈ {∅, 1o} |
| 3 | df2o3 8399 | . . 3 ⊢ 2o = {∅, 1o} | |
| 4 | 2, 3 | eleqtrri 2830 | . 2 ⊢ 1o ∈ 2o |
| 5 | elneq 9492 | . . 3 ⊢ (1o ∈ 2o → 1o ≠ 2o) | |
| 6 | df-ne 2929 | . . . 4 ⊢ (2o ≠ 1o ↔ ¬ 2o = 1o) | |
| 7 | necom 2981 | . . . 4 ⊢ (1o ≠ 2o ↔ 2o ≠ 1o) | |
| 8 | 2on 8404 | . . . . . . . . 9 ⊢ 2o ∈ On | |
| 9 | oe0 8443 | . . . . . . . . 9 ⊢ (2o ∈ On → (2o ↑o ∅) = 1o) | |
| 10 | 8, 9 | ax-mp 5 | . . . . . . . 8 ⊢ (2o ↑o ∅) = 1o |
| 11 | 10 | oveq2i 7363 | . . . . . . 7 ⊢ (2o ↑o (2o ↑o ∅)) = (2o ↑o 1o) |
| 12 | oe1 8465 | . . . . . . . 8 ⊢ (2o ∈ On → (2o ↑o 1o) = 2o) | |
| 13 | 8, 12 | ax-mp 5 | . . . . . . 7 ⊢ (2o ↑o 1o) = 2o |
| 14 | 11, 13 | eqtri 2754 | . . . . . 6 ⊢ (2o ↑o (2o ↑o ∅)) = 2o |
| 15 | 8, 8 | pm3.2i 470 | . . . . . . 7 ⊢ (2o ∈ On ∧ 2o ∈ On) |
| 16 | oecl 8458 | . . . . . . 7 ⊢ ((2o ∈ On ∧ 2o ∈ On) → (2o ↑o 2o) ∈ On) | |
| 17 | oe0 8443 | . . . . . . 7 ⊢ ((2o ↑o 2o) ∈ On → ((2o ↑o 2o) ↑o ∅) = 1o) | |
| 18 | 15, 16, 17 | mp2b 10 | . . . . . 6 ⊢ ((2o ↑o 2o) ↑o ∅) = 1o |
| 19 | 14, 18 | eqeq12i 2749 | . . . . 5 ⊢ ((2o ↑o (2o ↑o ∅)) = ((2o ↑o 2o) ↑o ∅) ↔ 2o = 1o) |
| 20 | 19 | notbii 320 | . . . 4 ⊢ (¬ (2o ↑o (2o ↑o ∅)) = ((2o ↑o 2o) ↑o ∅) ↔ ¬ 2o = 1o) |
| 21 | 6, 7, 20 | 3bitr4i 303 | . . 3 ⊢ (1o ≠ 2o ↔ ¬ (2o ↑o (2o ↑o ∅)) = ((2o ↑o 2o) ↑o ∅)) |
| 22 | 5, 21 | sylib 218 | . 2 ⊢ (1o ∈ 2o → ¬ (2o ↑o (2o ↑o ∅)) = ((2o ↑o 2o) ↑o ∅)) |
| 23 | 4, 22 | ax-mp 5 | 1 ⊢ ¬ (2o ↑o (2o ↑o ∅)) = ((2o ↑o 2o) ↑o ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4282 {cpr 4577 Oncon0 6312 (class class class)co 7352 1oc1o 8384 2oc2o 8385 ↑o coe 8390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 ax-reg 9484 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-omul 8396 df-oexp 8397 |
| This theorem is referenced by: oenass 43417 |
| Copyright terms: Public domain | W3C validator |