| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > otex | Structured version Visualization version GIF version | ||
| Description: An ordered triple of classes is a set. (Contributed by NM, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| otex | ⊢ 〈𝐴, 𝐵, 𝐶〉 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ot 4598 | . 2 ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 | |
| 2 | opex 5424 | . 2 ⊢ 〈〈𝐴, 𝐵〉, 𝐶〉 ∈ V | |
| 3 | 1, 2 | eqeltri 2824 | 1 ⊢ 〈𝐴, 𝐵, 𝐶〉 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 〈cop 4595 〈cotp 4597 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-ot 4598 |
| This theorem is referenced by: euotd 5473 ralxp3f 8116 xpord3lem 8128 xpord3pred 8131 splval 14716 splcl 14717 idaval 18020 idaf 18025 eldmcoa 18027 coaval 18030 mamufval 22279 msrval 35525 msrf 35529 mapdhval 41718 mndtcco 49574 |
| Copyright terms: Public domain | W3C validator |