| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | f1oi 6886 | . . . . 5
⊢ ( I
↾ 𝐹):𝐹–1-1-onto→𝐹 | 
| 2 |  | f1of 6848 | . . . . 5
⊢ (( I
↾ 𝐹):𝐹–1-1-onto→𝐹 → ( I ↾ 𝐹):𝐹⟶𝐹) | 
| 3 | 1, 2 | mp1i 13 | . . . 4
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → ( I ↾ 𝐹):𝐹⟶𝐹) | 
| 4 | 3 | ffdmd 6766 | . . 3
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐹) | 
| 5 |  | upgrres1.f | . . . . 5
⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | 
| 6 |  | simpr 484 | . . . . . . . . . . 11
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ 𝐸) | 
| 7 | 6 | adantr 480 | . . . . . . . . . 10
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑒 ∈ 𝐸) | 
| 8 |  | upgrres1.e | . . . . . . . . . . . . 13
⊢ 𝐸 = (Edg‘𝐺) | 
| 9 | 8 | eleq2i 2833 | . . . . . . . . . . . 12
⊢ (𝑒 ∈ 𝐸 ↔ 𝑒 ∈ (Edg‘𝐺)) | 
| 10 |  | edgupgr 29151 | . . . . . . . . . . . . 13
⊢ ((𝐺 ∈ UPGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅ ∧ (♯‘𝑒) ≤ 2)) | 
| 11 |  | elpwi 4607 | . . . . . . . . . . . . . . 15
⊢ (𝑒 ∈ 𝒫
(Vtx‘𝐺) → 𝑒 ⊆ (Vtx‘𝐺)) | 
| 12 |  | upgrres1.v | . . . . . . . . . . . . . . 15
⊢ 𝑉 = (Vtx‘𝐺) | 
| 13 | 11, 12 | sseqtrrdi 4025 | . . . . . . . . . . . . . 14
⊢ (𝑒 ∈ 𝒫
(Vtx‘𝐺) → 𝑒 ⊆ 𝑉) | 
| 14 | 13 | 3ad2ant1 1134 | . . . . . . . . . . . . 13
⊢ ((𝑒 ∈ 𝒫
(Vtx‘𝐺) ∧ 𝑒 ≠ ∅ ∧
(♯‘𝑒) ≤ 2)
→ 𝑒 ⊆ 𝑉) | 
| 15 | 10, 14 | syl 17 | . . . . . . . . . . . 12
⊢ ((𝐺 ∈ UPGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ⊆ 𝑉) | 
| 16 | 9, 15 | sylan2b 594 | . . . . . . . . . . 11
⊢ ((𝐺 ∈ UPGraph ∧ 𝑒 ∈ 𝐸) → 𝑒 ⊆ 𝑉) | 
| 17 | 16 | ad4ant13 751 | . . . . . . . . . 10
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑒 ⊆ 𝑉) | 
| 18 |  | simpr 484 | . . . . . . . . . 10
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑁 ∉ 𝑒) | 
| 19 |  | elpwdifsn 4789 | . . . . . . . . . 10
⊢ ((𝑒 ∈ 𝐸 ∧ 𝑒 ⊆ 𝑉 ∧ 𝑁 ∉ 𝑒) → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁})) | 
| 20 | 7, 17, 18, 19 | syl3anc 1373 | . . . . . . . . 9
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁})) | 
| 21 |  | simpl 482 | . . . . . . . . . . . 12
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → 𝐺 ∈ UPGraph) | 
| 22 | 9 | biimpi 216 | . . . . . . . . . . . 12
⊢ (𝑒 ∈ 𝐸 → 𝑒 ∈ (Edg‘𝐺)) | 
| 23 | 10 | simp2d 1144 | . . . . . . . . . . . 12
⊢ ((𝐺 ∈ UPGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ≠ ∅) | 
| 24 | 21, 22, 23 | syl2an 596 | . . . . . . . . . . 11
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) → 𝑒 ≠ ∅) | 
| 25 | 24 | adantr 480 | . . . . . . . . . 10
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑒 ≠ ∅) | 
| 26 |  | nelsn 4666 | . . . . . . . . . 10
⊢ (𝑒 ≠ ∅ → ¬ 𝑒 ∈
{∅}) | 
| 27 | 25, 26 | syl 17 | . . . . . . . . 9
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → ¬ 𝑒 ∈ {∅}) | 
| 28 | 20, 27 | eldifd 3962 | . . . . . . . 8
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑒 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅})) | 
| 29 | 28 | ex 412 | . . . . . . 7
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) → (𝑁 ∉ 𝑒 → 𝑒 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}))) | 
| 30 | 29 | ralrimiva 3146 | . . . . . 6
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → ∀𝑒 ∈ 𝐸 (𝑁 ∉ 𝑒 → 𝑒 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}))) | 
| 31 |  | rabss 4072 | . . . . . 6
⊢ ({𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} ⊆ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ↔ ∀𝑒 ∈ 𝐸 (𝑁 ∉ 𝑒 → 𝑒 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}))) | 
| 32 | 30, 31 | sylibr 234 | . . . . 5
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} ⊆ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅})) | 
| 33 | 5, 32 | eqsstrid 4022 | . . . 4
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → 𝐹 ⊆ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅})) | 
| 34 |  | elrabi 3687 | . . . . . . 7
⊢ (𝑝 ∈ {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} → 𝑝 ∈ 𝐸) | 
| 35 |  | edgval 29066 | . . . . . . . . . . . 12
⊢
(Edg‘𝐺) = ran
(iEdg‘𝐺) | 
| 36 | 8, 35 | eqtri 2765 | . . . . . . . . . . 11
⊢ 𝐸 = ran (iEdg‘𝐺) | 
| 37 | 36 | eleq2i 2833 | . . . . . . . . . 10
⊢ (𝑝 ∈ 𝐸 ↔ 𝑝 ∈ ran (iEdg‘𝐺)) | 
| 38 |  | eqid 2737 | . . . . . . . . . . . . 13
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) | 
| 39 | 12, 38 | upgrf 29103 | . . . . . . . . . . . 12
⊢ (𝐺 ∈ UPGraph →
(iEdg‘𝐺):dom
(iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣
(♯‘𝑥) ≤
2}) | 
| 40 | 39 | frnd 6744 | . . . . . . . . . . 11
⊢ (𝐺 ∈ UPGraph → ran
(iEdg‘𝐺) ⊆
{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣
(♯‘𝑥) ≤
2}) | 
| 41 | 40 | sseld 3982 | . . . . . . . . . 10
⊢ (𝐺 ∈ UPGraph → (𝑝 ∈ ran (iEdg‘𝐺) → 𝑝 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣
(♯‘𝑥) ≤
2})) | 
| 42 | 37, 41 | biimtrid 242 | . . . . . . . . 9
⊢ (𝐺 ∈ UPGraph → (𝑝 ∈ 𝐸 → 𝑝 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣
(♯‘𝑥) ≤
2})) | 
| 43 |  | fveq2 6906 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑝 → (♯‘𝑥) = (♯‘𝑝)) | 
| 44 | 43 | breq1d 5153 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑝 → ((♯‘𝑥) ≤ 2 ↔ (♯‘𝑝) ≤ 2)) | 
| 45 | 44 | elrab 3692 | . . . . . . . . . 10
⊢ (𝑝 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣
(♯‘𝑥) ≤ 2}
↔ (𝑝 ∈ (𝒫
𝑉 ∖ {∅}) ∧
(♯‘𝑝) ≤
2)) | 
| 46 | 45 | simprbi 496 | . . . . . . . . 9
⊢ (𝑝 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣
(♯‘𝑥) ≤ 2}
→ (♯‘𝑝)
≤ 2) | 
| 47 | 42, 46 | syl6 35 | . . . . . . . 8
⊢ (𝐺 ∈ UPGraph → (𝑝 ∈ 𝐸 → (♯‘𝑝) ≤ 2)) | 
| 48 | 47 | adantr 480 | . . . . . . 7
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (𝑝 ∈ 𝐸 → (♯‘𝑝) ≤ 2)) | 
| 49 | 34, 48 | syl5com 31 | . . . . . 6
⊢ (𝑝 ∈ {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} → ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (♯‘𝑝) ≤ 2)) | 
| 50 | 49, 5 | eleq2s 2859 | . . . . 5
⊢ (𝑝 ∈ 𝐹 → ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (♯‘𝑝) ≤ 2)) | 
| 51 | 50 | impcom 407 | . . . 4
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑝 ∈ 𝐹) → (♯‘𝑝) ≤ 2) | 
| 52 | 33, 51 | ssrabdv 4074 | . . 3
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → 𝐹 ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣
(♯‘𝑝) ≤
2}) | 
| 53 | 4, 52 | fssd 6753 | . 2
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣
(♯‘𝑝) ≤
2}) | 
| 54 |  | upgrres1.s | . . . 4
⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 | 
| 55 |  | opex 5469 | . . . 4
⊢
〈(𝑉 ∖
{𝑁}), ( I ↾ 𝐹)〉 ∈
V | 
| 56 | 54, 55 | eqeltri 2837 | . . 3
⊢ 𝑆 ∈ V | 
| 57 | 12, 8, 5, 54 | upgrres1lem2 29328 | . . . . 5
⊢
(Vtx‘𝑆) =
(𝑉 ∖ {𝑁}) | 
| 58 | 57 | eqcomi 2746 | . . . 4
⊢ (𝑉 ∖ {𝑁}) = (Vtx‘𝑆) | 
| 59 | 12, 8, 5, 54 | upgrres1lem3 29329 | . . . . 5
⊢
(iEdg‘𝑆) = ( I
↾ 𝐹) | 
| 60 | 59 | eqcomi 2746 | . . . 4
⊢ ( I
↾ 𝐹) =
(iEdg‘𝑆) | 
| 61 | 58, 60 | isupgr 29101 | . . 3
⊢ (𝑆 ∈ V → (𝑆 ∈ UPGraph ↔ ( I
↾ 𝐹):dom ( I ↾
𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣
(♯‘𝑝) ≤
2})) | 
| 62 | 56, 61 | mp1i 13 | . 2
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (𝑆 ∈ UPGraph ↔ ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣
(♯‘𝑝) ≤
2})) | 
| 63 | 53, 62 | mpbird 257 | 1
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ UPGraph) |