Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > umgrres1lem | Structured version Visualization version GIF version |
Description: Lemma for umgrres1 27584. (Contributed by AV, 27-Nov-2020.) |
Ref | Expression |
---|---|
upgrres1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgrres1.e | ⊢ 𝐸 = (Edg‘𝐺) |
upgrres1.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
Ref | Expression |
---|---|
umgrres1lem | ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnresi 5972 | . 2 ⊢ ran ( I ↾ 𝐹) = 𝐹 | |
2 | upgrres1.f | . . . 4 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
3 | simpr 484 | . . . . . . . . 9 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ 𝐸) | |
4 | 3 | adantr 480 | . . . . . . . 8 ⊢ ((((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑒 ∈ 𝐸) |
5 | umgruhgr 27377 | . . . . . . . . . 10 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph) | |
6 | upgrres1.e | . . . . . . . . . . . 12 ⊢ 𝐸 = (Edg‘𝐺) | |
7 | 6 | eleq2i 2830 | . . . . . . . . . . 11 ⊢ (𝑒 ∈ 𝐸 ↔ 𝑒 ∈ (Edg‘𝐺)) |
8 | 7 | biimpi 215 | . . . . . . . . . 10 ⊢ (𝑒 ∈ 𝐸 → 𝑒 ∈ (Edg‘𝐺)) |
9 | edguhgr 27402 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ∈ 𝒫 (Vtx‘𝐺)) | |
10 | elpwi 4539 | . . . . . . . . . . . 12 ⊢ (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒 ⊆ (Vtx‘𝐺)) | |
11 | upgrres1.v | . . . . . . . . . . . 12 ⊢ 𝑉 = (Vtx‘𝐺) | |
12 | 10, 11 | sseqtrrdi 3968 | . . . . . . . . . . 11 ⊢ (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒 ⊆ 𝑉) |
13 | 9, 12 | syl 17 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ⊆ 𝑉) |
14 | 5, 8, 13 | syl2an 595 | . . . . . . . . 9 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑒 ∈ 𝐸) → 𝑒 ⊆ 𝑉) |
15 | 14 | ad4ant13 747 | . . . . . . . 8 ⊢ ((((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑒 ⊆ 𝑉) |
16 | simpr 484 | . . . . . . . 8 ⊢ ((((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑁 ∉ 𝑒) | |
17 | elpwdifsn 4719 | . . . . . . . 8 ⊢ ((𝑒 ∈ 𝐸 ∧ 𝑒 ⊆ 𝑉 ∧ 𝑁 ∉ 𝑒) → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁})) | |
18 | 4, 15, 16, 17 | syl3anc 1369 | . . . . . . 7 ⊢ ((((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁})) |
19 | 18 | ex 412 | . . . . . 6 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) → (𝑁 ∉ 𝑒 → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁}))) |
20 | 19 | ralrimiva 3107 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ∀𝑒 ∈ 𝐸 (𝑁 ∉ 𝑒 → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁}))) |
21 | rabss 4001 | . . . . 5 ⊢ ({𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} ⊆ 𝒫 (𝑉 ∖ {𝑁}) ↔ ∀𝑒 ∈ 𝐸 (𝑁 ∉ 𝑒 → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁}))) | |
22 | 20, 21 | sylibr 233 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} ⊆ 𝒫 (𝑉 ∖ {𝑁})) |
23 | 2, 22 | eqsstrid 3965 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → 𝐹 ⊆ 𝒫 (𝑉 ∖ {𝑁})) |
24 | elrabi 3611 | . . . . . . 7 ⊢ (𝑝 ∈ {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} → 𝑝 ∈ 𝐸) | |
25 | 24, 6 | eleqtrdi 2849 | . . . . . 6 ⊢ (𝑝 ∈ {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} → 𝑝 ∈ (Edg‘𝐺)) |
26 | edgumgr 27408 | . . . . . . . . 9 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑝 ∈ (Edg‘𝐺)) → (𝑝 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝑝) = 2)) | |
27 | 26 | simprd 495 | . . . . . . . 8 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑝 ∈ (Edg‘𝐺)) → (♯‘𝑝) = 2) |
28 | 27 | ex 412 | . . . . . . 7 ⊢ (𝐺 ∈ UMGraph → (𝑝 ∈ (Edg‘𝐺) → (♯‘𝑝) = 2)) |
29 | 28 | adantr 480 | . . . . . 6 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → (𝑝 ∈ (Edg‘𝐺) → (♯‘𝑝) = 2)) |
30 | 25, 29 | syl5com 31 | . . . . 5 ⊢ (𝑝 ∈ {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → (♯‘𝑝) = 2)) |
31 | 30, 2 | eleq2s 2857 | . . . 4 ⊢ (𝑝 ∈ 𝐹 → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → (♯‘𝑝) = 2)) |
32 | 31 | impcom 407 | . . 3 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑝 ∈ 𝐹) → (♯‘𝑝) = 2) |
33 | 23, 32 | ssrabdv 4003 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → 𝐹 ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
34 | 1, 33 | eqsstrid 3965 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∉ wnel 3048 ∀wral 3063 {crab 3067 ∖ cdif 3880 ⊆ wss 3883 𝒫 cpw 4530 {csn 4558 I cid 5479 ran crn 5581 ↾ cres 5582 ‘cfv 6418 2c2 11958 ♯chash 13972 Vtxcvtx 27269 Edgcedg 27320 UHGraphcuhgr 27329 UMGraphcumgr 27354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-hash 13973 df-edg 27321 df-uhgr 27331 df-upgr 27355 df-umgr 27356 |
This theorem is referenced by: umgrres1 27584 usgrres1 27585 |
Copyright terms: Public domain | W3C validator |