| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oenassex | Structured version Visualization version GIF version | ||
| Description: Ordinal two raised to two to the zeroth power is not the same as two squared then raised to the zeroth power. (Contributed by RP, 30-Jan-2025.) |
| Ref | Expression |
|---|---|
| oenassex | ⊢ ¬ (2o ↑o (2o ↑o ∅)) = ((2o ↑o 2o) ↑o ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 8390 | . . . 4 ⊢ 1o ∈ V | |
| 2 | 1 | prid2 4714 | . . 3 ⊢ 1o ∈ {∅, 1o} |
| 3 | df2o3 8388 | . . 3 ⊢ 2o = {∅, 1o} | |
| 4 | 2, 3 | eleqtrri 2828 | . 2 ⊢ 1o ∈ 2o |
| 5 | elneq 9481 | . . 3 ⊢ (1o ∈ 2o → 1o ≠ 2o) | |
| 6 | df-ne 2927 | . . . 4 ⊢ (2o ≠ 1o ↔ ¬ 2o = 1o) | |
| 7 | necom 2979 | . . . 4 ⊢ (1o ≠ 2o ↔ 2o ≠ 1o) | |
| 8 | 2on 8393 | . . . . . . . . 9 ⊢ 2o ∈ On | |
| 9 | oe0 8432 | . . . . . . . . 9 ⊢ (2o ∈ On → (2o ↑o ∅) = 1o) | |
| 10 | 8, 9 | ax-mp 5 | . . . . . . . 8 ⊢ (2o ↑o ∅) = 1o |
| 11 | 10 | oveq2i 7352 | . . . . . . 7 ⊢ (2o ↑o (2o ↑o ∅)) = (2o ↑o 1o) |
| 12 | oe1 8454 | . . . . . . . 8 ⊢ (2o ∈ On → (2o ↑o 1o) = 2o) | |
| 13 | 8, 12 | ax-mp 5 | . . . . . . 7 ⊢ (2o ↑o 1o) = 2o |
| 14 | 11, 13 | eqtri 2753 | . . . . . 6 ⊢ (2o ↑o (2o ↑o ∅)) = 2o |
| 15 | 8, 8 | pm3.2i 470 | . . . . . . 7 ⊢ (2o ∈ On ∧ 2o ∈ On) |
| 16 | oecl 8447 | . . . . . . 7 ⊢ ((2o ∈ On ∧ 2o ∈ On) → (2o ↑o 2o) ∈ On) | |
| 17 | oe0 8432 | . . . . . . 7 ⊢ ((2o ↑o 2o) ∈ On → ((2o ↑o 2o) ↑o ∅) = 1o) | |
| 18 | 15, 16, 17 | mp2b 10 | . . . . . 6 ⊢ ((2o ↑o 2o) ↑o ∅) = 1o |
| 19 | 14, 18 | eqeq12i 2748 | . . . . 5 ⊢ ((2o ↑o (2o ↑o ∅)) = ((2o ↑o 2o) ↑o ∅) ↔ 2o = 1o) |
| 20 | 19 | notbii 320 | . . . 4 ⊢ (¬ (2o ↑o (2o ↑o ∅)) = ((2o ↑o 2o) ↑o ∅) ↔ ¬ 2o = 1o) |
| 21 | 6, 7, 20 | 3bitr4i 303 | . . 3 ⊢ (1o ≠ 2o ↔ ¬ (2o ↑o (2o ↑o ∅)) = ((2o ↑o 2o) ↑o ∅)) |
| 22 | 5, 21 | sylib 218 | . 2 ⊢ (1o ∈ 2o → ¬ (2o ↑o (2o ↑o ∅)) = ((2o ↑o 2o) ↑o ∅)) |
| 23 | 4, 22 | ax-mp 5 | 1 ⊢ ¬ (2o ↑o (2o ↑o ∅)) = ((2o ↑o 2o) ↑o ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 ∅c0 4281 {cpr 4576 Oncon0 6302 (class class class)co 7341 1oc1o 8373 2oc2o 8374 ↑o coe 8379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 ax-reg 9473 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-omul 8385 df-oexp 8386 |
| This theorem is referenced by: oenass 43331 |
| Copyright terms: Public domain | W3C validator |