| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > otex | Structured version Visualization version GIF version | ||
| Description: An ordered triple of classes is a set. (Contributed by NM, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| otex | ⊢ 〈𝐴, 𝐵, 𝐶〉 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ot 4594 | . 2 ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 | |
| 2 | opex 5419 | . 2 ⊢ 〈〈𝐴, 𝐵〉, 𝐶〉 ∈ V | |
| 3 | 1, 2 | eqeltri 2824 | 1 ⊢ 〈𝐴, 𝐵, 𝐶〉 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 〈cop 4591 〈cotp 4593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-ot 4594 |
| This theorem is referenced by: euotd 5468 ralxp3f 8093 xpord3lem 8105 xpord3pred 8108 splval 14692 splcl 14693 idaval 17996 idaf 18001 eldmcoa 18003 coaval 18006 mamufval 22255 msrval 35498 msrf 35502 mapdhval 41691 mndtcco 49547 |
| Copyright terms: Public domain | W3C validator |