Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difexg | Structured version Visualization version GIF version |
Description: Existence of a difference. (Contributed by NM, 26-May-1998.) |
Ref | Expression |
---|---|
difexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4066 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
2 | ssexg 5247 | . 2 ⊢ (((𝐴 ∖ 𝐵) ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → (𝐴 ∖ 𝐵) ∈ V) | |
3 | 1, 2 | mpan 687 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ V) |
Copyright terms: Public domain | W3C validator |