Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwldsys Structured version   Visualization version   GIF version

Theorem pwldsys 31687
Description: The power set of the universe set 𝑂 is always a lambda-system. (Contributed by Thierry Arnoux, 21-Jun-2020.)
Hypothesis
Ref Expression
isldsys.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
Assertion
Ref Expression
pwldsys (𝑂𝑉 → 𝒫 𝑂𝐿)
Distinct variable groups:   𝑦,𝑠   𝑂,𝑠,𝑥   𝑥,𝑉
Allowed substitution hints:   𝐿(𝑥,𝑦,𝑠)   𝑂(𝑦)   𝑉(𝑦,𝑠)

Proof of Theorem pwldsys
StepHypRef Expression
1 pwexg 5242 . . 3 (𝑂𝑉 → 𝒫 𝑂 ∈ V)
2 pwidg 4507 . . 3 (𝒫 𝑂 ∈ V → 𝒫 𝑂 ∈ 𝒫 𝒫 𝑂)
31, 2syl 17 . 2 (𝑂𝑉 → 𝒫 𝑂 ∈ 𝒫 𝒫 𝑂)
4 0elpw 5219 . . . 4 ∅ ∈ 𝒫 𝑂
54a1i 11 . . 3 (𝑂𝑉 → ∅ ∈ 𝒫 𝑂)
6 pwidg 4507 . . . . . 6 (𝑂𝑉𝑂 ∈ 𝒫 𝑂)
76adantr 484 . . . . 5 ((𝑂𝑉𝑥 ∈ 𝒫 𝑂) → 𝑂 ∈ 𝒫 𝑂)
87elpwdifcl 30441 . . . 4 ((𝑂𝑉𝑥 ∈ 𝒫 𝑂) → (𝑂𝑥) ∈ 𝒫 𝑂)
98ralrimiva 3096 . . 3 (𝑂𝑉 → ∀𝑥 ∈ 𝒫 𝑂(𝑂𝑥) ∈ 𝒫 𝑂)
10 elpwi 4494 . . . . . . . 8 (𝑥 ∈ 𝒫 𝒫 𝑂𝑥 ⊆ 𝒫 𝑂)
11 sspwuni 4982 . . . . . . . 8 (𝑥 ⊆ 𝒫 𝑂 𝑥𝑂)
1210, 11sylib 221 . . . . . . 7 (𝑥 ∈ 𝒫 𝒫 𝑂 𝑥𝑂)
1312adantl 485 . . . . . 6 ((𝑂𝑉𝑥 ∈ 𝒫 𝒫 𝑂) → 𝑥𝑂)
14 vuniex 7477 . . . . . . 7 𝑥 ∈ V
1514elpw 4489 . . . . . 6 ( 𝑥 ∈ 𝒫 𝑂 𝑥𝑂)
1613, 15sylibr 237 . . . . 5 ((𝑂𝑉𝑥 ∈ 𝒫 𝒫 𝑂) → 𝑥 ∈ 𝒫 𝑂)
1716a1d 25 . . . 4 ((𝑂𝑉𝑥 ∈ 𝒫 𝒫 𝑂) → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 ∈ 𝒫 𝑂))
1817ralrimiva 3096 . . 3 (𝑂𝑉 → ∀𝑥 ∈ 𝒫 𝒫 𝑂((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 ∈ 𝒫 𝑂))
195, 9, 183jca 1129 . 2 (𝑂𝑉 → (∅ ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝑂(𝑂𝑥) ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝒫 𝑂((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 ∈ 𝒫 𝑂)))
20 isldsys.l . . 3 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
2120isldsys 31686 . 2 (𝒫 𝑂𝐿 ↔ (𝒫 𝑂 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝑂(𝑂𝑥) ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝒫 𝑂((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 ∈ 𝒫 𝑂))))
223, 19, 21sylanbrc 586 1 (𝑂𝑉 → 𝒫 𝑂𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2113  wral 3053  {crab 3057  Vcvv 3397  cdif 3838  wss 3841  c0 4209  𝒫 cpw 4485   cuni 4793  Disj wdisj 4992   class class class wbr 5027  ωcom 7593  cdom 8546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-un 7473
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ral 3058  df-rab 3062  df-v 3399  df-dif 3844  df-in 3848  df-ss 3858  df-nul 4210  df-pw 4487  df-uni 4794
This theorem is referenced by:  ldgenpisyslem1  31693
  Copyright terms: Public domain W3C validator