Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrres1lem Structured version   Visualization version   GIF version

Theorem umgrres1lem 27114
 Description: Lemma for umgrres1 27118. (Contributed by AV, 27-Nov-2020.)
Hypotheses
Ref Expression
upgrres1.v 𝑉 = (Vtx‘𝐺)
upgrres1.e 𝐸 = (Edg‘𝐺)
upgrres1.f 𝐹 = {𝑒𝐸𝑁𝑒}
Assertion
Ref Expression
umgrres1lem ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉   𝐹,𝑝   𝐺,𝑝   𝑁,𝑝   𝑉,𝑝,𝑒
Allowed substitution hints:   𝐸(𝑝)   𝐹(𝑒)

Proof of Theorem umgrres1lem
StepHypRef Expression
1 rnresi 5911 . 2 ran ( I ↾ 𝐹) = 𝐹
2 upgrres1.f . . . 4 𝐹 = {𝑒𝐸𝑁𝑒}
3 simpr 488 . . . . . . . . 9 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) → 𝑒𝐸)
43adantr 484 . . . . . . . 8 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑒𝐸)
5 umgruhgr 26911 . . . . . . . . . 10 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)
6 upgrres1.e . . . . . . . . . . . 12 𝐸 = (Edg‘𝐺)
76eleq2i 2881 . . . . . . . . . . 11 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
87biimpi 219 . . . . . . . . . 10 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
9 edguhgr 26936 . . . . . . . . . . 11 ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ∈ 𝒫 (Vtx‘𝐺))
10 elpwi 4506 . . . . . . . . . . . 12 (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒 ⊆ (Vtx‘𝐺))
11 upgrres1.v . . . . . . . . . . . 12 𝑉 = (Vtx‘𝐺)
1210, 11sseqtrrdi 3966 . . . . . . . . . . 11 (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒𝑉)
139, 12syl 17 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒𝑉)
145, 8, 13syl2an 598 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ 𝑒𝐸) → 𝑒𝑉)
1514ad4ant13 750 . . . . . . . 8 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑒𝑉)
16 simpr 488 . . . . . . . 8 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑁𝑒)
17 elpwdifsn 4682 . . . . . . . 8 ((𝑒𝐸𝑒𝑉𝑁𝑒) → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁}))
184, 15, 16, 17syl3anc 1368 . . . . . . 7 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁}))
1918ex 416 . . . . . 6 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) → (𝑁𝑒𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁})))
2019ralrimiva 3149 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ∀𝑒𝐸 (𝑁𝑒𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁})))
21 rabss 3999 . . . . 5 ({𝑒𝐸𝑁𝑒} ⊆ 𝒫 (𝑉 ∖ {𝑁}) ↔ ∀𝑒𝐸 (𝑁𝑒𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁})))
2220, 21sylibr 237 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → {𝑒𝐸𝑁𝑒} ⊆ 𝒫 (𝑉 ∖ {𝑁}))
232, 22eqsstrid 3963 . . 3 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → 𝐹 ⊆ 𝒫 (𝑉 ∖ {𝑁}))
24 elrabi 3623 . . . . . . 7 (𝑝 ∈ {𝑒𝐸𝑁𝑒} → 𝑝𝐸)
2524, 6eleqtrdi 2900 . . . . . 6 (𝑝 ∈ {𝑒𝐸𝑁𝑒} → 𝑝 ∈ (Edg‘𝐺))
26 edgumgr 26942 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ 𝑝 ∈ (Edg‘𝐺)) → (𝑝 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝑝) = 2))
2726simprd 499 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ 𝑝 ∈ (Edg‘𝐺)) → (♯‘𝑝) = 2)
2827ex 416 . . . . . . 7 (𝐺 ∈ UMGraph → (𝑝 ∈ (Edg‘𝐺) → (♯‘𝑝) = 2))
2928adantr 484 . . . . . 6 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (𝑝 ∈ (Edg‘𝐺) → (♯‘𝑝) = 2))
3025, 29syl5com 31 . . . . 5 (𝑝 ∈ {𝑒𝐸𝑁𝑒} → ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (♯‘𝑝) = 2))
3130, 2eleq2s 2908 . . . 4 (𝑝𝐹 → ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (♯‘𝑝) = 2))
3231impcom 411 . . 3 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑝𝐹) → (♯‘𝑝) = 2)
3323, 32ssrabdv 4001 . 2 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → 𝐹 ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
341, 33eqsstrid 3963 1 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ∉ wnel 3091  ∀wral 3106  {crab 3110   ∖ cdif 3878   ⊆ wss 3881  𝒫 cpw 4497  {csn 4525   I cid 5425  ran crn 5521   ↾ cres 5522  ‘cfv 6327  2c2 11687  ♯chash 13693  Vtxcvtx 26803  Edgcedg 26854  UHGraphcuhgr 26863  UMGraphcumgr 26888 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7448  ax-cnex 10589  ax-resscn 10590  ax-1cn 10591  ax-icn 10592  ax-addcl 10593  ax-addrcl 10594  ax-mulcl 10595  ax-mulrcl 10596  ax-mulcom 10597  ax-addass 10598  ax-mulass 10599  ax-distr 10600  ax-i2m1 10601  ax-1ne0 10602  ax-1rid 10603  ax-rnegex 10604  ax-rrecex 10605  ax-cnre 10606  ax-pre-lttri 10607  ax-pre-lttrn 10608  ax-pre-ltadd 10609  ax-pre-mulgt0 10610 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7568  df-1st 7678  df-2nd 7679  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-er 8279  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-card 9359  df-pnf 10673  df-mnf 10674  df-xr 10675  df-ltxr 10676  df-le 10677  df-sub 10868  df-neg 10869  df-nn 11633  df-2 11695  df-n0 11893  df-z 11977  df-uz 12239  df-fz 12893  df-hash 13694  df-edg 26855  df-uhgr 26865  df-upgr 26889  df-umgr 26890 This theorem is referenced by:  umgrres1  27118  usgrres1  27119
 Copyright terms: Public domain W3C validator