MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrres1lem Structured version   Visualization version   GIF version

Theorem umgrres1lem 29345
Description: Lemma for umgrres1 29349. (Contributed by AV, 27-Nov-2020.)
Hypotheses
Ref Expression
upgrres1.v 𝑉 = (Vtx‘𝐺)
upgrres1.e 𝐸 = (Edg‘𝐺)
upgrres1.f 𝐹 = {𝑒𝐸𝑁𝑒}
Assertion
Ref Expression
umgrres1lem ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉   𝐹,𝑝   𝐺,𝑝   𝑁,𝑝   𝑉,𝑝,𝑒
Allowed substitution hints:   𝐸(𝑝)   𝐹(𝑒)

Proof of Theorem umgrres1lem
StepHypRef Expression
1 rnresi 6104 . 2 ran ( I ↾ 𝐹) = 𝐹
2 upgrres1.f . . . 4 𝐹 = {𝑒𝐸𝑁𝑒}
3 simpr 484 . . . . . . . . 9 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) → 𝑒𝐸)
43adantr 480 . . . . . . . 8 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑒𝐸)
5 umgruhgr 29139 . . . . . . . . . 10 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)
6 upgrres1.e . . . . . . . . . . . 12 𝐸 = (Edg‘𝐺)
76eleq2i 2836 . . . . . . . . . . 11 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
87biimpi 216 . . . . . . . . . 10 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
9 edguhgr 29164 . . . . . . . . . . 11 ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ∈ 𝒫 (Vtx‘𝐺))
10 elpwi 4629 . . . . . . . . . . . 12 (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒 ⊆ (Vtx‘𝐺))
11 upgrres1.v . . . . . . . . . . . 12 𝑉 = (Vtx‘𝐺)
1210, 11sseqtrrdi 4060 . . . . . . . . . . 11 (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒𝑉)
139, 12syl 17 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒𝑉)
145, 8, 13syl2an 595 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ 𝑒𝐸) → 𝑒𝑉)
1514ad4ant13 750 . . . . . . . 8 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑒𝑉)
16 simpr 484 . . . . . . . 8 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑁𝑒)
17 elpwdifsn 4814 . . . . . . . 8 ((𝑒𝐸𝑒𝑉𝑁𝑒) → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁}))
184, 15, 16, 17syl3anc 1371 . . . . . . 7 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁}))
1918ex 412 . . . . . 6 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) → (𝑁𝑒𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁})))
2019ralrimiva 3152 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ∀𝑒𝐸 (𝑁𝑒𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁})))
21 rabss 4095 . . . . 5 ({𝑒𝐸𝑁𝑒} ⊆ 𝒫 (𝑉 ∖ {𝑁}) ↔ ∀𝑒𝐸 (𝑁𝑒𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁})))
2220, 21sylibr 234 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → {𝑒𝐸𝑁𝑒} ⊆ 𝒫 (𝑉 ∖ {𝑁}))
232, 22eqsstrid 4057 . . 3 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → 𝐹 ⊆ 𝒫 (𝑉 ∖ {𝑁}))
24 elrabi 3703 . . . . . . 7 (𝑝 ∈ {𝑒𝐸𝑁𝑒} → 𝑝𝐸)
2524, 6eleqtrdi 2854 . . . . . 6 (𝑝 ∈ {𝑒𝐸𝑁𝑒} → 𝑝 ∈ (Edg‘𝐺))
26 edgumgr 29170 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ 𝑝 ∈ (Edg‘𝐺)) → (𝑝 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝑝) = 2))
2726simprd 495 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ 𝑝 ∈ (Edg‘𝐺)) → (♯‘𝑝) = 2)
2827ex 412 . . . . . . 7 (𝐺 ∈ UMGraph → (𝑝 ∈ (Edg‘𝐺) → (♯‘𝑝) = 2))
2928adantr 480 . . . . . 6 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (𝑝 ∈ (Edg‘𝐺) → (♯‘𝑝) = 2))
3025, 29syl5com 31 . . . . 5 (𝑝 ∈ {𝑒𝐸𝑁𝑒} → ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (♯‘𝑝) = 2))
3130, 2eleq2s 2862 . . . 4 (𝑝𝐹 → ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (♯‘𝑝) = 2))
3231impcom 407 . . 3 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑝𝐹) → (♯‘𝑝) = 2)
3323, 32ssrabdv 4097 . 2 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → 𝐹 ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
341, 33eqsstrid 4057 1 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wnel 3052  wral 3067  {crab 3443  cdif 3973  wss 3976  𝒫 cpw 4622  {csn 4648   I cid 5592  ran crn 5701  cres 5702  cfv 6573  2c2 12348  chash 14379  Vtxcvtx 29031  Edgcedg 29082  UHGraphcuhgr 29091  UMGraphcumgr 29116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380  df-edg 29083  df-uhgr 29093  df-upgr 29117  df-umgr 29118
This theorem is referenced by:  umgrres1  29349  usgrres1  29350
  Copyright terms: Public domain W3C validator