| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > otex | Structured version Visualization version GIF version | ||
| Description: An ordered triple of classes is a set. (Contributed by NM, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| otex | ⊢ 〈𝐴, 𝐵, 𝐶〉 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ot 4601 | . 2 ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 | |
| 2 | opex 5427 | . 2 ⊢ 〈〈𝐴, 𝐵〉, 𝐶〉 ∈ V | |
| 3 | 1, 2 | eqeltri 2825 | 1 ⊢ 〈𝐴, 𝐵, 𝐶〉 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 〈cop 4598 〈cotp 4600 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-ot 4601 |
| This theorem is referenced by: euotd 5476 ralxp3f 8119 xpord3lem 8131 xpord3pred 8134 splval 14723 splcl 14724 idaval 18027 idaf 18032 eldmcoa 18034 coaval 18037 mamufval 22286 msrval 35532 msrf 35536 mapdhval 41725 mndtcco 49578 |
| Copyright terms: Public domain | W3C validator |