MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrres1 Structured version   Visualization version   GIF version

Theorem upgrres1 26788
Description: A pseudograph obtained by removing one vertex and all edges incident with this vertex is a pseudograph. Remark: This graph is not a subgraph of the original graph in the sense of df-subgr 26743 since the domains of the edge functions may not be compatible. (Contributed by AV, 8-Nov-2020.)
Hypotheses
Ref Expression
upgrres1.v 𝑉 = (Vtx‘𝐺)
upgrres1.e 𝐸 = (Edg‘𝐺)
upgrres1.f 𝐹 = {𝑒𝐸𝑁𝑒}
upgrres1.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
Assertion
Ref Expression
upgrres1 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝑆 ∈ UPGraph)
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hints:   𝑆(𝑒)   𝐹(𝑒)

Proof of Theorem upgrres1
Dummy variables 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 6475 . . . . 5 ( I ↾ 𝐹):𝐹1-1-onto𝐹
2 f1of 6438 . . . . 5 (( I ↾ 𝐹):𝐹1-1-onto𝐹 → ( I ↾ 𝐹):𝐹𝐹)
31, 2mp1i 13 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ( I ↾ 𝐹):𝐹𝐹)
43ffdmd 6360 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐹)
5 upgrres1.f . . . . 5 𝐹 = {𝑒𝐸𝑁𝑒}
6 simpr 477 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) → 𝑒𝐸)
76adantr 473 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑒𝐸)
8 upgrres1.e . . . . . . . . . . . . 13 𝐸 = (Edg‘𝐺)
98eleq2i 2851 . . . . . . . . . . . 12 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
10 edgupgr 26612 . . . . . . . . . . . . 13 ((𝐺 ∈ UPGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅ ∧ (♯‘𝑒) ≤ 2))
11 elpwi 4426 . . . . . . . . . . . . . . 15 (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒 ⊆ (Vtx‘𝐺))
12 upgrres1.v . . . . . . . . . . . . . . 15 𝑉 = (Vtx‘𝐺)
1311, 12syl6sseqr 3904 . . . . . . . . . . . . . 14 (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒𝑉)
14133ad2ant1 1113 . . . . . . . . . . . . 13 ((𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅ ∧ (♯‘𝑒) ≤ 2) → 𝑒𝑉)
1510, 14syl 17 . . . . . . . . . . . 12 ((𝐺 ∈ UPGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒𝑉)
169, 15sylan2b 584 . . . . . . . . . . 11 ((𝐺 ∈ UPGraph ∧ 𝑒𝐸) → 𝑒𝑉)
1716ad4ant13 738 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑒𝑉)
18 simpr 477 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑁𝑒)
19 elpwdifsn 4589 . . . . . . . . . 10 ((𝑒𝐸𝑒𝑉𝑁𝑒) → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁}))
207, 17, 18, 19syl3anc 1351 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁}))
21 simpl 475 . . . . . . . . . . . 12 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝐺 ∈ UPGraph)
229biimpi 208 . . . . . . . . . . . 12 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
2310simp2d 1123 . . . . . . . . . . . 12 ((𝐺 ∈ UPGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ≠ ∅)
2421, 22, 23syl2an 586 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) → 𝑒 ≠ ∅)
2524adantr 473 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑒 ≠ ∅)
26 nelsn 4471 . . . . . . . . . 10 (𝑒 ≠ ∅ → ¬ 𝑒 ∈ {∅})
2725, 26syl 17 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → ¬ 𝑒 ∈ {∅})
2820, 27eldifd 3836 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑒 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}))
2928ex 405 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) → (𝑁𝑒𝑒 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅})))
3029ralrimiva 3126 . . . . . 6 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ∀𝑒𝐸 (𝑁𝑒𝑒 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅})))
31 rabss 3934 . . . . . 6 ({𝑒𝐸𝑁𝑒} ⊆ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ↔ ∀𝑒𝐸 (𝑁𝑒𝑒 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅})))
3230, 31sylibr 226 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → {𝑒𝐸𝑁𝑒} ⊆ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}))
335, 32syl5eqss 3901 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝐹 ⊆ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}))
34 elrabi 3584 . . . . . . 7 (𝑝 ∈ {𝑒𝐸𝑁𝑒} → 𝑝𝐸)
35 edgval 26527 . . . . . . . . . . . 12 (Edg‘𝐺) = ran (iEdg‘𝐺)
368, 35eqtri 2796 . . . . . . . . . . 11 𝐸 = ran (iEdg‘𝐺)
3736eleq2i 2851 . . . . . . . . . 10 (𝑝𝐸𝑝 ∈ ran (iEdg‘𝐺))
38 eqid 2772 . . . . . . . . . . . . 13 (iEdg‘𝐺) = (iEdg‘𝐺)
3912, 38upgrf 26564 . . . . . . . . . . . 12 (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
4039frnd 6345 . . . . . . . . . . 11 (𝐺 ∈ UPGraph → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
4140sseld 3853 . . . . . . . . . 10 (𝐺 ∈ UPGraph → (𝑝 ∈ ran (iEdg‘𝐺) → 𝑝 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
4237, 41syl5bi 234 . . . . . . . . 9 (𝐺 ∈ UPGraph → (𝑝𝐸𝑝 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
43 fveq2 6493 . . . . . . . . . . . 12 (𝑥 = 𝑝 → (♯‘𝑥) = (♯‘𝑝))
4443breq1d 4933 . . . . . . . . . . 11 (𝑥 = 𝑝 → ((♯‘𝑥) ≤ 2 ↔ (♯‘𝑝) ≤ 2))
4544elrab 3589 . . . . . . . . . 10 (𝑝 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ (𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘𝑝) ≤ 2))
4645simprbi 489 . . . . . . . . 9 (𝑝 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (♯‘𝑝) ≤ 2)
4742, 46syl6 35 . . . . . . . 8 (𝐺 ∈ UPGraph → (𝑝𝐸 → (♯‘𝑝) ≤ 2))
4847adantr 473 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (𝑝𝐸 → (♯‘𝑝) ≤ 2))
4934, 48syl5com 31 . . . . . 6 (𝑝 ∈ {𝑒𝐸𝑁𝑒} → ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (♯‘𝑝) ≤ 2))
5049, 5eleq2s 2878 . . . . 5 (𝑝𝐹 → ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (♯‘𝑝) ≤ 2))
5150impcom 399 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑝𝐹) → (♯‘𝑝) ≤ 2)
5233, 51ssrabdv 3936 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝐹 ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
534, 52fssd 6352 . 2 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
54 upgrres1.s . . . 4 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
55 opex 5206 . . . 4 ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩ ∈ V
5654, 55eqeltri 2856 . . 3 𝑆 ∈ V
5712, 8, 5, 54upgrres1lem2 26786 . . . . 5 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
5857eqcomi 2781 . . . 4 (𝑉 ∖ {𝑁}) = (Vtx‘𝑆)
5912, 8, 5, 54upgrres1lem3 26787 . . . . 5 (iEdg‘𝑆) = ( I ↾ 𝐹)
6059eqcomi 2781 . . . 4 ( I ↾ 𝐹) = (iEdg‘𝑆)
6158, 60isupgr 26562 . . 3 (𝑆 ∈ V → (𝑆 ∈ UPGraph ↔ ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
6256, 61mp1i 13 . 2 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (𝑆 ∈ UPGraph ↔ ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
6353, 62mpbird 249 1 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝑆 ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2048  wne 2961  wnel 3067  wral 3082  {crab 3086  Vcvv 3409  cdif 3822  wss 3825  c0 4173  𝒫 cpw 4416  {csn 4435  cop 4441   class class class wbr 4923   I cid 5304  dom cdm 5400  ran crn 5401  cres 5402  wf 6178  1-1-ontowf1o 6181  cfv 6182  cle 10467  2c2 11488  chash 13498  Vtxcvtx 26474  iEdgciedg 26475  Edgcedg 26525  UPGraphcupgr 26558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-sbc 3678  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5305  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-1st 7494  df-2nd 7495  df-vtx 26476  df-iedg 26477  df-edg 26526  df-upgr 26560
This theorem is referenced by:  nbupgrres  26839
  Copyright terms: Public domain W3C validator