Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > umgrres1lem | Structured version Visualization version GIF version |
Description: Lemma for umgrres1 27402. (Contributed by AV, 27-Nov-2020.) |
Ref | Expression |
---|---|
upgrres1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgrres1.e | ⊢ 𝐸 = (Edg‘𝐺) |
upgrres1.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
Ref | Expression |
---|---|
umgrres1lem | ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnresi 5943 | . 2 ⊢ ran ( I ↾ 𝐹) = 𝐹 | |
2 | upgrres1.f | . . . 4 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
3 | simpr 488 | . . . . . . . . 9 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ 𝐸) | |
4 | 3 | adantr 484 | . . . . . . . 8 ⊢ ((((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑒 ∈ 𝐸) |
5 | umgruhgr 27195 | . . . . . . . . . 10 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph) | |
6 | upgrres1.e | . . . . . . . . . . . 12 ⊢ 𝐸 = (Edg‘𝐺) | |
7 | 6 | eleq2i 2829 | . . . . . . . . . . 11 ⊢ (𝑒 ∈ 𝐸 ↔ 𝑒 ∈ (Edg‘𝐺)) |
8 | 7 | biimpi 219 | . . . . . . . . . 10 ⊢ (𝑒 ∈ 𝐸 → 𝑒 ∈ (Edg‘𝐺)) |
9 | edguhgr 27220 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ∈ 𝒫 (Vtx‘𝐺)) | |
10 | elpwi 4522 | . . . . . . . . . . . 12 ⊢ (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒 ⊆ (Vtx‘𝐺)) | |
11 | upgrres1.v | . . . . . . . . . . . 12 ⊢ 𝑉 = (Vtx‘𝐺) | |
12 | 10, 11 | sseqtrrdi 3952 | . . . . . . . . . . 11 ⊢ (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒 ⊆ 𝑉) |
13 | 9, 12 | syl 17 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ⊆ 𝑉) |
14 | 5, 8, 13 | syl2an 599 | . . . . . . . . 9 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑒 ∈ 𝐸) → 𝑒 ⊆ 𝑉) |
15 | 14 | ad4ant13 751 | . . . . . . . 8 ⊢ ((((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑒 ⊆ 𝑉) |
16 | simpr 488 | . . . . . . . 8 ⊢ ((((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑁 ∉ 𝑒) | |
17 | elpwdifsn 4702 | . . . . . . . 8 ⊢ ((𝑒 ∈ 𝐸 ∧ 𝑒 ⊆ 𝑉 ∧ 𝑁 ∉ 𝑒) → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁})) | |
18 | 4, 15, 16, 17 | syl3anc 1373 | . . . . . . 7 ⊢ ((((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁})) |
19 | 18 | ex 416 | . . . . . 6 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) → (𝑁 ∉ 𝑒 → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁}))) |
20 | 19 | ralrimiva 3105 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ∀𝑒 ∈ 𝐸 (𝑁 ∉ 𝑒 → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁}))) |
21 | rabss 3985 | . . . . 5 ⊢ ({𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} ⊆ 𝒫 (𝑉 ∖ {𝑁}) ↔ ∀𝑒 ∈ 𝐸 (𝑁 ∉ 𝑒 → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁}))) | |
22 | 20, 21 | sylibr 237 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} ⊆ 𝒫 (𝑉 ∖ {𝑁})) |
23 | 2, 22 | eqsstrid 3949 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → 𝐹 ⊆ 𝒫 (𝑉 ∖ {𝑁})) |
24 | elrabi 3596 | . . . . . . 7 ⊢ (𝑝 ∈ {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} → 𝑝 ∈ 𝐸) | |
25 | 24, 6 | eleqtrdi 2848 | . . . . . 6 ⊢ (𝑝 ∈ {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} → 𝑝 ∈ (Edg‘𝐺)) |
26 | edgumgr 27226 | . . . . . . . . 9 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑝 ∈ (Edg‘𝐺)) → (𝑝 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝑝) = 2)) | |
27 | 26 | simprd 499 | . . . . . . . 8 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑝 ∈ (Edg‘𝐺)) → (♯‘𝑝) = 2) |
28 | 27 | ex 416 | . . . . . . 7 ⊢ (𝐺 ∈ UMGraph → (𝑝 ∈ (Edg‘𝐺) → (♯‘𝑝) = 2)) |
29 | 28 | adantr 484 | . . . . . 6 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → (𝑝 ∈ (Edg‘𝐺) → (♯‘𝑝) = 2)) |
30 | 25, 29 | syl5com 31 | . . . . 5 ⊢ (𝑝 ∈ {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → (♯‘𝑝) = 2)) |
31 | 30, 2 | eleq2s 2856 | . . . 4 ⊢ (𝑝 ∈ 𝐹 → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → (♯‘𝑝) = 2)) |
32 | 31 | impcom 411 | . . 3 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑝 ∈ 𝐹) → (♯‘𝑝) = 2) |
33 | 23, 32 | ssrabdv 3987 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → 𝐹 ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
34 | 1, 33 | eqsstrid 3949 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∉ wnel 3046 ∀wral 3061 {crab 3065 ∖ cdif 3863 ⊆ wss 3866 𝒫 cpw 4513 {csn 4541 I cid 5454 ran crn 5552 ↾ cres 5553 ‘cfv 6380 2c2 11885 ♯chash 13896 Vtxcvtx 27087 Edgcedg 27138 UHGraphcuhgr 27147 UMGraphcumgr 27172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 df-hash 13897 df-edg 27139 df-uhgr 27149 df-upgr 27173 df-umgr 27174 |
This theorem is referenced by: umgrres1 27402 usgrres1 27403 |
Copyright terms: Public domain | W3C validator |