| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > umgrres1lem | Structured version Visualization version GIF version | ||
| Description: Lemma for umgrres1 29287. (Contributed by AV, 27-Nov-2020.) |
| Ref | Expression |
|---|---|
| upgrres1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| upgrres1.e | ⊢ 𝐸 = (Edg‘𝐺) |
| upgrres1.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
| Ref | Expression |
|---|---|
| umgrres1lem | ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnresi 6019 | . 2 ⊢ ran ( I ↾ 𝐹) = 𝐹 | |
| 2 | upgrres1.f | . . . 4 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
| 3 | simpr 484 | . . . . . . . . 9 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ 𝐸) | |
| 4 | 3 | adantr 480 | . . . . . . . 8 ⊢ ((((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑒 ∈ 𝐸) |
| 5 | umgruhgr 29077 | . . . . . . . . . 10 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph) | |
| 6 | upgrres1.e | . . . . . . . . . . . 12 ⊢ 𝐸 = (Edg‘𝐺) | |
| 7 | 6 | eleq2i 2823 | . . . . . . . . . . 11 ⊢ (𝑒 ∈ 𝐸 ↔ 𝑒 ∈ (Edg‘𝐺)) |
| 8 | 7 | biimpi 216 | . . . . . . . . . 10 ⊢ (𝑒 ∈ 𝐸 → 𝑒 ∈ (Edg‘𝐺)) |
| 9 | edguhgr 29102 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ∈ 𝒫 (Vtx‘𝐺)) | |
| 10 | elpwi 4552 | . . . . . . . . . . . 12 ⊢ (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒 ⊆ (Vtx‘𝐺)) | |
| 11 | upgrres1.v | . . . . . . . . . . . 12 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 12 | 10, 11 | sseqtrrdi 3971 | . . . . . . . . . . 11 ⊢ (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒 ⊆ 𝑉) |
| 13 | 9, 12 | syl 17 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ⊆ 𝑉) |
| 14 | 5, 8, 13 | syl2an 596 | . . . . . . . . 9 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑒 ∈ 𝐸) → 𝑒 ⊆ 𝑉) |
| 15 | 14 | ad4ant13 751 | . . . . . . . 8 ⊢ ((((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑒 ⊆ 𝑉) |
| 16 | simpr 484 | . . . . . . . 8 ⊢ ((((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑁 ∉ 𝑒) | |
| 17 | elpwdifsn 4736 | . . . . . . . 8 ⊢ ((𝑒 ∈ 𝐸 ∧ 𝑒 ⊆ 𝑉 ∧ 𝑁 ∉ 𝑒) → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁})) | |
| 18 | 4, 15, 16, 17 | syl3anc 1373 | . . . . . . 7 ⊢ ((((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁})) |
| 19 | 18 | ex 412 | . . . . . 6 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) → (𝑁 ∉ 𝑒 → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁}))) |
| 20 | 19 | ralrimiva 3124 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ∀𝑒 ∈ 𝐸 (𝑁 ∉ 𝑒 → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁}))) |
| 21 | rabss 4017 | . . . . 5 ⊢ ({𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} ⊆ 𝒫 (𝑉 ∖ {𝑁}) ↔ ∀𝑒 ∈ 𝐸 (𝑁 ∉ 𝑒 → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁}))) | |
| 22 | 20, 21 | sylibr 234 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} ⊆ 𝒫 (𝑉 ∖ {𝑁})) |
| 23 | 2, 22 | eqsstrid 3968 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → 𝐹 ⊆ 𝒫 (𝑉 ∖ {𝑁})) |
| 24 | elrabi 3638 | . . . . . . 7 ⊢ (𝑝 ∈ {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} → 𝑝 ∈ 𝐸) | |
| 25 | 24, 6 | eleqtrdi 2841 | . . . . . 6 ⊢ (𝑝 ∈ {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} → 𝑝 ∈ (Edg‘𝐺)) |
| 26 | edgumgr 29108 | . . . . . . . . 9 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑝 ∈ (Edg‘𝐺)) → (𝑝 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝑝) = 2)) | |
| 27 | 26 | simprd 495 | . . . . . . . 8 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑝 ∈ (Edg‘𝐺)) → (♯‘𝑝) = 2) |
| 28 | 27 | ex 412 | . . . . . . 7 ⊢ (𝐺 ∈ UMGraph → (𝑝 ∈ (Edg‘𝐺) → (♯‘𝑝) = 2)) |
| 29 | 28 | adantr 480 | . . . . . 6 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → (𝑝 ∈ (Edg‘𝐺) → (♯‘𝑝) = 2)) |
| 30 | 25, 29 | syl5com 31 | . . . . 5 ⊢ (𝑝 ∈ {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → (♯‘𝑝) = 2)) |
| 31 | 30, 2 | eleq2s 2849 | . . . 4 ⊢ (𝑝 ∈ 𝐹 → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → (♯‘𝑝) = 2)) |
| 32 | 31 | impcom 407 | . . 3 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑝 ∈ 𝐹) → (♯‘𝑝) = 2) |
| 33 | 23, 32 | ssrabdv 4019 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → 𝐹 ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
| 34 | 1, 33 | eqsstrid 3968 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∉ wnel 3032 ∀wral 3047 {crab 3395 ∖ cdif 3894 ⊆ wss 3897 𝒫 cpw 4545 {csn 4571 I cid 5505 ran crn 5612 ↾ cres 5613 ‘cfv 6476 2c2 12175 ♯chash 14232 Vtxcvtx 28969 Edgcedg 29020 UHGraphcuhgr 29029 UMGraphcumgr 29054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-hash 14233 df-edg 29021 df-uhgr 29031 df-upgr 29055 df-umgr 29056 |
| This theorem is referenced by: umgrres1 29287 usgrres1 29288 |
| Copyright terms: Public domain | W3C validator |