MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  otex Structured version   Visualization version   GIF version

Theorem otex 5374
Description: An ordered triple of classes is a set. (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
otex 𝐴, 𝐵, 𝐶⟩ ∈ V

Proof of Theorem otex
StepHypRef Expression
1 df-ot 4567 . 2 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
2 opex 5373 . 2 ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ V
31, 2eqeltri 2835 1 𝐴, 𝐵, 𝐶⟩ ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3422  cop 4564  cotp 4566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-ot 4567
This theorem is referenced by:  euotd  5421  splval  14392  splcl  14393  idaval  17689  idaf  17694  eldmcoa  17696  coaval  17699  mamufval  21444  msrval  33400  msrf  33404  mapdhval  39665  mndtcco  46258
  Copyright terms: Public domain W3C validator