MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  otex Structured version   Visualization version   GIF version

Theorem otex 5428
Description: An ordered triple of classes is a set. (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
otex 𝐴, 𝐵, 𝐶⟩ ∈ V

Proof of Theorem otex
StepHypRef Expression
1 df-ot 4601 . 2 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
2 opex 5427 . 2 ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ V
31, 2eqeltri 2825 1 𝐴, 𝐵, 𝐶⟩ ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3450  cop 4598  cotp 4600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-ot 4601
This theorem is referenced by:  euotd  5476  ralxp3f  8119  xpord3lem  8131  xpord3pred  8134  splval  14723  splcl  14724  idaval  18027  idaf  18032  eldmcoa  18034  coaval  18037  mamufval  22286  msrval  35532  msrf  35536  mapdhval  41725  mndtcco  49578
  Copyright terms: Public domain W3C validator