Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oenassex Structured version   Visualization version   GIF version

Theorem oenassex 43330
Description: Ordinal two raised to two to the zeroth power is not the same as two squared then raised to the zeroth power. (Contributed by RP, 30-Jan-2025.)
Assertion
Ref Expression
oenassex ¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅)

Proof of Theorem oenassex
StepHypRef Expression
1 1oex 8390 . . . 4 1o ∈ V
21prid2 4714 . . 3 1o ∈ {∅, 1o}
3 df2o3 8388 . . 3 2o = {∅, 1o}
42, 3eleqtrri 2828 . 2 1o ∈ 2o
5 elneq 9481 . . 3 (1o ∈ 2o → 1o ≠ 2o)
6 df-ne 2927 . . . 4 (2o ≠ 1o ↔ ¬ 2o = 1o)
7 necom 2979 . . . 4 (1o ≠ 2o ↔ 2o ≠ 1o)
8 2on 8393 . . . . . . . . 9 2o ∈ On
9 oe0 8432 . . . . . . . . 9 (2o ∈ On → (2oo ∅) = 1o)
108, 9ax-mp 5 . . . . . . . 8 (2oo ∅) = 1o
1110oveq2i 7352 . . . . . . 7 (2oo (2oo ∅)) = (2oo 1o)
12 oe1 8454 . . . . . . . 8 (2o ∈ On → (2oo 1o) = 2o)
138, 12ax-mp 5 . . . . . . 7 (2oo 1o) = 2o
1411, 13eqtri 2753 . . . . . 6 (2oo (2oo ∅)) = 2o
158, 8pm3.2i 470 . . . . . . 7 (2o ∈ On ∧ 2o ∈ On)
16 oecl 8447 . . . . . . 7 ((2o ∈ On ∧ 2o ∈ On) → (2oo 2o) ∈ On)
17 oe0 8432 . . . . . . 7 ((2oo 2o) ∈ On → ((2oo 2o) ↑o ∅) = 1o)
1815, 16, 17mp2b 10 . . . . . 6 ((2oo 2o) ↑o ∅) = 1o
1914, 18eqeq12i 2748 . . . . 5 ((2oo (2oo ∅)) = ((2oo 2o) ↑o ∅) ↔ 2o = 1o)
2019notbii 320 . . . 4 (¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅) ↔ ¬ 2o = 1o)
216, 7, 203bitr4i 303 . . 3 (1o ≠ 2o ↔ ¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅))
225, 21sylib 218 . 2 (1o ∈ 2o → ¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅))
234, 22ax-mp 5 1 ¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wcel 2110  wne 2926  c0 4281  {cpr 4576  Oncon0 6302  (class class class)co 7341  1oc1o 8373  2oc2o 8374  o coe 8379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7663  ax-reg 9473
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-oexp 8386
This theorem is referenced by:  oenass  43331
  Copyright terms: Public domain W3C validator