Step | Hyp | Ref
| Expression |
1 | | f1oi 6751 |
. . . . 5
⊢ ( I
↾ 𝐹):𝐹–1-1-onto→𝐹 |
2 | | f1of 6714 |
. . . . 5
⊢ (( I
↾ 𝐹):𝐹–1-1-onto→𝐹 → ( I ↾ 𝐹):𝐹⟶𝐹) |
3 | 1, 2 | mp1i 13 |
. . . 4
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → ( I ↾ 𝐹):𝐹⟶𝐹) |
4 | 3 | ffdmd 6629 |
. . 3
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐹) |
5 | | upgrres1.f |
. . . . 5
⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
6 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ 𝐸) |
7 | 6 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑒 ∈ 𝐸) |
8 | | upgrres1.e |
. . . . . . . . . . . . 13
⊢ 𝐸 = (Edg‘𝐺) |
9 | 8 | eleq2i 2832 |
. . . . . . . . . . . 12
⊢ (𝑒 ∈ 𝐸 ↔ 𝑒 ∈ (Edg‘𝐺)) |
10 | | edgupgr 27502 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ UPGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅ ∧ (♯‘𝑒) ≤ 2)) |
11 | | elpwi 4548 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 ∈ 𝒫
(Vtx‘𝐺) → 𝑒 ⊆ (Vtx‘𝐺)) |
12 | | upgrres1.v |
. . . . . . . . . . . . . . 15
⊢ 𝑉 = (Vtx‘𝐺) |
13 | 11, 12 | sseqtrrdi 3977 |
. . . . . . . . . . . . . 14
⊢ (𝑒 ∈ 𝒫
(Vtx‘𝐺) → 𝑒 ⊆ 𝑉) |
14 | 13 | 3ad2ant1 1132 |
. . . . . . . . . . . . 13
⊢ ((𝑒 ∈ 𝒫
(Vtx‘𝐺) ∧ 𝑒 ≠ ∅ ∧
(♯‘𝑒) ≤ 2)
→ 𝑒 ⊆ 𝑉) |
15 | 10, 14 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ UPGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ⊆ 𝑉) |
16 | 9, 15 | sylan2b 594 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ UPGraph ∧ 𝑒 ∈ 𝐸) → 𝑒 ⊆ 𝑉) |
17 | 16 | ad4ant13 748 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑒 ⊆ 𝑉) |
18 | | simpr 485 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑁 ∉ 𝑒) |
19 | | elpwdifsn 4728 |
. . . . . . . . . 10
⊢ ((𝑒 ∈ 𝐸 ∧ 𝑒 ⊆ 𝑉 ∧ 𝑁 ∉ 𝑒) → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁})) |
20 | 7, 17, 18, 19 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁})) |
21 | | simpl 483 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → 𝐺 ∈ UPGraph) |
22 | 9 | biimpi 215 |
. . . . . . . . . . . 12
⊢ (𝑒 ∈ 𝐸 → 𝑒 ∈ (Edg‘𝐺)) |
23 | 10 | simp2d 1142 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ UPGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ≠ ∅) |
24 | 21, 22, 23 | syl2an 596 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) → 𝑒 ≠ ∅) |
25 | 24 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑒 ≠ ∅) |
26 | | nelsn 4607 |
. . . . . . . . . 10
⊢ (𝑒 ≠ ∅ → ¬ 𝑒 ∈
{∅}) |
27 | 25, 26 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → ¬ 𝑒 ∈ {∅}) |
28 | 20, 27 | eldifd 3903 |
. . . . . . . 8
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑒 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅})) |
29 | 28 | ex 413 |
. . . . . . 7
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) → (𝑁 ∉ 𝑒 → 𝑒 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}))) |
30 | 29 | ralrimiva 3110 |
. . . . . 6
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → ∀𝑒 ∈ 𝐸 (𝑁 ∉ 𝑒 → 𝑒 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}))) |
31 | | rabss 4010 |
. . . . . 6
⊢ ({𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} ⊆ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ↔ ∀𝑒 ∈ 𝐸 (𝑁 ∉ 𝑒 → 𝑒 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}))) |
32 | 30, 31 | sylibr 233 |
. . . . 5
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} ⊆ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅})) |
33 | 5, 32 | eqsstrid 3974 |
. . . 4
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → 𝐹 ⊆ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅})) |
34 | | elrabi 3620 |
. . . . . . 7
⊢ (𝑝 ∈ {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} → 𝑝 ∈ 𝐸) |
35 | | edgval 27417 |
. . . . . . . . . . . 12
⊢
(Edg‘𝐺) = ran
(iEdg‘𝐺) |
36 | 8, 35 | eqtri 2768 |
. . . . . . . . . . 11
⊢ 𝐸 = ran (iEdg‘𝐺) |
37 | 36 | eleq2i 2832 |
. . . . . . . . . 10
⊢ (𝑝 ∈ 𝐸 ↔ 𝑝 ∈ ran (iEdg‘𝐺)) |
38 | | eqid 2740 |
. . . . . . . . . . . . 13
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
39 | 12, 38 | upgrf 27454 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ UPGraph →
(iEdg‘𝐺):dom
(iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣
(♯‘𝑥) ≤
2}) |
40 | 39 | frnd 6606 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ UPGraph → ran
(iEdg‘𝐺) ⊆
{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣
(♯‘𝑥) ≤
2}) |
41 | 40 | sseld 3925 |
. . . . . . . . . 10
⊢ (𝐺 ∈ UPGraph → (𝑝 ∈ ran (iEdg‘𝐺) → 𝑝 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣
(♯‘𝑥) ≤
2})) |
42 | 37, 41 | syl5bi 241 |
. . . . . . . . 9
⊢ (𝐺 ∈ UPGraph → (𝑝 ∈ 𝐸 → 𝑝 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣
(♯‘𝑥) ≤
2})) |
43 | | fveq2 6771 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑝 → (♯‘𝑥) = (♯‘𝑝)) |
44 | 43 | breq1d 5089 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑝 → ((♯‘𝑥) ≤ 2 ↔ (♯‘𝑝) ≤ 2)) |
45 | 44 | elrab 3626 |
. . . . . . . . . 10
⊢ (𝑝 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣
(♯‘𝑥) ≤ 2}
↔ (𝑝 ∈ (𝒫
𝑉 ∖ {∅}) ∧
(♯‘𝑝) ≤
2)) |
46 | 45 | simprbi 497 |
. . . . . . . . 9
⊢ (𝑝 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣
(♯‘𝑥) ≤ 2}
→ (♯‘𝑝)
≤ 2) |
47 | 42, 46 | syl6 35 |
. . . . . . . 8
⊢ (𝐺 ∈ UPGraph → (𝑝 ∈ 𝐸 → (♯‘𝑝) ≤ 2)) |
48 | 47 | adantr 481 |
. . . . . . 7
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (𝑝 ∈ 𝐸 → (♯‘𝑝) ≤ 2)) |
49 | 34, 48 | syl5com 31 |
. . . . . 6
⊢ (𝑝 ∈ {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} → ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (♯‘𝑝) ≤ 2)) |
50 | 49, 5 | eleq2s 2859 |
. . . . 5
⊢ (𝑝 ∈ 𝐹 → ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (♯‘𝑝) ≤ 2)) |
51 | 50 | impcom 408 |
. . . 4
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑝 ∈ 𝐹) → (♯‘𝑝) ≤ 2) |
52 | 33, 51 | ssrabdv 4012 |
. . 3
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → 𝐹 ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣
(♯‘𝑝) ≤
2}) |
53 | 4, 52 | fssd 6616 |
. 2
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣
(♯‘𝑝) ≤
2}) |
54 | | upgrres1.s |
. . . 4
⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 |
55 | | opex 5383 |
. . . 4
⊢
〈(𝑉 ∖
{𝑁}), ( I ↾ 𝐹)〉 ∈
V |
56 | 54, 55 | eqeltri 2837 |
. . 3
⊢ 𝑆 ∈ V |
57 | 12, 8, 5, 54 | upgrres1lem2 27676 |
. . . . 5
⊢
(Vtx‘𝑆) =
(𝑉 ∖ {𝑁}) |
58 | 57 | eqcomi 2749 |
. . . 4
⊢ (𝑉 ∖ {𝑁}) = (Vtx‘𝑆) |
59 | 12, 8, 5, 54 | upgrres1lem3 27677 |
. . . . 5
⊢
(iEdg‘𝑆) = ( I
↾ 𝐹) |
60 | 59 | eqcomi 2749 |
. . . 4
⊢ ( I
↾ 𝐹) =
(iEdg‘𝑆) |
61 | 58, 60 | isupgr 27452 |
. . 3
⊢ (𝑆 ∈ V → (𝑆 ∈ UPGraph ↔ ( I
↾ 𝐹):dom ( I ↾
𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣
(♯‘𝑝) ≤
2})) |
62 | 56, 61 | mp1i 13 |
. 2
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (𝑆 ∈ UPGraph ↔ ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣
(♯‘𝑝) ≤
2})) |
63 | 53, 62 | mpbird 256 |
1
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ UPGraph) |