MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  otex Structured version   Visualization version   GIF version

Theorem otex 5380
Description: An ordered triple of classes is a set. (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
otex 𝐴, 𝐵, 𝐶⟩ ∈ V

Proof of Theorem otex
StepHypRef Expression
1 df-ot 4570 . 2 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
2 opex 5379 . 2 ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ V
31, 2eqeltri 2835 1 𝐴, 𝐵, 𝐶⟩ ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Vcvv 3432  cop 4567  cotp 4569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-ot 4570
This theorem is referenced by:  euotd  5427  splval  14464  splcl  14465  idaval  17773  idaf  17778  eldmcoa  17780  coaval  17783  mamufval  21534  msrval  33500  msrf  33504  mapdhval  39738  mndtcco  46372
  Copyright terms: Public domain W3C validator