MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpwdifsn Structured version   Visualization version   GIF version

Theorem elpwdifsn 4814
Description: A subset of a set is an element of the power set of the difference of the set with a singleton if the subset does not contain the singleton element. (Contributed by AV, 10-Jan-2020.)
Assertion
Ref Expression
elpwdifsn ((𝑆𝑊𝑆𝑉𝐴𝑆) → 𝑆 ∈ 𝒫 (𝑉 ∖ {𝐴}))

Proof of Theorem elpwdifsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . . . . . 6 ((𝑆𝑊𝑆𝑉𝐴𝑆) → 𝑆𝑉)
21sselda 4008 . . . . 5 (((𝑆𝑊𝑆𝑉𝐴𝑆) ∧ 𝑥𝑆) → 𝑥𝑉)
3 df-nel 3053 . . . . . . . . 9 (𝐴𝑆 ↔ ¬ 𝐴𝑆)
43biimpi 216 . . . . . . . 8 (𝐴𝑆 → ¬ 𝐴𝑆)
543ad2ant3 1135 . . . . . . 7 ((𝑆𝑊𝑆𝑉𝐴𝑆) → ¬ 𝐴𝑆)
65anim1ci 615 . . . . . 6 (((𝑆𝑊𝑆𝑉𝐴𝑆) ∧ 𝑥𝑆) → (𝑥𝑆 ∧ ¬ 𝐴𝑆))
7 nelne2 3046 . . . . . 6 ((𝑥𝑆 ∧ ¬ 𝐴𝑆) → 𝑥𝐴)
86, 7syl 17 . . . . 5 (((𝑆𝑊𝑆𝑉𝐴𝑆) ∧ 𝑥𝑆) → 𝑥𝐴)
9 eldifsn 4811 . . . . 5 (𝑥 ∈ (𝑉 ∖ {𝐴}) ↔ (𝑥𝑉𝑥𝐴))
102, 8, 9sylanbrc 582 . . . 4 (((𝑆𝑊𝑆𝑉𝐴𝑆) ∧ 𝑥𝑆) → 𝑥 ∈ (𝑉 ∖ {𝐴}))
1110ex 412 . . 3 ((𝑆𝑊𝑆𝑉𝐴𝑆) → (𝑥𝑆𝑥 ∈ (𝑉 ∖ {𝐴})))
1211ssrdv 4014 . 2 ((𝑆𝑊𝑆𝑉𝐴𝑆) → 𝑆 ⊆ (𝑉 ∖ {𝐴}))
13 elpwg 4625 . . 3 (𝑆𝑊 → (𝑆 ∈ 𝒫 (𝑉 ∖ {𝐴}) ↔ 𝑆 ⊆ (𝑉 ∖ {𝐴})))
14133ad2ant1 1133 . 2 ((𝑆𝑊𝑆𝑉𝐴𝑆) → (𝑆 ∈ 𝒫 (𝑉 ∖ {𝐴}) ↔ 𝑆 ⊆ (𝑉 ∖ {𝐴})))
1512, 14mpbird 257 1 ((𝑆𝑊𝑆𝑉𝐴𝑆) → 𝑆 ∈ 𝒫 (𝑉 ∖ {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087  wcel 2108  wne 2946  wnel 3052  cdif 3973  wss 3976  𝒫 cpw 4622  {csn 4648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-nel 3053  df-v 3490  df-dif 3979  df-ss 3993  df-pw 4624  df-sn 4649
This theorem is referenced by:  uhgrspan1  29338  upgrreslem  29339  umgrreslem  29340  umgrres1lem  29345  upgrres1  29348
  Copyright terms: Public domain W3C validator