MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrres1 Structured version   Visualization version   GIF version

Theorem upgrres1 26421
Description: A pseudograph obtained by removing one vertex and all edges incident with this vertex is a pseudograph. Remark: This graph is not a subgraph of the original graph in the sense of df-subgr 26376 since the domains of the edge functions may not be compatible. (Contributed by AV, 8-Nov-2020.)
Hypotheses
Ref Expression
upgrres1.v 𝑉 = (Vtx‘𝐺)
upgrres1.e 𝐸 = (Edg‘𝐺)
upgrres1.f 𝐹 = {𝑒𝐸𝑁𝑒}
upgrres1.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
Assertion
Ref Expression
upgrres1 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝑆 ∈ UPGraph)
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hints:   𝑆(𝑒)   𝐹(𝑒)

Proof of Theorem upgrres1
Dummy variables 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 6390 . . . . 5 ( I ↾ 𝐹):𝐹1-1-onto𝐹
2 f1of 6353 . . . . 5 (( I ↾ 𝐹):𝐹1-1-onto𝐹 → ( I ↾ 𝐹):𝐹𝐹)
31, 2mp1i 13 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ( I ↾ 𝐹):𝐹𝐹)
43ffdmd 6278 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐹)
5 upgrres1.f . . . . 5 𝐹 = {𝑒𝐸𝑁𝑒}
6 simpr 473 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) → 𝑒𝐸)
76adantr 468 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑒𝐸)
8 upgrres1.e . . . . . . . . . . . . 13 𝐸 = (Edg‘𝐺)
98eleq2i 2877 . . . . . . . . . . . 12 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
10 edgupgr 26243 . . . . . . . . . . . . 13 ((𝐺 ∈ UPGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅ ∧ (♯‘𝑒) ≤ 2))
11 elpwi 4361 . . . . . . . . . . . . . . 15 (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒 ⊆ (Vtx‘𝐺))
12 upgrres1.v . . . . . . . . . . . . . . 15 𝑉 = (Vtx‘𝐺)
1311, 12syl6sseqr 3849 . . . . . . . . . . . . . 14 (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒𝑉)
14133ad2ant1 1156 . . . . . . . . . . . . 13 ((𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅ ∧ (♯‘𝑒) ≤ 2) → 𝑒𝑉)
1510, 14syl 17 . . . . . . . . . . . 12 ((𝐺 ∈ UPGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒𝑉)
169, 15sylan2b 583 . . . . . . . . . . 11 ((𝐺 ∈ UPGraph ∧ 𝑒𝐸) → 𝑒𝑉)
1716ad4ant13 748 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑒𝑉)
18 simpr 473 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑁𝑒)
19 elpwdifsn 4511 . . . . . . . . . 10 ((𝑒𝐸𝑒𝑉𝑁𝑒) → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁}))
207, 17, 18, 19syl3anc 1483 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁}))
21 simpl 470 . . . . . . . . . . . 12 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝐺 ∈ UPGraph)
229biimpi 207 . . . . . . . . . . . 12 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
2310simp2d 1166 . . . . . . . . . . . 12 ((𝐺 ∈ UPGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ≠ ∅)
2421, 22, 23syl2an 585 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) → 𝑒 ≠ ∅)
2524adantr 468 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑒 ≠ ∅)
26 nelsn 4406 . . . . . . . . . 10 (𝑒 ≠ ∅ → ¬ 𝑒 ∈ {∅})
2725, 26syl 17 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → ¬ 𝑒 ∈ {∅})
2820, 27eldifd 3780 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑒 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}))
2928ex 399 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) → (𝑁𝑒𝑒 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅})))
3029ralrimiva 3154 . . . . . 6 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ∀𝑒𝐸 (𝑁𝑒𝑒 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅})))
31 rabss 3876 . . . . . 6 ({𝑒𝐸𝑁𝑒} ⊆ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ↔ ∀𝑒𝐸 (𝑁𝑒𝑒 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅})))
3230, 31sylibr 225 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → {𝑒𝐸𝑁𝑒} ⊆ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}))
335, 32syl5eqss 3846 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝐹 ⊆ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}))
34 elrabi 3554 . . . . . . 7 (𝑝 ∈ {𝑒𝐸𝑁𝑒} → 𝑝𝐸)
35 edgval 26155 . . . . . . . . . . . 12 (Edg‘𝐺) = ran (iEdg‘𝐺)
368, 35eqtri 2828 . . . . . . . . . . 11 𝐸 = ran (iEdg‘𝐺)
3736eleq2i 2877 . . . . . . . . . 10 (𝑝𝐸𝑝 ∈ ran (iEdg‘𝐺))
38 eqid 2806 . . . . . . . . . . . . 13 (iEdg‘𝐺) = (iEdg‘𝐺)
3912, 38upgrf 26195 . . . . . . . . . . . 12 (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
4039frnd 6263 . . . . . . . . . . 11 (𝐺 ∈ UPGraph → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
4140sseld 3797 . . . . . . . . . 10 (𝐺 ∈ UPGraph → (𝑝 ∈ ran (iEdg‘𝐺) → 𝑝 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
4237, 41syl5bi 233 . . . . . . . . 9 (𝐺 ∈ UPGraph → (𝑝𝐸𝑝 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
43 fveq2 6408 . . . . . . . . . . . 12 (𝑥 = 𝑝 → (♯‘𝑥) = (♯‘𝑝))
4443breq1d 4854 . . . . . . . . . . 11 (𝑥 = 𝑝 → ((♯‘𝑥) ≤ 2 ↔ (♯‘𝑝) ≤ 2))
4544elrab 3559 . . . . . . . . . 10 (𝑝 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ (𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘𝑝) ≤ 2))
4645simprbi 486 . . . . . . . . 9 (𝑝 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (♯‘𝑝) ≤ 2)
4742, 46syl6 35 . . . . . . . 8 (𝐺 ∈ UPGraph → (𝑝𝐸 → (♯‘𝑝) ≤ 2))
4847adantr 468 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (𝑝𝐸 → (♯‘𝑝) ≤ 2))
4934, 48syl5com 31 . . . . . 6 (𝑝 ∈ {𝑒𝐸𝑁𝑒} → ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (♯‘𝑝) ≤ 2))
5049, 5eleq2s 2903 . . . . 5 (𝑝𝐹 → ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (♯‘𝑝) ≤ 2))
5150impcom 396 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑝𝐹) → (♯‘𝑝) ≤ 2)
5233, 51ssrabdv 3878 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝐹 ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
534, 52fssd 6270 . 2 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
54 upgrres1.s . . . 4 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
55 opex 5122 . . . 4 ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩ ∈ V
5654, 55eqeltri 2881 . . 3 𝑆 ∈ V
5712, 8, 5, 54upgrres1lem2 26419 . . . . 5 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
5857eqcomi 2815 . . . 4 (𝑉 ∖ {𝑁}) = (Vtx‘𝑆)
5912, 8, 5, 54upgrres1lem3 26420 . . . . 5 (iEdg‘𝑆) = ( I ↾ 𝐹)
6059eqcomi 2815 . . . 4 ( I ↾ 𝐹) = (iEdg‘𝑆)
6158, 60isupgr 26193 . . 3 (𝑆 ∈ V → (𝑆 ∈ UPGraph ↔ ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
6256, 61mp1i 13 . 2 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (𝑆 ∈ UPGraph ↔ ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
6353, 62mpbird 248 1 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝑆 ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2156  wne 2978  wnel 3081  wral 3096  {crab 3100  Vcvv 3391  cdif 3766  wss 3769  c0 4116  𝒫 cpw 4351  {csn 4370  cop 4376   class class class wbr 4844   I cid 5218  dom cdm 5311  ran crn 5312  cres 5313  wf 6097  1-1-ontowf1o 6100  cfv 6101  cle 10360  2c2 11356  chash 13337  Vtxcvtx 26088  iEdgciedg 26089  Edgcedg 26153  UPGraphcupgr 26189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-op 4377  df-uni 4631  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5219  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-1st 7398  df-2nd 7399  df-vtx 26090  df-iedg 26091  df-edg 26154  df-upgr 26191
This theorem is referenced by:  nbupgrres  26481
  Copyright terms: Public domain W3C validator