![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > otex | Structured version Visualization version GIF version |
Description: An ordered triple of classes is a set. (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
otex | ⊢ 〈𝐴, 𝐵, 𝐶〉 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ot 4406 | . 2 ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 | |
2 | opex 5164 | . 2 ⊢ 〈〈𝐴, 𝐵〉, 𝐶〉 ∈ V | |
3 | 1, 2 | eqeltri 2854 | 1 ⊢ 〈𝐴, 𝐵, 𝐶〉 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3397 〈cop 4403 〈cotp 4405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-v 3399 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-ot 4406 |
This theorem is referenced by: euotd 5210 splvalpfxOLD 13889 splval 13890 splvalOLD 13891 splcl 13892 splclOLD 13893 idaval 17093 idaf 17098 eldmcoa 17100 coaval 17103 mamufval 20595 msrval 32034 msrf 32038 mapdhval 37873 |
Copyright terms: Public domain | W3C validator |