MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  otex Structured version   Visualization version   GIF version

Theorem otex 5425
Description: An ordered triple of classes is a set. (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
otex 𝐴, 𝐵, 𝐶⟩ ∈ V

Proof of Theorem otex
StepHypRef Expression
1 df-ot 4598 . 2 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
2 opex 5424 . 2 ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ V
31, 2eqeltri 2824 1 𝐴, 𝐵, 𝐶⟩ ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3447  cop 4595  cotp 4597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-ot 4598
This theorem is referenced by:  euotd  5473  ralxp3f  8116  xpord3lem  8128  xpord3pred  8131  splval  14716  splcl  14717  idaval  18020  idaf  18025  eldmcoa  18027  coaval  18030  mamufval  22279  msrval  35525  msrf  35529  mapdhval  41718  mndtcco  49574
  Copyright terms: Public domain W3C validator