![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > umgrres1lem | Structured version Visualization version GIF version |
Description: Lemma for umgrres1 28609. (Contributed by AV, 27-Nov-2020.) |
Ref | Expression |
---|---|
upgrres1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgrres1.e | ⊢ 𝐸 = (Edg‘𝐺) |
upgrres1.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
Ref | Expression |
---|---|
umgrres1lem | ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnresi 6074 | . 2 ⊢ ran ( I ↾ 𝐹) = 𝐹 | |
2 | upgrres1.f | . . . 4 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
3 | simpr 485 | . . . . . . . . 9 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ 𝐸) | |
4 | 3 | adantr 481 | . . . . . . . 8 ⊢ ((((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑒 ∈ 𝐸) |
5 | umgruhgr 28402 | . . . . . . . . . 10 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph) | |
6 | upgrres1.e | . . . . . . . . . . . 12 ⊢ 𝐸 = (Edg‘𝐺) | |
7 | 6 | eleq2i 2825 | . . . . . . . . . . 11 ⊢ (𝑒 ∈ 𝐸 ↔ 𝑒 ∈ (Edg‘𝐺)) |
8 | 7 | biimpi 215 | . . . . . . . . . 10 ⊢ (𝑒 ∈ 𝐸 → 𝑒 ∈ (Edg‘𝐺)) |
9 | edguhgr 28427 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ∈ 𝒫 (Vtx‘𝐺)) | |
10 | elpwi 4609 | . . . . . . . . . . . 12 ⊢ (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒 ⊆ (Vtx‘𝐺)) | |
11 | upgrres1.v | . . . . . . . . . . . 12 ⊢ 𝑉 = (Vtx‘𝐺) | |
12 | 10, 11 | sseqtrrdi 4033 | . . . . . . . . . . 11 ⊢ (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒 ⊆ 𝑉) |
13 | 9, 12 | syl 17 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ⊆ 𝑉) |
14 | 5, 8, 13 | syl2an 596 | . . . . . . . . 9 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑒 ∈ 𝐸) → 𝑒 ⊆ 𝑉) |
15 | 14 | ad4ant13 749 | . . . . . . . 8 ⊢ ((((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑒 ⊆ 𝑉) |
16 | simpr 485 | . . . . . . . 8 ⊢ ((((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑁 ∉ 𝑒) | |
17 | elpwdifsn 4792 | . . . . . . . 8 ⊢ ((𝑒 ∈ 𝐸 ∧ 𝑒 ⊆ 𝑉 ∧ 𝑁 ∉ 𝑒) → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁})) | |
18 | 4, 15, 16, 17 | syl3anc 1371 | . . . . . . 7 ⊢ ((((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁})) |
19 | 18 | ex 413 | . . . . . 6 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) → (𝑁 ∉ 𝑒 → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁}))) |
20 | 19 | ralrimiva 3146 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ∀𝑒 ∈ 𝐸 (𝑁 ∉ 𝑒 → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁}))) |
21 | rabss 4069 | . . . . 5 ⊢ ({𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} ⊆ 𝒫 (𝑉 ∖ {𝑁}) ↔ ∀𝑒 ∈ 𝐸 (𝑁 ∉ 𝑒 → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁}))) | |
22 | 20, 21 | sylibr 233 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} ⊆ 𝒫 (𝑉 ∖ {𝑁})) |
23 | 2, 22 | eqsstrid 4030 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → 𝐹 ⊆ 𝒫 (𝑉 ∖ {𝑁})) |
24 | elrabi 3677 | . . . . . . 7 ⊢ (𝑝 ∈ {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} → 𝑝 ∈ 𝐸) | |
25 | 24, 6 | eleqtrdi 2843 | . . . . . 6 ⊢ (𝑝 ∈ {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} → 𝑝 ∈ (Edg‘𝐺)) |
26 | edgumgr 28433 | . . . . . . . . 9 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑝 ∈ (Edg‘𝐺)) → (𝑝 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝑝) = 2)) | |
27 | 26 | simprd 496 | . . . . . . . 8 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑝 ∈ (Edg‘𝐺)) → (♯‘𝑝) = 2) |
28 | 27 | ex 413 | . . . . . . 7 ⊢ (𝐺 ∈ UMGraph → (𝑝 ∈ (Edg‘𝐺) → (♯‘𝑝) = 2)) |
29 | 28 | adantr 481 | . . . . . 6 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → (𝑝 ∈ (Edg‘𝐺) → (♯‘𝑝) = 2)) |
30 | 25, 29 | syl5com 31 | . . . . 5 ⊢ (𝑝 ∈ {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → (♯‘𝑝) = 2)) |
31 | 30, 2 | eleq2s 2851 | . . . 4 ⊢ (𝑝 ∈ 𝐹 → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → (♯‘𝑝) = 2)) |
32 | 31 | impcom 408 | . . 3 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑝 ∈ 𝐹) → (♯‘𝑝) = 2) |
33 | 23, 32 | ssrabdv 4071 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → 𝐹 ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
34 | 1, 33 | eqsstrid 4030 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∉ wnel 3046 ∀wral 3061 {crab 3432 ∖ cdif 3945 ⊆ wss 3948 𝒫 cpw 4602 {csn 4628 I cid 5573 ran crn 5677 ↾ cres 5678 ‘cfv 6543 2c2 12269 ♯chash 14292 Vtxcvtx 28294 Edgcedg 28345 UHGraphcuhgr 28354 UMGraphcumgr 28379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-sub 11448 df-neg 11449 df-nn 12215 df-2 12277 df-n0 12475 df-z 12561 df-uz 12825 df-fz 13487 df-hash 14293 df-edg 28346 df-uhgr 28356 df-upgr 28380 df-umgr 28381 |
This theorem is referenced by: umgrres1 28609 usgrres1 28610 |
Copyright terms: Public domain | W3C validator |