Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oaomoencom Structured version   Visualization version   GIF version

Theorem oaomoencom 43341
Description: Ordinal addition, multiplication, and exponentiation do not generally commute. Theorem 4.1 of [Schloeder] p. 11. (Contributed by RP, 30-Jan-2025.)
Assertion
Ref Expression
oaomoencom (∃𝑎 ∈ On ∃𝑏 ∈ On ¬ (𝑎 +o 𝑏) = (𝑏 +o 𝑎) ∧ ∃𝑎 ∈ On ∃𝑏 ∈ On ¬ (𝑎 ·o 𝑏) = (𝑏 ·o 𝑎) ∧ ∃𝑎 ∈ On ∃𝑏 ∈ On ¬ (𝑎o 𝑏) = (𝑏o 𝑎))
Distinct variable group:   𝑎,𝑏

Proof of Theorem oaomoencom
StepHypRef Expression
1 oancom 9665 . . . 4 (1o +o ω) ≠ (ω +o 1o)
21neii 2934 . . 3 ¬ (1o +o ω) = (ω +o 1o)
3 1on 8492 . . . 4 1o ∈ On
4 omelon 9660 . . . . 5 ω ∈ On
5 oveq2 7413 . . . . . . . 8 (𝑏 = ω → (1o +o 𝑏) = (1o +o ω))
6 oveq1 7412 . . . . . . . 8 (𝑏 = ω → (𝑏 +o 1o) = (ω +o 1o))
75, 6eqeq12d 2751 . . . . . . 7 (𝑏 = ω → ((1o +o 𝑏) = (𝑏 +o 1o) ↔ (1o +o ω) = (ω +o 1o)))
87notbid 318 . . . . . 6 (𝑏 = ω → (¬ (1o +o 𝑏) = (𝑏 +o 1o) ↔ ¬ (1o +o ω) = (ω +o 1o)))
98rspcev 3601 . . . . 5 ((ω ∈ On ∧ ¬ (1o +o ω) = (ω +o 1o)) → ∃𝑏 ∈ On ¬ (1o +o 𝑏) = (𝑏 +o 1o))
104, 9mpan 690 . . . 4 (¬ (1o +o ω) = (ω +o 1o) → ∃𝑏 ∈ On ¬ (1o +o 𝑏) = (𝑏 +o 1o))
11 oveq1 7412 . . . . . . . 8 (𝑎 = 1o → (𝑎 +o 𝑏) = (1o +o 𝑏))
12 oveq2 7413 . . . . . . . 8 (𝑎 = 1o → (𝑏 +o 𝑎) = (𝑏 +o 1o))
1311, 12eqeq12d 2751 . . . . . . 7 (𝑎 = 1o → ((𝑎 +o 𝑏) = (𝑏 +o 𝑎) ↔ (1o +o 𝑏) = (𝑏 +o 1o)))
1413notbid 318 . . . . . 6 (𝑎 = 1o → (¬ (𝑎 +o 𝑏) = (𝑏 +o 𝑎) ↔ ¬ (1o +o 𝑏) = (𝑏 +o 1o)))
1514rexbidv 3164 . . . . 5 (𝑎 = 1o → (∃𝑏 ∈ On ¬ (𝑎 +o 𝑏) = (𝑏 +o 𝑎) ↔ ∃𝑏 ∈ On ¬ (1o +o 𝑏) = (𝑏 +o 1o)))
1615rspcev 3601 . . . 4 ((1o ∈ On ∧ ∃𝑏 ∈ On ¬ (1o +o 𝑏) = (𝑏 +o 1o)) → ∃𝑎 ∈ On ∃𝑏 ∈ On ¬ (𝑎 +o 𝑏) = (𝑏 +o 𝑎))
173, 10, 16sylancr 587 . . 3 (¬ (1o +o ω) = (ω +o 1o) → ∃𝑎 ∈ On ∃𝑏 ∈ On ¬ (𝑎 +o 𝑏) = (𝑏 +o 𝑎))
182, 17ax-mp 5 . 2 𝑎 ∈ On ∃𝑏 ∈ On ¬ (𝑎 +o 𝑏) = (𝑏 +o 𝑎)
194, 4pm3.2i 470 . . . . . . 7 (ω ∈ On ∧ ω ∈ On)
20 peano1 7884 . . . . . . 7 ∅ ∈ ω
2119, 20pm3.2i 470 . . . . . 6 ((ω ∈ On ∧ ω ∈ On) ∧ ∅ ∈ ω)
22 oaord1 8563 . . . . . . 7 ((ω ∈ On ∧ ω ∈ On) → (∅ ∈ ω ↔ ω ∈ (ω +o ω)))
2322biimpa 476 . . . . . 6 (((ω ∈ On ∧ ω ∈ On) ∧ ∅ ∈ ω) → ω ∈ (ω +o ω))
24 elneq 9612 . . . . . 6 (ω ∈ (ω +o ω) → ω ≠ (ω +o ω))
2521, 23, 24mp2b 10 . . . . 5 ω ≠ (ω +o ω)
26 2omomeqom 43327 . . . . . 6 (2o ·o ω) = ω
27 df-2o 8481 . . . . . . . 8 2o = suc 1o
2827oveq2i 7416 . . . . . . 7 (ω ·o 2o) = (ω ·o suc 1o)
29 omsuc 8538 . . . . . . . 8 ((ω ∈ On ∧ 1o ∈ On) → (ω ·o suc 1o) = ((ω ·o 1o) +o ω))
304, 3, 29mp2an 692 . . . . . . 7 (ω ·o suc 1o) = ((ω ·o 1o) +o ω)
31 om1 8554 . . . . . . . . 9 (ω ∈ On → (ω ·o 1o) = ω)
324, 31ax-mp 5 . . . . . . . 8 (ω ·o 1o) = ω
3332oveq1i 7415 . . . . . . 7 ((ω ·o 1o) +o ω) = (ω +o ω)
3428, 30, 333eqtri 2762 . . . . . 6 (ω ·o 2o) = (ω +o ω)
3526, 34neeq12i 2998 . . . . 5 ((2o ·o ω) ≠ (ω ·o 2o) ↔ ω ≠ (ω +o ω))
3625, 35mpbir 231 . . . 4 (2o ·o ω) ≠ (ω ·o 2o)
3736neii 2934 . . 3 ¬ (2o ·o ω) = (ω ·o 2o)
38 2on 8494 . . . 4 2o ∈ On
39 oveq2 7413 . . . . . . . 8 (𝑏 = ω → (2o ·o 𝑏) = (2o ·o ω))
40 oveq1 7412 . . . . . . . 8 (𝑏 = ω → (𝑏 ·o 2o) = (ω ·o 2o))
4139, 40eqeq12d 2751 . . . . . . 7 (𝑏 = ω → ((2o ·o 𝑏) = (𝑏 ·o 2o) ↔ (2o ·o ω) = (ω ·o 2o)))
4241notbid 318 . . . . . 6 (𝑏 = ω → (¬ (2o ·o 𝑏) = (𝑏 ·o 2o) ↔ ¬ (2o ·o ω) = (ω ·o 2o)))
4342rspcev 3601 . . . . 5 ((ω ∈ On ∧ ¬ (2o ·o ω) = (ω ·o 2o)) → ∃𝑏 ∈ On ¬ (2o ·o 𝑏) = (𝑏 ·o 2o))
444, 43mpan 690 . . . 4 (¬ (2o ·o ω) = (ω ·o 2o) → ∃𝑏 ∈ On ¬ (2o ·o 𝑏) = (𝑏 ·o 2o))
45 oveq1 7412 . . . . . . . 8 (𝑎 = 2o → (𝑎 ·o 𝑏) = (2o ·o 𝑏))
46 oveq2 7413 . . . . . . . 8 (𝑎 = 2o → (𝑏 ·o 𝑎) = (𝑏 ·o 2o))
4745, 46eqeq12d 2751 . . . . . . 7 (𝑎 = 2o → ((𝑎 ·o 𝑏) = (𝑏 ·o 𝑎) ↔ (2o ·o 𝑏) = (𝑏 ·o 2o)))
4847notbid 318 . . . . . 6 (𝑎 = 2o → (¬ (𝑎 ·o 𝑏) = (𝑏 ·o 𝑎) ↔ ¬ (2o ·o 𝑏) = (𝑏 ·o 2o)))
4948rexbidv 3164 . . . . 5 (𝑎 = 2o → (∃𝑏 ∈ On ¬ (𝑎 ·o 𝑏) = (𝑏 ·o 𝑎) ↔ ∃𝑏 ∈ On ¬ (2o ·o 𝑏) = (𝑏 ·o 2o)))
5049rspcev 3601 . . . 4 ((2o ∈ On ∧ ∃𝑏 ∈ On ¬ (2o ·o 𝑏) = (𝑏 ·o 2o)) → ∃𝑎 ∈ On ∃𝑏 ∈ On ¬ (𝑎 ·o 𝑏) = (𝑏 ·o 𝑎))
5138, 44, 50sylancr 587 . . 3 (¬ (2o ·o ω) = (ω ·o 2o) → ∃𝑎 ∈ On ∃𝑏 ∈ On ¬ (𝑎 ·o 𝑏) = (𝑏 ·o 𝑎))
5237, 51ax-mp 5 . 2 𝑎 ∈ On ∃𝑏 ∈ On ¬ (𝑎 ·o 𝑏) = (𝑏 ·o 𝑎)
53 1onn 8652 . . . . . . 7 1o ∈ ω
5421, 53pm3.2i 470 . . . . . 6 (((ω ∈ On ∧ ω ∈ On) ∧ ∅ ∈ ω) ∧ 1o ∈ ω)
554, 31mp1i 13 . . . . . . 7 ((((ω ∈ On ∧ ω ∈ On) ∧ ∅ ∈ ω) ∧ 1o ∈ ω) → (ω ·o 1o) = ω)
56 omordi 8578 . . . . . . . 8 (((ω ∈ On ∧ ω ∈ On) ∧ ∅ ∈ ω) → (1o ∈ ω → (ω ·o 1o) ∈ (ω ·o ω)))
5756imp 406 . . . . . . 7 ((((ω ∈ On ∧ ω ∈ On) ∧ ∅ ∈ ω) ∧ 1o ∈ ω) → (ω ·o 1o) ∈ (ω ·o ω))
5855, 57eqeltrrd 2835 . . . . . 6 ((((ω ∈ On ∧ ω ∈ On) ∧ ∅ ∈ ω) ∧ 1o ∈ ω) → ω ∈ (ω ·o ω))
59 elneq 9612 . . . . . 6 (ω ∈ (ω ·o ω) → ω ≠ (ω ·o ω))
6054, 58, 59mp2b 10 . . . . 5 ω ≠ (ω ·o ω)
61 2onn 8654 . . . . . . 7 2o ∈ ω
62 1oex 8490 . . . . . . . . 9 1o ∈ V
6362prid2 4739 . . . . . . . 8 1o ∈ {∅, 1o}
64 df2o3 8488 . . . . . . . 8 2o = {∅, 1o}
6563, 64eleqtrri 2833 . . . . . . 7 1o ∈ 2o
66 nnoeomeqom 43336 . . . . . . 7 ((2o ∈ ω ∧ 1o ∈ 2o) → (2oo ω) = ω)
6761, 65, 66mp2an 692 . . . . . 6 (2oo ω) = ω
6827oveq2i 7416 . . . . . . 7 (ω ↑o 2o) = (ω ↑o suc 1o)
69 oesuc 8539 . . . . . . . 8 ((ω ∈ On ∧ 1o ∈ On) → (ω ↑o suc 1o) = ((ω ↑o 1o) ·o ω))
704, 3, 69mp2an 692 . . . . . . 7 (ω ↑o suc 1o) = ((ω ↑o 1o) ·o ω)
71 oe1 8556 . . . . . . . . 9 (ω ∈ On → (ω ↑o 1o) = ω)
724, 71ax-mp 5 . . . . . . . 8 (ω ↑o 1o) = ω
7372oveq1i 7415 . . . . . . 7 ((ω ↑o 1o) ·o ω) = (ω ·o ω)
7468, 70, 733eqtri 2762 . . . . . 6 (ω ↑o 2o) = (ω ·o ω)
7567, 74neeq12i 2998 . . . . 5 ((2oo ω) ≠ (ω ↑o 2o) ↔ ω ≠ (ω ·o ω))
7660, 75mpbir 231 . . . 4 (2oo ω) ≠ (ω ↑o 2o)
7776neii 2934 . . 3 ¬ (2oo ω) = (ω ↑o 2o)
78 oveq2 7413 . . . . . . . 8 (𝑏 = ω → (2oo 𝑏) = (2oo ω))
79 oveq1 7412 . . . . . . . 8 (𝑏 = ω → (𝑏o 2o) = (ω ↑o 2o))
8078, 79eqeq12d 2751 . . . . . . 7 (𝑏 = ω → ((2oo 𝑏) = (𝑏o 2o) ↔ (2oo ω) = (ω ↑o 2o)))
8180notbid 318 . . . . . 6 (𝑏 = ω → (¬ (2oo 𝑏) = (𝑏o 2o) ↔ ¬ (2oo ω) = (ω ↑o 2o)))
8281rspcev 3601 . . . . 5 ((ω ∈ On ∧ ¬ (2oo ω) = (ω ↑o 2o)) → ∃𝑏 ∈ On ¬ (2oo 𝑏) = (𝑏o 2o))
834, 82mpan 690 . . . 4 (¬ (2oo ω) = (ω ↑o 2o) → ∃𝑏 ∈ On ¬ (2oo 𝑏) = (𝑏o 2o))
84 oveq1 7412 . . . . . . . 8 (𝑎 = 2o → (𝑎o 𝑏) = (2oo 𝑏))
85 oveq2 7413 . . . . . . . 8 (𝑎 = 2o → (𝑏o 𝑎) = (𝑏o 2o))
8684, 85eqeq12d 2751 . . . . . . 7 (𝑎 = 2o → ((𝑎o 𝑏) = (𝑏o 𝑎) ↔ (2oo 𝑏) = (𝑏o 2o)))
8786notbid 318 . . . . . 6 (𝑎 = 2o → (¬ (𝑎o 𝑏) = (𝑏o 𝑎) ↔ ¬ (2oo 𝑏) = (𝑏o 2o)))
8887rexbidv 3164 . . . . 5 (𝑎 = 2o → (∃𝑏 ∈ On ¬ (𝑎o 𝑏) = (𝑏o 𝑎) ↔ ∃𝑏 ∈ On ¬ (2oo 𝑏) = (𝑏o 2o)))
8988rspcev 3601 . . . 4 ((2o ∈ On ∧ ∃𝑏 ∈ On ¬ (2oo 𝑏) = (𝑏o 2o)) → ∃𝑎 ∈ On ∃𝑏 ∈ On ¬ (𝑎o 𝑏) = (𝑏o 𝑎))
9038, 83, 89sylancr 587 . . 3 (¬ (2oo ω) = (ω ↑o 2o) → ∃𝑎 ∈ On ∃𝑏 ∈ On ¬ (𝑎o 𝑏) = (𝑏o 𝑎))
9177, 90ax-mp 5 . 2 𝑎 ∈ On ∃𝑏 ∈ On ¬ (𝑎o 𝑏) = (𝑏o 𝑎)
9218, 52, 913pm3.2i 1340 1 (∃𝑎 ∈ On ∃𝑏 ∈ On ¬ (𝑎 +o 𝑏) = (𝑏 +o 𝑎) ∧ ∃𝑎 ∈ On ∃𝑏 ∈ On ¬ (𝑎 ·o 𝑏) = (𝑏 ·o 𝑎) ∧ ∃𝑎 ∈ On ∃𝑏 ∈ On ¬ (𝑎o 𝑏) = (𝑏o 𝑎))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wrex 3060  c0 4308  {cpr 4603  Oncon0 6352  suc csuc 6354  (class class class)co 7405  ωcom 7861  1oc1o 8473  2oc2o 8474   +o coa 8477   ·o comu 8478  o coe 8479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729  ax-reg 9606  ax-inf2 9655
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-oexp 8486
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator