| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oenassex | Structured version Visualization version GIF version | ||
| Description: Ordinal two raised to two to the zeroth power is not the same as two squared then raised to the zeroth power. (Contributed by RP, 30-Jan-2025.) |
| Ref | Expression |
|---|---|
| oenassex | ⊢ ¬ (2o ↑o (2o ↑o ∅)) = ((2o ↑o 2o) ↑o ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 8495 | . . . 4 ⊢ 1o ∈ V | |
| 2 | 1 | prid2 4744 | . . 3 ⊢ 1o ∈ {∅, 1o} |
| 3 | df2o3 8493 | . . 3 ⊢ 2o = {∅, 1o} | |
| 4 | 2, 3 | eleqtrri 2834 | . 2 ⊢ 1o ∈ 2o |
| 5 | elneq 9617 | . . 3 ⊢ (1o ∈ 2o → 1o ≠ 2o) | |
| 6 | df-ne 2934 | . . . 4 ⊢ (2o ≠ 1o ↔ ¬ 2o = 1o) | |
| 7 | necom 2986 | . . . 4 ⊢ (1o ≠ 2o ↔ 2o ≠ 1o) | |
| 8 | 2on 8499 | . . . . . . . . 9 ⊢ 2o ∈ On | |
| 9 | oe0 8539 | . . . . . . . . 9 ⊢ (2o ∈ On → (2o ↑o ∅) = 1o) | |
| 10 | 8, 9 | ax-mp 5 | . . . . . . . 8 ⊢ (2o ↑o ∅) = 1o |
| 11 | 10 | oveq2i 7421 | . . . . . . 7 ⊢ (2o ↑o (2o ↑o ∅)) = (2o ↑o 1o) |
| 12 | oe1 8561 | . . . . . . . 8 ⊢ (2o ∈ On → (2o ↑o 1o) = 2o) | |
| 13 | 8, 12 | ax-mp 5 | . . . . . . 7 ⊢ (2o ↑o 1o) = 2o |
| 14 | 11, 13 | eqtri 2759 | . . . . . 6 ⊢ (2o ↑o (2o ↑o ∅)) = 2o |
| 15 | 8, 8 | pm3.2i 470 | . . . . . . 7 ⊢ (2o ∈ On ∧ 2o ∈ On) |
| 16 | oecl 8554 | . . . . . . 7 ⊢ ((2o ∈ On ∧ 2o ∈ On) → (2o ↑o 2o) ∈ On) | |
| 17 | oe0 8539 | . . . . . . 7 ⊢ ((2o ↑o 2o) ∈ On → ((2o ↑o 2o) ↑o ∅) = 1o) | |
| 18 | 15, 16, 17 | mp2b 10 | . . . . . 6 ⊢ ((2o ↑o 2o) ↑o ∅) = 1o |
| 19 | 14, 18 | eqeq12i 2754 | . . . . 5 ⊢ ((2o ↑o (2o ↑o ∅)) = ((2o ↑o 2o) ↑o ∅) ↔ 2o = 1o) |
| 20 | 19 | notbii 320 | . . . 4 ⊢ (¬ (2o ↑o (2o ↑o ∅)) = ((2o ↑o 2o) ↑o ∅) ↔ ¬ 2o = 1o) |
| 21 | 6, 7, 20 | 3bitr4i 303 | . . 3 ⊢ (1o ≠ 2o ↔ ¬ (2o ↑o (2o ↑o ∅)) = ((2o ↑o 2o) ↑o ∅)) |
| 22 | 5, 21 | sylib 218 | . 2 ⊢ (1o ∈ 2o → ¬ (2o ↑o (2o ↑o ∅)) = ((2o ↑o 2o) ↑o ∅)) |
| 23 | 4, 22 | ax-mp 5 | 1 ⊢ ¬ (2o ↑o (2o ↑o ∅)) = ((2o ↑o 2o) ↑o ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∅c0 4313 {cpr 4608 Oncon0 6357 (class class class)co 7410 1oc1o 8478 2oc2o 8479 ↑o coe 8484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 ax-reg 9611 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-omul 8490 df-oexp 8491 |
| This theorem is referenced by: oenass 43310 |
| Copyright terms: Public domain | W3C validator |