MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrres1 Structured version   Visualization version   GIF version

Theorem upgrres1 28837
Description: A pseudograph obtained by removing one vertex and all edges incident with this vertex is a pseudograph. Remark: This graph is not a subgraph of the original graph in the sense of df-subgr 28792 since the domains of the edge functions may not be compatible. (Contributed by AV, 8-Nov-2020.)
Hypotheses
Ref Expression
upgrres1.v 𝑉 = (Vtx‘𝐺)
upgrres1.e 𝐸 = (Edg‘𝐺)
upgrres1.f 𝐹 = {𝑒𝐸𝑁𝑒}
upgrres1.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
Assertion
Ref Expression
upgrres1 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝑆 ∈ UPGraph)
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hints:   𝑆(𝑒)   𝐹(𝑒)

Proof of Theorem upgrres1
Dummy variables 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 6870 . . . . 5 ( I ↾ 𝐹):𝐹1-1-onto𝐹
2 f1of 6832 . . . . 5 (( I ↾ 𝐹):𝐹1-1-onto𝐹 → ( I ↾ 𝐹):𝐹𝐹)
31, 2mp1i 13 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ( I ↾ 𝐹):𝐹𝐹)
43ffdmd 6747 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐹)
5 upgrres1.f . . . . 5 𝐹 = {𝑒𝐸𝑁𝑒}
6 simpr 483 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) → 𝑒𝐸)
76adantr 479 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑒𝐸)
8 upgrres1.e . . . . . . . . . . . . 13 𝐸 = (Edg‘𝐺)
98eleq2i 2823 . . . . . . . . . . . 12 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
10 edgupgr 28661 . . . . . . . . . . . . 13 ((𝐺 ∈ UPGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅ ∧ (♯‘𝑒) ≤ 2))
11 elpwi 4608 . . . . . . . . . . . . . . 15 (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒 ⊆ (Vtx‘𝐺))
12 upgrres1.v . . . . . . . . . . . . . . 15 𝑉 = (Vtx‘𝐺)
1311, 12sseqtrrdi 4032 . . . . . . . . . . . . . 14 (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒𝑉)
14133ad2ant1 1131 . . . . . . . . . . . . 13 ((𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅ ∧ (♯‘𝑒) ≤ 2) → 𝑒𝑉)
1510, 14syl 17 . . . . . . . . . . . 12 ((𝐺 ∈ UPGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒𝑉)
169, 15sylan2b 592 . . . . . . . . . . 11 ((𝐺 ∈ UPGraph ∧ 𝑒𝐸) → 𝑒𝑉)
1716ad4ant13 747 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑒𝑉)
18 simpr 483 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑁𝑒)
19 elpwdifsn 4791 . . . . . . . . . 10 ((𝑒𝐸𝑒𝑉𝑁𝑒) → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁}))
207, 17, 18, 19syl3anc 1369 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁}))
21 simpl 481 . . . . . . . . . . . 12 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝐺 ∈ UPGraph)
229biimpi 215 . . . . . . . . . . . 12 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
2310simp2d 1141 . . . . . . . . . . . 12 ((𝐺 ∈ UPGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ≠ ∅)
2421, 22, 23syl2an 594 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) → 𝑒 ≠ ∅)
2524adantr 479 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑒 ≠ ∅)
26 nelsn 4667 . . . . . . . . . 10 (𝑒 ≠ ∅ → ¬ 𝑒 ∈ {∅})
2725, 26syl 17 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → ¬ 𝑒 ∈ {∅})
2820, 27eldifd 3958 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑒 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}))
2928ex 411 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) → (𝑁𝑒𝑒 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅})))
3029ralrimiva 3144 . . . . . 6 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ∀𝑒𝐸 (𝑁𝑒𝑒 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅})))
31 rabss 4068 . . . . . 6 ({𝑒𝐸𝑁𝑒} ⊆ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ↔ ∀𝑒𝐸 (𝑁𝑒𝑒 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅})))
3230, 31sylibr 233 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → {𝑒𝐸𝑁𝑒} ⊆ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}))
335, 32eqsstrid 4029 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝐹 ⊆ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}))
34 elrabi 3676 . . . . . . 7 (𝑝 ∈ {𝑒𝐸𝑁𝑒} → 𝑝𝐸)
35 edgval 28576 . . . . . . . . . . . 12 (Edg‘𝐺) = ran (iEdg‘𝐺)
368, 35eqtri 2758 . . . . . . . . . . 11 𝐸 = ran (iEdg‘𝐺)
3736eleq2i 2823 . . . . . . . . . 10 (𝑝𝐸𝑝 ∈ ran (iEdg‘𝐺))
38 eqid 2730 . . . . . . . . . . . . 13 (iEdg‘𝐺) = (iEdg‘𝐺)
3912, 38upgrf 28613 . . . . . . . . . . . 12 (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
4039frnd 6724 . . . . . . . . . . 11 (𝐺 ∈ UPGraph → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
4140sseld 3980 . . . . . . . . . 10 (𝐺 ∈ UPGraph → (𝑝 ∈ ran (iEdg‘𝐺) → 𝑝 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
4237, 41biimtrid 241 . . . . . . . . 9 (𝐺 ∈ UPGraph → (𝑝𝐸𝑝 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
43 fveq2 6890 . . . . . . . . . . . 12 (𝑥 = 𝑝 → (♯‘𝑥) = (♯‘𝑝))
4443breq1d 5157 . . . . . . . . . . 11 (𝑥 = 𝑝 → ((♯‘𝑥) ≤ 2 ↔ (♯‘𝑝) ≤ 2))
4544elrab 3682 . . . . . . . . . 10 (𝑝 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ (𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘𝑝) ≤ 2))
4645simprbi 495 . . . . . . . . 9 (𝑝 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (♯‘𝑝) ≤ 2)
4742, 46syl6 35 . . . . . . . 8 (𝐺 ∈ UPGraph → (𝑝𝐸 → (♯‘𝑝) ≤ 2))
4847adantr 479 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (𝑝𝐸 → (♯‘𝑝) ≤ 2))
4934, 48syl5com 31 . . . . . 6 (𝑝 ∈ {𝑒𝐸𝑁𝑒} → ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (♯‘𝑝) ≤ 2))
5049, 5eleq2s 2849 . . . . 5 (𝑝𝐹 → ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (♯‘𝑝) ≤ 2))
5150impcom 406 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑝𝐹) → (♯‘𝑝) ≤ 2)
5233, 51ssrabdv 4070 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝐹 ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
534, 52fssd 6734 . 2 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
54 upgrres1.s . . . 4 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
55 opex 5463 . . . 4 ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩ ∈ V
5654, 55eqeltri 2827 . . 3 𝑆 ∈ V
5712, 8, 5, 54upgrres1lem2 28835 . . . . 5 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
5857eqcomi 2739 . . . 4 (𝑉 ∖ {𝑁}) = (Vtx‘𝑆)
5912, 8, 5, 54upgrres1lem3 28836 . . . . 5 (iEdg‘𝑆) = ( I ↾ 𝐹)
6059eqcomi 2739 . . . 4 ( I ↾ 𝐹) = (iEdg‘𝑆)
6158, 60isupgr 28611 . . 3 (𝑆 ∈ V → (𝑆 ∈ UPGraph ↔ ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
6256, 61mp1i 13 . 2 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (𝑆 ∈ UPGraph ↔ ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
6353, 62mpbird 256 1 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝑆 ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1085   = wceq 1539  wcel 2104  wne 2938  wnel 3044  wral 3059  {crab 3430  Vcvv 3472  cdif 3944  wss 3947  c0 4321  𝒫 cpw 4601  {csn 4627  cop 4633   class class class wbr 5147   I cid 5572  dom cdm 5675  ran crn 5676  cres 5677  wf 6538  1-1-ontowf1o 6541  cfv 6542  cle 11253  2c2 12271  chash 14294  Vtxcvtx 28523  iEdgciedg 28524  Edgcedg 28574  UPGraphcupgr 28607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-1st 7977  df-2nd 7978  df-vtx 28525  df-iedg 28526  df-edg 28575  df-upgr 28609
This theorem is referenced by:  nbupgrres  28888
  Copyright terms: Public domain W3C validator