Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oenassex Structured version   Visualization version   GIF version

Theorem oenassex 43314
Description: Ordinal two raised to two to the zeroth power is not the same as two squared then raised to the zeroth power. (Contributed by RP, 30-Jan-2025.)
Assertion
Ref Expression
oenassex ¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅)

Proof of Theorem oenassex
StepHypRef Expression
1 1oex 8447 . . . 4 1o ∈ V
21prid2 4730 . . 3 1o ∈ {∅, 1o}
3 df2o3 8445 . . 3 2o = {∅, 1o}
42, 3eleqtrri 2828 . 2 1o ∈ 2o
5 elneq 9558 . . 3 (1o ∈ 2o → 1o ≠ 2o)
6 df-ne 2927 . . . 4 (2o ≠ 1o ↔ ¬ 2o = 1o)
7 necom 2979 . . . 4 (1o ≠ 2o ↔ 2o ≠ 1o)
8 2on 8450 . . . . . . . . 9 2o ∈ On
9 oe0 8489 . . . . . . . . 9 (2o ∈ On → (2oo ∅) = 1o)
108, 9ax-mp 5 . . . . . . . 8 (2oo ∅) = 1o
1110oveq2i 7401 . . . . . . 7 (2oo (2oo ∅)) = (2oo 1o)
12 oe1 8511 . . . . . . . 8 (2o ∈ On → (2oo 1o) = 2o)
138, 12ax-mp 5 . . . . . . 7 (2oo 1o) = 2o
1411, 13eqtri 2753 . . . . . 6 (2oo (2oo ∅)) = 2o
158, 8pm3.2i 470 . . . . . . 7 (2o ∈ On ∧ 2o ∈ On)
16 oecl 8504 . . . . . . 7 ((2o ∈ On ∧ 2o ∈ On) → (2oo 2o) ∈ On)
17 oe0 8489 . . . . . . 7 ((2oo 2o) ∈ On → ((2oo 2o) ↑o ∅) = 1o)
1815, 16, 17mp2b 10 . . . . . 6 ((2oo 2o) ↑o ∅) = 1o
1914, 18eqeq12i 2748 . . . . 5 ((2oo (2oo ∅)) = ((2oo 2o) ↑o ∅) ↔ 2o = 1o)
2019notbii 320 . . . 4 (¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅) ↔ ¬ 2o = 1o)
216, 7, 203bitr4i 303 . . 3 (1o ≠ 2o ↔ ¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅))
225, 21sylib 218 . 2 (1o ∈ 2o → ¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅))
234, 22ax-mp 5 1 ¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2109  wne 2926  c0 4299  {cpr 4594  Oncon0 6335  (class class class)co 7390  1oc1o 8430  2oc2o 8431  o coe 8436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714  ax-reg 9552
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-oexp 8443
This theorem is referenced by:  oenass  43315
  Copyright terms: Public domain W3C validator