MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpwdifsn Structured version   Visualization version   GIF version

Theorem elpwdifsn 4674
Description: A subset of a set is an element of the power set of the difference of the set with a singleton if the subset does not contain the singleton element. (Contributed by AV, 10-Jan-2020.)
Assertion
Ref Expression
elpwdifsn ((𝑆𝑊𝑆𝑉𝐴𝑆) → 𝑆 ∈ 𝒫 (𝑉 ∖ {𝐴}))

Proof of Theorem elpwdifsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp2 1138 . . . . . 6 ((𝑆𝑊𝑆𝑉𝐴𝑆) → 𝑆𝑉)
21sselda 3875 . . . . 5 (((𝑆𝑊𝑆𝑉𝐴𝑆) ∧ 𝑥𝑆) → 𝑥𝑉)
3 df-nel 3039 . . . . . . . . 9 (𝐴𝑆 ↔ ¬ 𝐴𝑆)
43biimpi 219 . . . . . . . 8 (𝐴𝑆 → ¬ 𝐴𝑆)
543ad2ant3 1136 . . . . . . 7 ((𝑆𝑊𝑆𝑉𝐴𝑆) → ¬ 𝐴𝑆)
65anim1ci 619 . . . . . 6 (((𝑆𝑊𝑆𝑉𝐴𝑆) ∧ 𝑥𝑆) → (𝑥𝑆 ∧ ¬ 𝐴𝑆))
7 nelne2 3031 . . . . . 6 ((𝑥𝑆 ∧ ¬ 𝐴𝑆) → 𝑥𝐴)
86, 7syl 17 . . . . 5 (((𝑆𝑊𝑆𝑉𝐴𝑆) ∧ 𝑥𝑆) → 𝑥𝐴)
9 eldifsn 4672 . . . . 5 (𝑥 ∈ (𝑉 ∖ {𝐴}) ↔ (𝑥𝑉𝑥𝐴))
102, 8, 9sylanbrc 586 . . . 4 (((𝑆𝑊𝑆𝑉𝐴𝑆) ∧ 𝑥𝑆) → 𝑥 ∈ (𝑉 ∖ {𝐴}))
1110ex 416 . . 3 ((𝑆𝑊𝑆𝑉𝐴𝑆) → (𝑥𝑆𝑥 ∈ (𝑉 ∖ {𝐴})))
1211ssrdv 3881 . 2 ((𝑆𝑊𝑆𝑉𝐴𝑆) → 𝑆 ⊆ (𝑉 ∖ {𝐴}))
13 elpwg 4488 . . 3 (𝑆𝑊 → (𝑆 ∈ 𝒫 (𝑉 ∖ {𝐴}) ↔ 𝑆 ⊆ (𝑉 ∖ {𝐴})))
14133ad2ant1 1134 . 2 ((𝑆𝑊𝑆𝑉𝐴𝑆) → (𝑆 ∈ 𝒫 (𝑉 ∖ {𝐴}) ↔ 𝑆 ⊆ (𝑉 ∖ {𝐴})))
1512, 14mpbird 260 1 ((𝑆𝑊𝑆𝑉𝐴𝑆) → 𝑆 ∈ 𝒫 (𝑉 ∖ {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1088  wcel 2113  wne 2934  wnel 3038  cdif 3838  wss 3841  𝒫 cpw 4485  {csn 4513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1090  df-tru 1545  df-ex 1787  df-sb 2074  df-clab 2717  df-cleq 2730  df-clel 2811  df-ne 2935  df-nel 3039  df-v 3399  df-dif 3844  df-in 3848  df-ss 3858  df-pw 4487  df-sn 4514
This theorem is referenced by:  uhgrspan1  27237  upgrreslem  27238  umgrreslem  27239  umgrres1lem  27244  upgrres1  27247
  Copyright terms: Public domain W3C validator