Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > otex | Structured version Visualization version GIF version |
Description: An ordered triple of classes is a set. (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
otex | ⊢ 〈𝐴, 𝐵, 𝐶〉 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ot 4567 | . 2 ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 | |
2 | opex 5373 | . 2 ⊢ 〈〈𝐴, 𝐵〉, 𝐶〉 ∈ V | |
3 | 1, 2 | eqeltri 2835 | 1 ⊢ 〈𝐴, 𝐵, 𝐶〉 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 〈cop 4564 〈cotp 4566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-ot 4567 |
This theorem is referenced by: euotd 5421 splval 14392 splcl 14393 idaval 17689 idaf 17694 eldmcoa 17696 coaval 17699 mamufval 21444 msrval 33400 msrf 33404 mapdhval 39665 mndtcco 46258 |
Copyright terms: Public domain | W3C validator |