![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpwdifsn | Structured version Visualization version GIF version |
Description: A subset of a set is an element of the power set of the difference of the set with a singleton if the subset does not contain the singleton element. (Contributed by AV, 10-Jan-2020.) |
Ref | Expression |
---|---|
elpwdifsn | ⊢ ((𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆) → 𝑆 ∈ 𝒫 (𝑉 ∖ {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1137 | . . . . . 6 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆) → 𝑆 ⊆ 𝑉) | |
2 | 1 | sselda 4008 | . . . . 5 ⊢ (((𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑉) |
3 | df-nel 3053 | . . . . . . . . 9 ⊢ (𝐴 ∉ 𝑆 ↔ ¬ 𝐴 ∈ 𝑆) | |
4 | 3 | biimpi 216 | . . . . . . . 8 ⊢ (𝐴 ∉ 𝑆 → ¬ 𝐴 ∈ 𝑆) |
5 | 4 | 3ad2ant3 1135 | . . . . . . 7 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆) → ¬ 𝐴 ∈ 𝑆) |
6 | 5 | anim1ci 615 | . . . . . 6 ⊢ (((𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆) ∧ 𝑥 ∈ 𝑆) → (𝑥 ∈ 𝑆 ∧ ¬ 𝐴 ∈ 𝑆)) |
7 | nelne2 3046 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑆 ∧ ¬ 𝐴 ∈ 𝑆) → 𝑥 ≠ 𝐴) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (((𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆) ∧ 𝑥 ∈ 𝑆) → 𝑥 ≠ 𝐴) |
9 | eldifsn 4811 | . . . . 5 ⊢ (𝑥 ∈ (𝑉 ∖ {𝐴}) ↔ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 𝐴)) | |
10 | 2, 8, 9 | sylanbrc 582 | . . . 4 ⊢ (((𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (𝑉 ∖ {𝐴})) |
11 | 10 | ex 412 | . . 3 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆) → (𝑥 ∈ 𝑆 → 𝑥 ∈ (𝑉 ∖ {𝐴}))) |
12 | 11 | ssrdv 4014 | . 2 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆) → 𝑆 ⊆ (𝑉 ∖ {𝐴})) |
13 | elpwg 4625 | . . 3 ⊢ (𝑆 ∈ 𝑊 → (𝑆 ∈ 𝒫 (𝑉 ∖ {𝐴}) ↔ 𝑆 ⊆ (𝑉 ∖ {𝐴}))) | |
14 | 13 | 3ad2ant1 1133 | . 2 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆) → (𝑆 ∈ 𝒫 (𝑉 ∖ {𝐴}) ↔ 𝑆 ⊆ (𝑉 ∖ {𝐴}))) |
15 | 12, 14 | mpbird 257 | 1 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆) → 𝑆 ∈ 𝒫 (𝑉 ∖ {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ≠ wne 2946 ∉ wnel 3052 ∖ cdif 3973 ⊆ wss 3976 𝒫 cpw 4622 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-nel 3053 df-v 3490 df-dif 3979 df-ss 3993 df-pw 4624 df-sn 4649 |
This theorem is referenced by: uhgrspan1 29338 upgrreslem 29339 umgrreslem 29340 umgrres1lem 29345 upgrres1 29348 |
Copyright terms: Public domain | W3C validator |