Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  otex Structured version   Visualization version   GIF version

Theorem otex 5165
 Description: An ordered triple of classes is a set. (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
otex 𝐴, 𝐵, 𝐶⟩ ∈ V

Proof of Theorem otex
StepHypRef Expression
1 df-ot 4406 . 2 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
2 opex 5164 . 2 ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ V
31, 2eqeltri 2854 1 𝐴, 𝐵, 𝐶⟩ ∈ V
 Colors of variables: wff setvar class Syntax hints:   ∈ wcel 2106  Vcvv 3397  ⟨cop 4403  ⟨cotp 4405 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pr 5138 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-v 3399  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-ot 4406 This theorem is referenced by:  euotd  5210  splvalpfxOLD  13889  splval  13890  splvalOLD  13891  splcl  13892  splclOLD  13893  idaval  17093  idaf  17098  eldmcoa  17100  coaval  17103  mamufval  20595  msrval  32034  msrf  32038  mapdhval  37873
 Copyright terms: Public domain W3C validator