MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrres1lem Structured version   Visualization version   GIF version

Theorem umgrres1lem 26412
Description: Lemma for umgrres1 26416. (Contributed by AV, 27-Nov-2020.)
Hypotheses
Ref Expression
upgrres1.v 𝑉 = (Vtx‘𝐺)
upgrres1.e 𝐸 = (Edg‘𝐺)
upgrres1.f 𝐹 = {𝑒𝐸𝑁𝑒}
Assertion
Ref Expression
umgrres1lem ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉   𝐹,𝑝   𝐺,𝑝   𝑁,𝑝   𝑉,𝑝,𝑒
Allowed substitution hints:   𝐸(𝑝)   𝐹(𝑒)

Proof of Theorem umgrres1lem
StepHypRef Expression
1 rnresi 5683 . 2 ran ( I ↾ 𝐹) = 𝐹
2 upgrres1.f . . . 4 𝐹 = {𝑒𝐸𝑁𝑒}
3 simpr 473 . . . . . . . . 9 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) → 𝑒𝐸)
43adantr 468 . . . . . . . 8 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑒𝐸)
5 umgruhgr 26207 . . . . . . . . . 10 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)
6 upgrres1.e . . . . . . . . . . . 12 𝐸 = (Edg‘𝐺)
76eleq2i 2873 . . . . . . . . . . 11 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
87biimpi 207 . . . . . . . . . 10 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
9 edguhgr 26232 . . . . . . . . . . 11 ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ∈ 𝒫 (Vtx‘𝐺))
10 elpwi 4355 . . . . . . . . . . . 12 (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒 ⊆ (Vtx‘𝐺))
11 upgrres1.v . . . . . . . . . . . 12 𝑉 = (Vtx‘𝐺)
1210, 11syl6sseqr 3843 . . . . . . . . . . 11 (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒𝑉)
139, 12syl 17 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒𝑉)
145, 8, 13syl2an 585 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ 𝑒𝐸) → 𝑒𝑉)
1514ad4ant13 748 . . . . . . . 8 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑒𝑉)
16 simpr 473 . . . . . . . 8 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑁𝑒)
17 elpwdifsn 4505 . . . . . . . 8 ((𝑒𝐸𝑒𝑉𝑁𝑒) → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁}))
184, 15, 16, 17syl3anc 1483 . . . . . . 7 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁}))
1918ex 399 . . . . . 6 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) → (𝑁𝑒𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁})))
2019ralrimiva 3150 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ∀𝑒𝐸 (𝑁𝑒𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁})))
21 rabss 3870 . . . . 5 ({𝑒𝐸𝑁𝑒} ⊆ 𝒫 (𝑉 ∖ {𝑁}) ↔ ∀𝑒𝐸 (𝑁𝑒𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁})))
2220, 21sylibr 225 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → {𝑒𝐸𝑁𝑒} ⊆ 𝒫 (𝑉 ∖ {𝑁}))
232, 22syl5eqss 3840 . . 3 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → 𝐹 ⊆ 𝒫 (𝑉 ∖ {𝑁}))
24 elrabi 3550 . . . . . . 7 (𝑝 ∈ {𝑒𝐸𝑁𝑒} → 𝑝𝐸)
2524, 6syl6eleq 2891 . . . . . 6 (𝑝 ∈ {𝑒𝐸𝑁𝑒} → 𝑝 ∈ (Edg‘𝐺))
26 edgumgr 26238 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ 𝑝 ∈ (Edg‘𝐺)) → (𝑝 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝑝) = 2))
2726simprd 485 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ 𝑝 ∈ (Edg‘𝐺)) → (♯‘𝑝) = 2)
2827ex 399 . . . . . . 7 (𝐺 ∈ UMGraph → (𝑝 ∈ (Edg‘𝐺) → (♯‘𝑝) = 2))
2928adantr 468 . . . . . 6 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (𝑝 ∈ (Edg‘𝐺) → (♯‘𝑝) = 2))
3025, 29syl5com 31 . . . . 5 (𝑝 ∈ {𝑒𝐸𝑁𝑒} → ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (♯‘𝑝) = 2))
3130, 2eleq2s 2899 . . . 4 (𝑝𝐹 → ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (♯‘𝑝) = 2))
3231impcom 396 . . 3 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑝𝐹) → (♯‘𝑝) = 2)
3323, 32ssrabdv 3872 . 2 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → 𝐹 ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
341, 33syl5eqss 3840 1 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1637  wcel 2155  wnel 3077  wral 3092  {crab 3096  cdif 3760  wss 3763  𝒫 cpw 4345  {csn 4364   I cid 5212  ran crn 5306  cres 5307  cfv 6095  2c2 11350  chash 13331  Vtxcvtx 26082  Edgcedg 26147  UHGraphcuhgr 26159  UMGraphcumgr 26184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-8 2157  ax-9 2164  ax-10 2184  ax-11 2200  ax-12 2213  ax-13 2419  ax-ext 2781  ax-sep 4968  ax-nul 4977  ax-pow 5029  ax-pr 5090  ax-un 7173  ax-cnex 10271  ax-resscn 10272  ax-1cn 10273  ax-icn 10274  ax-addcl 10275  ax-addrcl 10276  ax-mulcl 10277  ax-mulrcl 10278  ax-mulcom 10279  ax-addass 10280  ax-mulass 10281  ax-distr 10282  ax-i2m1 10283  ax-1ne0 10284  ax-1rid 10285  ax-rnegex 10286  ax-rrecex 10287  ax-cnre 10288  ax-pre-lttri 10289  ax-pre-lttrn 10290  ax-pre-ltadd 10291  ax-pre-mulgt0 10292
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2060  df-eu 2633  df-mo 2634  df-clab 2789  df-cleq 2795  df-clel 2798  df-nfc 2933  df-ne 2975  df-nel 3078  df-ral 3097  df-rex 3098  df-reu 3099  df-rab 3101  df-v 3389  df-sbc 3628  df-csb 3723  df-dif 3766  df-un 3768  df-in 3770  df-ss 3777  df-pss 3779  df-nul 4111  df-if 4274  df-pw 4347  df-sn 4365  df-pr 4367  df-tp 4369  df-op 4371  df-uni 4624  df-int 4663  df-iun 4707  df-br 4838  df-opab 4900  df-mpt 4917  df-tr 4940  df-id 5213  df-eprel 5218  df-po 5226  df-so 5227  df-fr 5264  df-we 5266  df-xp 5311  df-rel 5312  df-cnv 5313  df-co 5314  df-dm 5315  df-rn 5316  df-res 5317  df-ima 5318  df-pred 5887  df-ord 5933  df-on 5934  df-lim 5935  df-suc 5936  df-iota 6058  df-fun 6097  df-fn 6098  df-f 6099  df-f1 6100  df-fo 6101  df-f1o 6102  df-fv 6103  df-riota 6829  df-ov 6871  df-oprab 6872  df-mpt2 6873  df-om 7290  df-1st 7392  df-2nd 7393  df-wrecs 7636  df-recs 7698  df-rdg 7736  df-1o 7790  df-er 7973  df-en 8187  df-dom 8188  df-sdom 8189  df-fin 8190  df-card 9042  df-pnf 10355  df-mnf 10356  df-xr 10357  df-ltxr 10358  df-le 10359  df-sub 10547  df-neg 10548  df-nn 11300  df-2 11358  df-n0 11554  df-z 11638  df-uz 11899  df-fz 12544  df-hash 13332  df-edg 26148  df-uhgr 26161  df-upgr 26185  df-umgr 26186
This theorem is referenced by:  umgrres1  26416  usgrres1  26417
  Copyright terms: Public domain W3C validator