Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oenassex Structured version   Visualization version   GIF version

Theorem oenassex 43280
Description: Ordinal two raised to two to the zeroth power is not the same as two squared then raised to the zeroth power. (Contributed by RP, 30-Jan-2025.)
Assertion
Ref Expression
oenassex ¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅)

Proof of Theorem oenassex
StepHypRef Expression
1 1oex 8532 . . . 4 1o ∈ V
21prid2 4788 . . 3 1o ∈ {∅, 1o}
3 df2o3 8530 . . 3 2o = {∅, 1o}
42, 3eleqtrri 2843 . 2 1o ∈ 2o
5 elneq 9667 . . 3 (1o ∈ 2o → 1o ≠ 2o)
6 df-ne 2947 . . . 4 (2o ≠ 1o ↔ ¬ 2o = 1o)
7 necom 3000 . . . 4 (1o ≠ 2o ↔ 2o ≠ 1o)
8 2on 8536 . . . . . . . . 9 2o ∈ On
9 oe0 8578 . . . . . . . . 9 (2o ∈ On → (2oo ∅) = 1o)
108, 9ax-mp 5 . . . . . . . 8 (2oo ∅) = 1o
1110oveq2i 7459 . . . . . . 7 (2oo (2oo ∅)) = (2oo 1o)
12 oe1 8600 . . . . . . . 8 (2o ∈ On → (2oo 1o) = 2o)
138, 12ax-mp 5 . . . . . . 7 (2oo 1o) = 2o
1411, 13eqtri 2768 . . . . . 6 (2oo (2oo ∅)) = 2o
158, 8pm3.2i 470 . . . . . . 7 (2o ∈ On ∧ 2o ∈ On)
16 oecl 8593 . . . . . . 7 ((2o ∈ On ∧ 2o ∈ On) → (2oo 2o) ∈ On)
17 oe0 8578 . . . . . . 7 ((2oo 2o) ∈ On → ((2oo 2o) ↑o ∅) = 1o)
1815, 16, 17mp2b 10 . . . . . 6 ((2oo 2o) ↑o ∅) = 1o
1914, 18eqeq12i 2758 . . . . 5 ((2oo (2oo ∅)) = ((2oo 2o) ↑o ∅) ↔ 2o = 1o)
2019notbii 320 . . . 4 (¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅) ↔ ¬ 2o = 1o)
216, 7, 203bitr4i 303 . . 3 (1o ≠ 2o ↔ ¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅))
225, 21sylib 218 . 2 (1o ∈ 2o → ¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅))
234, 22ax-mp 5 1 ¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1537  wcel 2108  wne 2946  c0 4352  {cpr 4650  Oncon0 6395  (class class class)co 7448  1oc1o 8515  2oc2o 8516  o coe 8521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-reg 9661
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-oexp 8528
This theorem is referenced by:  oenass  43281
  Copyright terms: Public domain W3C validator