![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > otex | Structured version Visualization version GIF version |
Description: An ordered triple of classes is a set. (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
otex | ⊢ 〈𝐴, 𝐵, 𝐶〉 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ot 4657 | . 2 ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 | |
2 | opex 5484 | . 2 ⊢ 〈〈𝐴, 𝐵〉, 𝐶〉 ∈ V | |
3 | 1, 2 | eqeltri 2840 | 1 ⊢ 〈𝐴, 𝐵, 𝐶〉 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 〈cop 4654 〈cotp 4656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-ot 4657 |
This theorem is referenced by: euotd 5532 ralxp3f 8178 xpord3lem 8190 xpord3pred 8193 splval 14799 splcl 14800 idaval 18125 idaf 18130 eldmcoa 18132 coaval 18135 mamufval 22417 msrval 35506 msrf 35510 mapdhval 41681 mndtcco 48758 |
Copyright terms: Public domain | W3C validator |