![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > umgrres1lem | Structured version Visualization version GIF version |
Description: Lemma for umgrres1 26783. (Contributed by AV, 27-Nov-2020.) |
Ref | Expression |
---|---|
upgrres1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgrres1.e | ⊢ 𝐸 = (Edg‘𝐺) |
upgrres1.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
Ref | Expression |
---|---|
umgrres1lem | ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnresi 5826 | . 2 ⊢ ran ( I ↾ 𝐹) = 𝐹 | |
2 | upgrres1.f | . . . 4 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
3 | simpr 485 | . . . . . . . . 9 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ 𝐸) | |
4 | 3 | adantr 481 | . . . . . . . 8 ⊢ ((((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑒 ∈ 𝐸) |
5 | umgruhgr 26576 | . . . . . . . . . 10 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph) | |
6 | upgrres1.e | . . . . . . . . . . . 12 ⊢ 𝐸 = (Edg‘𝐺) | |
7 | 6 | eleq2i 2876 | . . . . . . . . . . 11 ⊢ (𝑒 ∈ 𝐸 ↔ 𝑒 ∈ (Edg‘𝐺)) |
8 | 7 | biimpi 217 | . . . . . . . . . 10 ⊢ (𝑒 ∈ 𝐸 → 𝑒 ∈ (Edg‘𝐺)) |
9 | edguhgr 26601 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ∈ 𝒫 (Vtx‘𝐺)) | |
10 | elpwi 4469 | . . . . . . . . . . . 12 ⊢ (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒 ⊆ (Vtx‘𝐺)) | |
11 | upgrres1.v | . . . . . . . . . . . 12 ⊢ 𝑉 = (Vtx‘𝐺) | |
12 | 10, 11 | syl6sseqr 3945 | . . . . . . . . . . 11 ⊢ (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒 ⊆ 𝑉) |
13 | 9, 12 | syl 17 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ⊆ 𝑉) |
14 | 5, 8, 13 | syl2an 595 | . . . . . . . . 9 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑒 ∈ 𝐸) → 𝑒 ⊆ 𝑉) |
15 | 14 | ad4ant13 747 | . . . . . . . 8 ⊢ ((((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑒 ⊆ 𝑉) |
16 | simpr 485 | . . . . . . . 8 ⊢ ((((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑁 ∉ 𝑒) | |
17 | elpwdifsn 4634 | . . . . . . . 8 ⊢ ((𝑒 ∈ 𝐸 ∧ 𝑒 ⊆ 𝑉 ∧ 𝑁 ∉ 𝑒) → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁})) | |
18 | 4, 15, 16, 17 | syl3anc 1364 | . . . . . . 7 ⊢ ((((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁})) |
19 | 18 | ex 413 | . . . . . 6 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) → (𝑁 ∉ 𝑒 → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁}))) |
20 | 19 | ralrimiva 3151 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ∀𝑒 ∈ 𝐸 (𝑁 ∉ 𝑒 → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁}))) |
21 | rabss 3975 | . . . . 5 ⊢ ({𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} ⊆ 𝒫 (𝑉 ∖ {𝑁}) ↔ ∀𝑒 ∈ 𝐸 (𝑁 ∉ 𝑒 → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁}))) | |
22 | 20, 21 | sylibr 235 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} ⊆ 𝒫 (𝑉 ∖ {𝑁})) |
23 | 2, 22 | eqsstrid 3942 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → 𝐹 ⊆ 𝒫 (𝑉 ∖ {𝑁})) |
24 | elrabi 3616 | . . . . . . 7 ⊢ (𝑝 ∈ {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} → 𝑝 ∈ 𝐸) | |
25 | 24, 6 | syl6eleq 2895 | . . . . . 6 ⊢ (𝑝 ∈ {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} → 𝑝 ∈ (Edg‘𝐺)) |
26 | edgumgr 26607 | . . . . . . . . 9 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑝 ∈ (Edg‘𝐺)) → (𝑝 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝑝) = 2)) | |
27 | 26 | simprd 496 | . . . . . . . 8 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑝 ∈ (Edg‘𝐺)) → (♯‘𝑝) = 2) |
28 | 27 | ex 413 | . . . . . . 7 ⊢ (𝐺 ∈ UMGraph → (𝑝 ∈ (Edg‘𝐺) → (♯‘𝑝) = 2)) |
29 | 28 | adantr 481 | . . . . . 6 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → (𝑝 ∈ (Edg‘𝐺) → (♯‘𝑝) = 2)) |
30 | 25, 29 | syl5com 31 | . . . . 5 ⊢ (𝑝 ∈ {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → (♯‘𝑝) = 2)) |
31 | 30, 2 | eleq2s 2903 | . . . 4 ⊢ (𝑝 ∈ 𝐹 → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → (♯‘𝑝) = 2)) |
32 | 31 | impcom 408 | . . 3 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑝 ∈ 𝐹) → (♯‘𝑝) = 2) |
33 | 23, 32 | ssrabdv 3977 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → 𝐹 ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
34 | 1, 33 | eqsstrid 3942 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1525 ∈ wcel 2083 ∉ wnel 3092 ∀wral 3107 {crab 3111 ∖ cdif 3862 ⊆ wss 3865 𝒫 cpw 4459 {csn 4478 I cid 5354 ran crn 5451 ↾ cres 5452 ‘cfv 6232 2c2 11546 ♯chash 13544 Vtxcvtx 26468 Edgcedg 26519 UHGraphcuhgr 26528 UMGraphcumgr 26553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-int 4789 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-1st 7552 df-2nd 7553 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-1o 7960 df-er 8146 df-en 8365 df-dom 8366 df-sdom 8367 df-fin 8368 df-card 9221 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-nn 11493 df-2 11554 df-n0 11752 df-z 11836 df-uz 12098 df-fz 12747 df-hash 13545 df-edg 26520 df-uhgr 26530 df-upgr 26554 df-umgr 26555 |
This theorem is referenced by: umgrres1 26783 usgrres1 26784 |
Copyright terms: Public domain | W3C validator |