Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwldsys Structured version   Visualization version   GIF version

Theorem pwldsys 34193
Description: The power set of the universe set 𝑂 is always a lambda-system. (Contributed by Thierry Arnoux, 21-Jun-2020.)
Hypothesis
Ref Expression
isldsys.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
Assertion
Ref Expression
pwldsys (𝑂𝑉 → 𝒫 𝑂𝐿)
Distinct variable groups:   𝑦,𝑠   𝑂,𝑠,𝑥   𝑥,𝑉
Allowed substitution hints:   𝐿(𝑥,𝑦,𝑠)   𝑂(𝑦)   𝑉(𝑦,𝑠)

Proof of Theorem pwldsys
StepHypRef Expression
1 pwexg 5353 . . 3 (𝑂𝑉 → 𝒫 𝑂 ∈ V)
2 pwidg 4600 . . 3 (𝒫 𝑂 ∈ V → 𝒫 𝑂 ∈ 𝒫 𝒫 𝑂)
31, 2syl 17 . 2 (𝑂𝑉 → 𝒫 𝑂 ∈ 𝒫 𝒫 𝑂)
4 0elpw 5331 . . . 4 ∅ ∈ 𝒫 𝑂
54a1i 11 . . 3 (𝑂𝑉 → ∅ ∈ 𝒫 𝑂)
6 pwidg 4600 . . . . . 6 (𝑂𝑉𝑂 ∈ 𝒫 𝑂)
76adantr 480 . . . . 5 ((𝑂𝑉𝑥 ∈ 𝒫 𝑂) → 𝑂 ∈ 𝒫 𝑂)
87elpwdifcl 32512 . . . 4 ((𝑂𝑉𝑥 ∈ 𝒫 𝑂) → (𝑂𝑥) ∈ 𝒫 𝑂)
98ralrimiva 3133 . . 3 (𝑂𝑉 → ∀𝑥 ∈ 𝒫 𝑂(𝑂𝑥) ∈ 𝒫 𝑂)
10 elpwi 4587 . . . . . . . 8 (𝑥 ∈ 𝒫 𝒫 𝑂𝑥 ⊆ 𝒫 𝑂)
11 sspwuni 5081 . . . . . . . 8 (𝑥 ⊆ 𝒫 𝑂 𝑥𝑂)
1210, 11sylib 218 . . . . . . 7 (𝑥 ∈ 𝒫 𝒫 𝑂 𝑥𝑂)
1312adantl 481 . . . . . 6 ((𝑂𝑉𝑥 ∈ 𝒫 𝒫 𝑂) → 𝑥𝑂)
14 vuniex 7738 . . . . . . 7 𝑥 ∈ V
1514elpw 4584 . . . . . 6 ( 𝑥 ∈ 𝒫 𝑂 𝑥𝑂)
1613, 15sylibr 234 . . . . 5 ((𝑂𝑉𝑥 ∈ 𝒫 𝒫 𝑂) → 𝑥 ∈ 𝒫 𝑂)
1716a1d 25 . . . 4 ((𝑂𝑉𝑥 ∈ 𝒫 𝒫 𝑂) → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 ∈ 𝒫 𝑂))
1817ralrimiva 3133 . . 3 (𝑂𝑉 → ∀𝑥 ∈ 𝒫 𝒫 𝑂((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 ∈ 𝒫 𝑂))
195, 9, 183jca 1128 . 2 (𝑂𝑉 → (∅ ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝑂(𝑂𝑥) ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝒫 𝑂((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 ∈ 𝒫 𝑂)))
20 isldsys.l . . 3 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
2120isldsys 34192 . 2 (𝒫 𝑂𝐿 ↔ (𝒫 𝑂 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝑂(𝑂𝑥) ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝒫 𝑂((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 ∈ 𝒫 𝑂))))
223, 19, 21sylanbrc 583 1 (𝑂𝑉 → 𝒫 𝑂𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  {crab 3420  Vcvv 3464  cdif 3928  wss 3931  c0 4313  𝒫 cpw 4580   cuni 4888  Disj wdisj 5091   class class class wbr 5124  ωcom 7866  cdom 8962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-in 3938  df-ss 3948  df-nul 4314  df-pw 4582  df-uni 4889
This theorem is referenced by:  ldgenpisyslem1  34199
  Copyright terms: Public domain W3C validator