![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > otex | Structured version Visualization version GIF version |
Description: An ordered triple of classes is a set. (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
otex | ⊢ 〈𝐴, 𝐵, 𝐶〉 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ot 4640 | . 2 ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 | |
2 | opex 5475 | . 2 ⊢ 〈〈𝐴, 𝐵〉, 𝐶〉 ∈ V | |
3 | 1, 2 | eqeltri 2835 | 1 ⊢ 〈𝐴, 𝐵, 𝐶〉 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3478 〈cop 4637 〈cotp 4639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-ot 4640 |
This theorem is referenced by: euotd 5523 ralxp3f 8161 xpord3lem 8173 xpord3pred 8176 splval 14786 splcl 14787 idaval 18112 idaf 18117 eldmcoa 18119 coaval 18122 mamufval 22412 msrval 35523 msrf 35527 mapdhval 41707 mndtcco 48894 |
Copyright terms: Public domain | W3C validator |