| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > otex | Structured version Visualization version GIF version | ||
| Description: An ordered triple of classes is a set. (Contributed by NM, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| otex | ⊢ 〈𝐴, 𝐵, 𝐶〉 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ot 4610 | . 2 ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 | |
| 2 | opex 5439 | . 2 ⊢ 〈〈𝐴, 𝐵〉, 𝐶〉 ∈ V | |
| 3 | 1, 2 | eqeltri 2830 | 1 ⊢ 〈𝐴, 𝐵, 𝐶〉 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 〈cop 4607 〈cotp 4609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-ot 4610 |
| This theorem is referenced by: euotd 5488 ralxp3f 8136 xpord3lem 8148 xpord3pred 8151 splval 14769 splcl 14770 idaval 18071 idaf 18076 eldmcoa 18078 coaval 18081 mamufval 22330 msrval 35560 msrf 35564 mapdhval 41743 mndtcco 49462 |
| Copyright terms: Public domain | W3C validator |